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i. Abstract 

This chapter describes how the heritability of a trait can be estimated using data collected 

from pairs of twins. The principles of the classical twin design are described, followed by the 

assumptions, and some possible extensions of the design. In the second part of this chapter, 

two example scripts are presented and the basic steps for estimating heritability using the 

statistical program OpenMx are explained. OpenMx and the scripts used for this chapter can 

be downloaded so that readers can adapt and use the scripts for their own purposes. 

 

ii. Key Words 

heritability, behavior genetics, twin, OpenMx, quantitative genetics, twin modeling, classical 

twin design, genetics, environment 
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1. Introduction 

Individuals vary considerably on physical, cognitive, and behavioral traits, such as height, 

intelligence, and personality. These individual differences may arise from variation in genes, 

environmental experiences, or a combination of both, and it is generally accepted that 

individual differences in most traits are due both to genetic and environmental factors. 

 

To the extent a trait is influenced by genetic (heritable) effects, phenotypic similarity is 

correlated with genetic relatedness. In this chapter we describe how this principle can be used 

to estimate the relative magnitude of genetic and environmental influences on trait variation 

using identical (monozygotic; MZ) and non-identical (dizygotic; DZ) twin pairs. We first 

describe the principles of the classical twin design, followed by assumptions and extensions 

of the design. In the second half of the chapter we provide a practical that explains the basic 

steps required to estimate heritability using the open-access program OpenMx.   

 

1.1. The classical twin design 

In studies with data from twins it is possible to partition the observed variance of a trait into 

genetic, shared environmental, and residual (also known as unshared or unique 

environmental) variation. Additive genetic variance (A) denotes the variance resulting from 

the sum of allelic effects across multiple genes (non-additive genetic influences will be 

discussed later in the chapter). Shared (or common) environmental variance (C) denotes the 

variance resulting from environmental influences shared by family members, such as prenatal 

environment, home environment, socioeconomic status, and residential area. Residual 

variance (E) denotes the variance resulting from environmental influences that are not shared 

by family members, such as idiosyncratic experiences, stochastic biological effects (such as 
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illness and injury), and also captures variance within twin pairs arising from differences in 

perception or salience of the same event, and measurement error.  

 

These different variance components may be estimated using twin data because identical 

twins share all their alleles while, on average, non-identical twins share half of their alleles at 

each locus. Accordingly, if MZ twins resemble each other more than DZ twins on a particular 

trait, this indicates the trait is partly influenced by genetic effects. If all the variance of a trait 

were due to genetic variance, we would expect a twin pair correlation of 1.0 for MZ twins 

and 0.5 for DZ twins. Both MZ and DZ twin pairs share environmental influences. If the 

shared environment were the only source of variance, we would expect a twin pair correlation 

of 1.0 for both MZ and DZ pairs. Finally, if nether genetic not shared environmental 

influences contributed to the variance, we would expect a twin pair correlation of zero for 

both MZ and DZ twin pairs. In reality, the variance of a trait is generally due to a 

combination of A, C, and E influences, and this is reflected in the MZ and DZ twin pair 

correlations.  

 

The correlation between MZ twins (rMZ ) can be summarized as A + C and the correlation 

between DZ twins (rDZ) as 0.5A + C. Using the observed MZ and DZ twin pair correlations, 

it is possible to estimate the proportion of variance accounted for by A, C, and E (1). 

Given 

rMZ = A + C          (1) 

rDZ = 0.5A + C          (2) 

Equations 1 and 2 can be solved for A and C 

A = 2(rMZ - rDZ)           (3) 

C = 2rDZ - rMZ           (4) 
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Given standardized variance equals one 

A + C + E = 1           (5) 

Thus, equations 1 and 5 can be solved for E 

E = 1 - rMZ             (6) 

 

Rather than simply calculating the genetic and environmental variance components from twin 

pair correlations, behavioural geneticists typically employ structural equation modeling to 

more precisely estimate the combination of A, C, and E influences that best explains the 

observed data. These models can take into account covariate effects, such as age and sex, can 

compare the fit of various types of models, and provide confidence intervals for the estimates. 

