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ABSTRACT

Background: Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association
studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological in-
formation from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about
biological processes to integrate functional sets of genes at strongly to moderately associated loci.

Methods: We conducted gene set enrichment analyses (GSEA) using 2.3 million single-nucleotide polymorph-
isms, 397 Reactome pathways and 24,025 patients with BD and controls. RNA expression of implicated in-
dividual genes and gene sets were examined in post-mortem brains across lifespan.

Results: Two pathways showed a significant enrichment after correction for multiple comparisons in the GSEA:
GRB2 events in ERBB2 signaling, for which 6 of 21 genes were BD associated (Prpr = 0.0377), and NCAM signaling
for neurite out-growth, for which 11 out of 62 genes were BD associated (Prppg = 0.0451). Most pathway genes
showed peaks of RNA co-expression during fetal development and infancy and mapped to neocortical areas and
parts of the limbic system.

Limitations: Pathway associations were technically reproduced by two methods, although they were not formally
replicated in independent samples. Gene expression was explored in controls but not in patients.

Conclusions: Pathway analysis in large GWAS data of BD and follow-up of gene expression patterns in healthy
brains provide support for an involvement of neurodevelopmental processes in the etiology of this neu-
ropsychiatric disease. Future studies are required to further evaluate the relevance of the implicated genes on

pathway functioning and clinical aspects of BD.

1. Introduction

Bipolar disorder (BD) is a genetically complex mental illness. During
the past ten years, several genome-wide association studies (GWAS) of
BD were conducted and have identified 19 loci harboring common
genetic susceptibility variants (Sullivan et al., 2017). It is assumed that
with growing sample sizes the number of loci will increase, as has been
successfully demonstrated for schizophrenia, where GWAS in 61,000
patients found 155 independent loci (Sullivan et al., 2017).

Gene set enrichment analysis (GSEA) is a powerful tool to retrieve
more biological information from existing GWAS. Such multi-locus
approaches utilize functional frameworks of ontologies or pathways to
integrate genes at strongly to moderately associated loci. Using the
same sample size, GSEA therefore has greater statistical power to detect
a polygenic contribution of individually small effects to overall risk
than single-locus analyses (Lee et al., 2012).

Here, we applied GSEA algorithms to a large published GWAS on
BD, including approximately 9700 patients and 14,200 controls
(Miihleisen et al., 2014). We found associations between BD and two
signaling pathways involved in brain development.
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2. Methods and materials
2.1. Phenotype and SNP data

For GSEA, we used combined data from the Systematic Investigation
of the Molecular Causes of Major Mood Disorders and Schizophrenia
(MooDS) and Psychiatric Genomics Consortium (PGC) consortia com-
prising 2,267,487 autosomal single-nucleotide polymorphisms (SNPs)
from 9747 patients with life-time diagnoses of BD and 14,278 controls,
as described by Miihleisen et al. (2014). Written informed consent was
obtained from all patients and controls before participation in the
study.

2.2. Gene set enrichment analyses

For discovery, we used Meta-Analysis Gene-set Enrichment of
variaNT Associations (MAGENTA; (Segre et al., 2010)) with its default
settings. At genome-wide level, each gene was mapped to the GWAS
SNP showing the lowest p-value within gene boundaries (RefSeq defi-
nitions), to minimize the effect of a potential confounding factor in-
troduced by overlapping gene boundaries (Sedefio-Cortés and Pavlidis,
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2014). P-values of these index SNPs were corrected for confounders
such as gene size, SNP density and linkage disequilibrium-related
properties in the stepwise multiple linear regression model of MA-
GENTA. Resulting gene scores were assigned to target gene sets. For
each target gene set, the observed number of gene scores above the
user-defined threshold (here 95%) is evaluated against the expected
number of gene scores above this threshold for gene sets of identical
size, randomly sampled from the genome multiple times. A non-para-
metric test produces the nominal p-value for each tested target gene set.
False-discovery rate (FDR) was used to correct for multiple testing
(PrpR).

For secondary analysis of the significantly enriched pathways, we
applied Gene Set Analysis SNP (GSA-SNP; (Nam et al., 2010)) on the
same input data. GSA-SNP uses p-values of SNPs to calculate enrich-
ment scores by using the Z-statistic method. But instead of using the
maximum effect per gene as a proxy for the respective gene, we chose
the second-best p-value to represent the effect of each gene to avoid
spurious associations (Kwon et al., 2012).