The basic model is presented in Fig.1. The boxes represent the observed variables (for twin 1 

and twin 2), and the circles represent the latent variables (A, C, and E) that influence the 

observed variables. The double headed arrows show the correlations between the 

corresponding latent factors. As explained above, for A this correlation is 1.0 for MZ twins 

and 0.5 for DZ twins, and for both MZ and DZ twins the correlation for C is 1 and for E is 

zero.  

 

Structural equation modeling of twin data is most commonly performed in the flexible 

structural equation modeling package OpenMx (2). OpenMx is a free, open source software 

for use in the R programming environment (see http://openmx.psyc.virginia.edu/). OpenMx 

employs maximum likelihood modeling procedures to derive parameter estimates through 

optimization. Effectively, the optimizer searches the parameter space comparing the observed 

data with expected variance-covariance matrices under different parameter estimates until it 

reaches the optimum solution. There are several fit functions that can be requested in 

OpenMx to compute the difference in observed and expected data, the one discussed in this 

http://openmx.psyc.virginia.edu/
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chapter is minus twice the log likelihood (there are several abbreviations in OpenMx output 

for this fit function, including -2lnL, -2LL, and minus2LL). The difference in fit between 

models can be used to assess if a nested model (a model that is a reduced version of another) 

acceptably fits the data. That is, whether simplifying the model significantly reduces the fit. 

This is assessed using a likelihood ratio chi-square test in which the test statistic is calculated 

as the difference in -2 log likelihood between the nested models (i.e. Δ-2LL or diffLL) with 

degrees of freedom equal to the difference in degrees of freedom between the nested models 

(i.e. Δdf or diffdf) being asymptotically distributed as a chi-square distribution. If the 

difference in model fit results in a P-value that is less than the critical alpha (typically P< 

.05), then the fit of the reduced model is considered to be significantly worse than that of the 

parent model. By testing the difference in model fit we can determine whether dropping 

model parameters (e.g. reducing an ACE model to a CE model) or constraining parameters to 

be equal (e.g. equating the male and female variance component estimates) significantly 

worsens the model fit allowing us to make inferences about the significance of parameters. 

 

1.2. Assumptions of the classical twin model 

One of the key assumptions of the classical twin design is that trait-relevant environments are 

similar to the same extent in MZ and DZ twin pairs. If this is not the case then estimates will 

be biased. For example, if MZ twins are treated more similarly by their parents than DZ twins 

and this contributes to MZ twin similarity on a trait, then this will falsely inflate the A 

estimate and deflate the C estimate for that trait. This equal environment assumption can be 

tested by comparing the similarity of trait-relevant environments between MZ and DZ twin 

pairs or by comparing the similarity of twin pairs who were mistaken or misinformed about 

their zygosity. These tests have shown that in general the assumption is valid (see, e.g., ref. 

3). 
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A second assumption is that DZ twins share on average 50% of their alleles. This assumption 

is only valid if mating occurs randomly in the population and is violated if assortative mating 

(tendency of individuals to select mates who are similar to themselves) or inbreeding is 

present. Note that in the context of a complex trait where many loci contribute to trait 

variation, assortative mating does not mean that mates will share exactly the same alleles 

across trait-relevant loci, but rather that their overall genetic predisposition will be more 

similar. Consequently, assortative mating can increase the genetic similarity of DZ twins, 

which if not taken into account results in a higher C estimate and a lower A estimate. The 

effect of assortative mating can be accounted for by adding parents or spouses of twins to the 

model. 

In the standard ACE model, a third assumption is that genetic influences are additive and 

non-additive genetic influences are not taken into account; however, the model can be 

modified to estimate non-additive genetic influences. Non-additive genetic effects include 

dominance (allelic interactions within loci) and epistasis (interaction between multiple loci). 

Dominant genetic effects (D) predict a twin pair correlation of 1.0 for MZ twins and 0.25 for 

DZ twins, whereas epistasis predicts a MZ correlation of 1.0 and a DZ correlation between 0 

and 0.25 (4, 5). Dominance and epistatic effects cannot be resolved in a classical twin study, 

so it is conventional to simply estimate dominance variance (D) by specifying an expected 

MZ correlation of 1.0 and a DZ correlation of 0.25 and accept that this component also 

includes epistatic variance. When only using data from twins who were reared together, it is 

not possible to estimate C and D simultaneously. In the classical twin design, A, C and D are 

confounded, they all contribute to MZ and DZ correlations but it is not possible to solve three 

unknown parameters (A, C, and D) with only two relevant pieces of information (rMZ and 

rDZ). The model is under-identified. The choice of an ACE or ADE model (i.e. a model that 

includes the components A, C, and E or A, D, and E) depends on the pattern of MZ and DZ 
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correlations; C influences increase the DZ correlation relative to the MZ correlation, whereas 

D influences decrease the DZ correlation relative to the MZ correlation. Therefore, C is 

estimated if the DZ twin correlation is more than half the MZ twin correlation, and D is 

estimated if the DZ twin correlation is less than half the MZ correlation. By extending the 

twin design with parents or children of twins, it is possible to estimate both C and D in the 

same model.  

 

A fourth assumption is that there is no correlation or interaction between genes and 

environment. Gene-environment correlations are present when individuals actively or 

passively expose themselves to different environments depending on their genotype, such as 

when individuals’ genotypes affect their social interactions or influence the responses they 

elicit from other individuals. For example, children who are genetically talented at sports are 

more likely to join a sports club than genetically untalented children, and genetically 

extroverted children are likely to have different social experiences than genetically 

introverted children. Environmental influences are then correlated with genetic 

predisposition. When the environmental influence is not shared between twins, a gene-

environment correlation will inflate the A estimate in a classical ACE model; whereas when 

the environmental influence is shared between twins, a gene-environment correlation will 

inflate C. Gene-environment interactions occur when the expression of an individual’s 

genotype depends on the environment. For example, Boomsma et al. (6) found that a 

religious upbringing reduced the expression of genetic factors on disinhibition. If gene-

environment interaction is present, the relative contribution of genes and environment to the 

trait variance will differ among individuals as a function of the environment. If not explicitly 

modelled, gene-environment interaction will inflate the estimate of E when the environmental 
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influence is not shared between twins, or it will inflate the estimate of C when the 

environmental influence is shared between twins.  

 

1.3. Extensions of the classical twin model 

Above we described the most basic form of the classical twin design; this model can be 

extended in various ways. Covariates can be included in the model, which estimate and 

account for the effects of possible confounders such as sex and age. 

 

Sex differences in genetic and environmental effects can be investigated with the classical 

twin design if there are data for female and male MZ and DZ twin pairs. Differences between 

the sexes might be qualitative, which result from females and males being exposed to 

different genetic or environmental factors, or differences might be quantitative, which result 

from the same genetic or environmental factors influencing variation to different magnitudes 

in females and males. Quantitative sex differences are investigated by estimating separate A, 

C, and E parameters for males and females. Estimation of qualitative sex differences, requires 

data for opposite-sex DZ twins. Qualitative differences in genetic effects between sexes are 

assessed by estimating the genetic correlation between DZ opposite-sex twins instead of 

fixing it at 0.5 (which is the genetic correlation of same-sex DZ twin pairs). If completely 

different genetic factors were influencing males and females, the genetic correlation between 

opposite-sex twins would be zero. In the same way, sex differences in the source of shared 

environmental influences can be investigated by estimating the shared environmental 

correlation for opposite-sex twins instead of fixing it at 1.0.  It is not possible to estimate both 