For pathways, we used curated target gene sets (pathways) from
Reactome as available through the Molecular Signature Database (v6.0;
(Subramanian et al., 2005)). Their sizes were restricted from 20 to 200
to avoid overly narrow or broad gene sets. This resulted in 397 sets for
GSEA.

2.3. Gene expression data

BrainScope enables interactive visual exploration of spatial and
temporal human brain transcriptomes from the Allen Institute for Brain
Science (Huisman et al., 2017). Here we focused on the dataset Devel-
opmental Transcriptome from the BrainSpan atlas that had been pre-
processed and re-analyzed by BrainScope's developers resulting in the
dataset Developing human (comparative explorer) with RNA expression
levels of 18,233 genes (Entrez Gene definitions) that were z-score
normalized, to have a zero mean and a standard deviation of 1.

To explore changes of co-expressed genes in brain regions and time
windows, we used heat maps of the comparative explorer from
BrainScope under default settings. Each square of a heat map displayed
the average regional expression of the selected gene(s) across pooled
tissue samples (replicates, developmental stages) from donor brains
(controls). For BD-associated pathways from GSEA results, heat maps
were assembled and annotated using standard graphical software. The
brain regions covered neocortical areas including primary cortices
(auditory, motor, somatosensory, visual), pre- and orbitofrontal cor-
tices, the temporal cortex (inferolateral, posterior superior), the parietal
cortex (posteroventral); principal structures of the diencephalon in-
cluding parts of the basal ganglia (amygdala, striatum) and limbic
system (anterior cingulate, amygdala, hippocampus) coiled around and
connected to thalamus and hypothalamus; the hindbrain (cerebellar
cortex). The time windows comprised fetal development (from early
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2nd trimester to birth), infancy (from birth to one year), childhood
(from two to eleven years), adolescence (from 13 to 19 years), and
adulthood (from 21 to 40 years). BrainScope, BrainSpan, and Entrez
Gene are publicly accessible at www.brainscope.nl, www.brainspan.
org, and www.ncbi.nlm.nih.gov/gene.

3. Results
3.1. Discovery and validation of BD-associated pathways

GSEA by MAGENTA on MooDS-PGC data revealed two study-wide
significant Reactome pathways when applying the significance criterion
of FDR < 0.05 (Table 1). The best finding was GRB2 events in ERBB2
signaling (Prppr = 0.0377), for which 6 genes were associated (NRAS,
KRAS, EGFR, ERBB2, MAPK1, HBEGF) out of 21 in the pathway. The
second finding was NCAM signaling for neurite out-growth (Pgpr =
0.0451) for which 11 of 62 genes were associated (NCAN, SPTBN2,
FYN, NRAS, CREB1, KRAS, CACNB3, COL2A1, CACNB2, MAPKI,
SPTBN1). Three significant genes were common to both pathways
(NRAS, KRAS, MAPK1). The associated genes showed a balanced con-
tribution to the total significance of the two target gene sets
(Supplementary Table 1). The subsequent GSEA by GSA-SNP on the
same input data validated the enrichments in the two target gene sets (P
= 4.80E-06 and P = 3.28E-08, respectively; Table 1).

3.2. Exploration of gene expression in BD-associated pathways

To assess patterns of co-expressed genes from both pathways in the
developing and adult brain, we used data from BrainSpan accessed
through BrainScope and screened (i) expression of each single asso-
ciated gene, (ii) expression of the combined set of associated genes
(Combined), and (iii) expression of associated genes in context of target
gene sets (Whole pathway). We found that five of the six genes enriched
in GRB2 events in ERBB2 signaling demonstrated expression peaks during
fetal development and infancy, while MAPK1 expression was lower
during prenatal stages and higher during postnatal stages. The com-
bined pattern of the six genes emphasized neural development and was
similar to the whole pathway pattern. In NCAM signaling for neurite out-
growth, four of the ten enriched genes (NCAN, FYN, NRAS, CREBI)
revealed high expression during fetal and early postnatal development.
CACNB2, MAPK1, SPTBN1, and SPTBN2 showed low expression during
fetal stages but increased later on, especially in infancy. Overall, most
genes showed peaks of co-expression during fetal development (early
second to third trimester) and infancy (birth to 18 months) in many
neocortical areas and parts of the limbic system. Spatio-temporal ex-
pression patterns of genes stratified by pathway are displayed in Fig. 1.