A and C opposite-sex correlations in the same model with data only from twins raised 

together as such a model is under-identified. 
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The classical twin design can be extended by including additional family members (siblings, 

parents, children, or spouses). Inclusion of extra family members increases the statistical 

power, can make it possible to estimate more parameters, and relax assumptions regarding 

mating and cultural transmission. For example, adding data from non-twin siblings makes it 

possible to test for twin-specific environmental influences. Including parents in the model 

makes it possible to simultaneously estimate C and D influences as well as effects from 

assortative mating, and the correlation between additive genetic effects and family 

environment (8). Alternatively, instead of estimating D, by including parents of twins it is 

possible to estimate familial environmental transmission and sibling environment; the 

limitation on estimating all of these sources of variance from the addition of parents is—

again—under-identification. If more family members are included, such as children and 

spouses of twins, then genetic and environmental effects that contribute to trait variation can 

be partitioned into more specific sources. 

 

Correlations between MZ and DZ twin pairs are central to the twin design; these statistics 

assume normally distributed traits, but for ordinal or dichotomous variables a liability 

threshold model can be used to estimate these correlations (7). Threshold models assume 

there is an underlying continuum of liability (e.g. to depression) that is normally distributed 

in the population, and that our measurement categories (e.g. depressed/not depressed) are due 

to one or more artificial divisions (thresholds) overlaying this normal distribution. Analyses 

are effectively performed on the underlying liability to the trait, resulting in estimates of the 

heritability of the liability.   
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Until now we have only discussed univariate analyses, where we were interested in 

disentangling the variance of a trait into that due to genetic and environmental components. 

By including more than one dependent variable in a model we can additionally partition the 

covariance between traits into that due to A, C (or D), and E in the same way as we do for the 

variance of a single trait. Multivariate models can be used to test the extent to which the same 

genetic or environmental factors influence multiple traits. For example, they can test if there 

is a correlation between novelty seeking and drug use and, if so, to what extent the correlation 

is due to overlapping genetic and/or environmental influences. Figure 2 shows a bivariate 

Cholesky decomposition, the base model used for bivariate analyses (9). From this base 

model, parameters can be dropped or equated to test specific hypotheses regarding those 

parameters. Multivariate twin modeling can be used to analyse numerous variables, and to 

conduct both exploratory and confirmatory factor, longitudinal, and causal analyses. 
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2. Methods 

In this section, two example scripts (preliminary analyses and ACE model fitting) are 

presented and described. To reduce the complexity of the scripts, the practicals below focus 

on univariate modeling and use height as the example variable. For the practicals, we use an 

example dataset included with the distribution of OpenMx. The variable zyg in the dataset 

includes five zygosity-by-sex groups that are each divided into younger and older twins. The 

younger twins are coded MZ females (1), MZ males (2), DZ females (3), DZ males (4), and 

DZ opposite-sex pairs (5). The older twins are coded 6–10 in the same order. For the 

practicals we have only used male twin pairs from the young cohort (zygosity 2 and 4). First, 

we test assumptions regarding the data, which we use for the final ACE modeling. The 

preliminary analyses on assumptions involve testing whether the means, variances, and 

covariances significantly differ between different subgroups. For example, are the means and 

variances of MZ and DZ twins equivalent? We are testing this because in the basic ACE 

model these values are typically equated. If the dataset being analyzed contains data from 

both male and female twins, testing if variances and covariance differ between sexes is 

particularly useful to assess whether further analyses on qualitative or quantitative sex effects 

ought to be conducted. Subsequently, in the second script, we estimate the relative magnitude 

of A, C, and E components of the variance in height in males by fitting a univariate ACE 

model. The programs used for the following examples (OpenMx and R) can be downloaded 

from the following pages, http://openmx.psyc.virginia.edu/installing-openmx and 

http://www.r-project.org/. OpenMx is not a standalone program but rather a package of 

functions that runs within the R environment. The scripts used in the following examples can 

be found at http://www.genepi.qimr.edu.au/staff/sarahMe/twinstudies.html. In the following 

sections we explain the individual steps within the scripts.  