Association results of the GSEA. MAGENTA and GSA-SNP were used for discovery and validation steps.

MAGENTA, 95th percentile enrichment cutoff

GSA-SNP, 2nd best

SNP

Gene set name Gene set N genes Prpgr Sign. genes (gene p-value) Empirical p-value
identifier
GRB2 events in ERBB2 R-HSA-1963640 21 0.0377 NRAS (1.94E-03), KRAS (2.20E-03), EGFR (6.18E-03), ERBB2 (0.0196), MAPK1 4.80E-06
signaling (0.0222), HBEGF (0.0306)
NCAM signaling for neurite ~ R-HSA-375165 62 0.0451 NCAN (1.40E-05), SPTBNZ2 (6.64E-05), FYN (2.75E-04), NRAS (1.94E-03), CREB1 3.28E-08
out-growth (2.11E-03), KRAS (2.20E-03), CACNB3 (4.86E-03), COL2A1 (0.0127), CACNB2

(0.0138), MAPK1 (0.0222), SPTBN1 (0.0251)

Abbreviations: CACNB2, calcium voltage-gated channel auxiliary subunit beta 2; CACNB3, calcium voltage-gated channel auxiliary subunit beta 3; COL2A1, collagen type II alpha 1
chain; CREB1, cAMP responsive element binding protein 1; EGF, epidermal growth factor; EGFR, EGF receptor; ERBB2, Erb-B2 receptor tyrosine kinase 2; FYN, FYN proto-oncogene;
GRB2, Growth factor receptor-bound protein 2; HBEGF, heparin-binding EGF-like growth factor; KRAS, KRAS proto-oncogene, GTPase; MAPK1, mitogen-activated protein kinase 1; N,
number; NCAM1, neural cell adhesion molecule 1; NCAN, neurocan; NRAS, neuroblastoma RAS Viral oncogene homolog; Prpr, FDR-adjusted p-value; SPTBN1, spectrin beta, non-

erythrocytic 1; SPTBN2, spectrin beta, non-erythrocytic 2.
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GRB2 events in ERBB2 signaling
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Fig. 1. Expression patterns of genes in BD-associated pathways during normal brain development. Each square of a heat map displays the spatio-temporal expression of the
selected gene(s) in the indicated regions and stages in control brains. Levels of RNA expression are z-score normalized ranging from blue (low) over white (zero mean) to red (high).
Patterns are shown for single enriched genes (gene symbols), the combined set of enriched genes (combined), and the target gene set (whole pathway). ERBB2 is a member of the EGF
receptor family. Since ERBB2 has no ligand-binding domain, it needs a co-receptor to become activated. Upon binding of an EGF ligand, the ERBB2-EGFR heterodimer recruits adaptor
protein GRB2 leading to SOS1-mediated guanine-nucleotide exchange on RAS (KRAS, NRAS) and activation of RAF and the MAP kinase cascade (MAPK1). NCAM1 works on modulation
of intracellular signaling, either by activation of FGF receptors or cytoplasmic tyrosine kinases (FYN) that initiate MAP kinase cascades (MAPK1) and a transcription factor (CREB1) which
regulates expression of genes for growth and survival of neurites. Spectrins (SPTBN1, SPTBN2) are cytoskeletal molecules and manage to link RPTP-alpha to the cytoplasmic domain of
NCAM1. L-type channels (CACNB2, CACNB3) associate with NCAM1 in growth cones at the sites of NCAM1 clusters leading to processes that promote neurite out-growth. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

4. Discussion

Current disease models of BD suggest a multifactorial etiology re-
sulting from the additive effects of many gene variants at different loci
together with the effect of environmental factors. GWAS have demon-
strated that the genotype relative risks of the involved common sus-
ceptibility variants are small and that large sample sizes are necessary
to achieve sufficient statistical power to identify them (Sullivan et al.,
2017). In the present analysis, we chose to apply GSEA to our GWAS
data because this approach should have greater statistical power to
detect a polygenic contribution of individually small effects to overall
risk than single-locus analyses (Lee et al., 2012). To further strengthen
our findings, we investigated genes within the implicated pathways for
expression at milestones of normal brain development to obtain in-
formation on their relevance during ontogenetic stages. Biological
pathway studies of BD so far have found evidence for genes involved in
calcium channels, hormonal regulation, glutamate signaling, neural
development, and histone methylation (Nurnberger et al., 2014;
O'Dushlaine et al., 2015).

Our strongest finding was GRB2 events in ERBB2 signaling which
functions to promote cell proliferation, survival, and differentiation, not
only in the brain. Biologically, an association with ERBB2, EGFR, and
HBEGF is plausible because they form a ligand-activated receptor
complex for signaling and thus seem to be key players of that pathway.
The importance of ERBB2 in BD is further supported by a genome-wide
significant association finding (Hou et al., 2016) and by the observation
of dysregulated ERBB2 expression in the dorsolateral prefrontal cortex
in both BD and schizophrenia (Shao and Vawter, 2008). This expression
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alteration is significantly related to lifetime antipsychotic exposure,
supporting ERBB2 as target for clinical research. ErbB2/B4-deficient
mice exhibit elevated aggression and reduced prepulse inhibition that
both can be rescued by clozapine treatment, a frequently used anti-
psychotic medication (Barros et al., 2009). EGFR (alias ERBBI) is re-
ported to play an essential role in axon myelination during the first
postnatal weeks and can therefore be considered as an important reg-
ulator of neurodevelopment (Aguirre et al., 2007). The gene was also
supported by single SNP and haplotype analysis in a GWAS of BD (Sklar
et al., 2008). HBEGF is a EGF-like binding partner of EGFR and mice
lacking Hb-egf in the ventral forebrain showed abnormalities in psy-
chomotor behavior and neurotransmission which can be ameliorated by
typical or atypical antipsychotics (Oyagi et al., 2009).

Our second finding was NCAM signaling for neurite out-growth which
modulates neural differentiation and synaptic plasticity. Homophilic
binding of NCAM1 molecules at the cell-surface induces signaling that
leads to cell-cell adhesion and axon elongation. Association with NCAN
in this pathway is of major importance since experiments in rats have
demonstrated that interference of Ncaml-Ncaml bindings by con-
current Ncan inhibits these cellular processes (Retzler et al., 1996).
NCAN encodes an extracellular matrix proteoglycan and has been de-
scribed as important susceptibility gene for BD (Cichon et al., 2011).
Furthermore, NCAN was reported to be associated with brain devel-
opment in health and disease, specifically to gray matter loss in central
limbic regions and higher folding in the lateral occipital and prefrontal
cortex suggesting impairments of emotion perception and regulation
and top-down cognitive functioning (Dannlowski et al., 2015). Beha-
vioral abnormalities in Ncan-deficient mice show striking similarities
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with mania symptoms in humans that can be rescued by lithium
treatment, an established mood stabilizer (Miré et al., 2012). Associa-
tion with CACNB2 and CACNB3 represents another highlight of this
pathway, since abnormal calcium channel activity is considered to be
important for BD (Nurnberger et al., 2014). Unexpectedly, CACNAIC
was not found among enriched pathway genes, despite strong support
of this gene from SNP data. Further evaluation revealed that CACNA1C
was absent from the pathway definition. A possible link to our other
finding exists through a gene overlap of KRAS, NRAS and MAPK1 as
well as binding between NCAM1 and EGFR.

In both pathways, most genes showed high co-expression during
fetal development and infancy in many neocortical and subcortical
areas indicating co-expression and possibly co-working of encoded
protein functions. These observations provide links to brain regions
where known pathophysiological changes in BD patients occur, for in-
stance, in the limbic system which is concerned with many aspects of
emotion and behavior.

4.1. Limitations

Although both pathway findings were technically reproduced by
two different approaches and are based on one of the largest GWAS data
of BD so far, association replication in independent samples was not
attempted. Gene expression was explored in control brains only, which
may show co-expression differences compared with BD brains. Follow-
up studies are required to further evaluate the relevance of our findings
for etiological and clinical aspects of BD.

5. Conclusion

The present study found evidence for associations between BD and
two signaling pathways. Integration of evidence from genetic studies,
brain developmental expression patterns and molecular functions of
these pathways support the hypothesis that neurodevelopmental pro-
cesses play an important role in the etiology of BD.
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