 

http://openmx.psyc.virginia.edu/installing-openmx
http://www.r-project.org/
http://www.genepi.qimr.edu.au/staff/sarahMe/twinstudies.html
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2.1. Preliminary analyses 

2.1.1. Setting up the R session 

Once R is installed, open the program. OpenMx can be easily installed from within R by 

pasting and running the following code 

source('http://openmx.psyc.virginia.edu/getOpenMx.R') 

Once OpenMx is installed, the library can be loaded by running the following code 

require(OpenMx) 

In this practical we will also be using the psych package to summarize the data. After it is 

installed, it can be loaded by running 

require(psych) 

For each new R session packages will need to be loaded in order to use their functions. 

 

2.1.2. Data preparation 

In this example we will be using the twinData dataset that is supplied with the OpenMx 

program; because this dataset is stored within R it is loaded using the data(twinData) 

command. Typically data is read into R using a function such as read.table() or read.csv(). 

For details as to how to prepare a new dataset for analysis in OpenMx, see Note 1.  

 

After reading the data into the R session, the describe function (part of the psych package) 

provides some useful descriptive statistics. In general, it is a good idea to check your data 

prior to analysis to ensure the data are complete and missing codes have been read correctly 

by R. We are going to build the scripts using objects. After an object is assigned content the 

object can be used in subsequent commands or functions to simplify the script; content is 

assigned to an object using 
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<- 

First, we specify the number of variables/traits (nv) to be analyzed, the number of 

twins/individuals (nt), and the product of these becomes our total number of variables (ntv). 

What we call these objects is arbitrary, as long as the name we give them is not the name of 

something that has specific meaning in a package. Having objects of the number of variables, 

the number of individuals, and the total number of variables is particularly useful when 

scripting multivariate models. Thus we specify the number of variables with nv <- 1, and the 

number of twins with nt <- 2. Next we use these objects to create another that is the total 

number of variables, ntv <- nv*nt. This object will be used later to create matrices with 

correct dimensions to hold the means and the variances and covariances. Next we create an 

object that is a list of the names of the variables to be analyzed, height of twin 1 and height of 

twin 2, selVars <- c(“ht1”,”ht2”). The quotation marks are important, if they are omitted R 

will assume they are names of objects. The content of an object is printed to the screen by 

running the object name within a script or by typing the object name into the Console; this is 

useful for checking whether the object has been created correctly, in this case selVars. After 

this, we re-scale the data and increase the variance (to improve the optimization) by 

converting from meters to cm. Using the describe command again, we can check the new 

mean and find that height is now reported in cm. Finally, two new datasets are created, one 

including all male MZ twin pairs (mzData; in this dataset zyg==2) and another including all 

male DZ twin pairs (dzData; zyg==4). Again punctuation is important; the double equal sign 

indicates that a condition is being set, while a single equal sign is another way to assign a 

number to an object. 
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2.1.3. Saturated model fitting 

After data preparation and specifying starting values for means, variances, and covariances 

(see Note 2), a univariate saturated model (in which all possible parameters are estimated) is 

fitted in order to estimate the means, variances, and covariances that best fit the observed 

data. The goodness-of-fit statistic of this saturated model is later compared to that of the more 

reduced models in which certain parameters are dropped (i.e. fixed to equal zero) or equated. 

In this way we can test whether means, variances, and covariances of different sub-samples 

are significantly different or whether covariates (e.g. age) significantly influence the trait. 

The model (modelUniTwinSat) used in the present example consists of two submodels, one 

for the MZ twin data (shown below) and one for the DZ twin data (omitted). To include more 

zygosity groups (e.g. female MZ, female DZ, opposite-sex DZ) we would increase the 

number of submodels. Using the mxMatrix function we create a matrix that is free (i.e. 

parameters will be estimated as opposed to being fixed at a specific value), symmetric (the 

upper triangle of the matrix is constrained to be equal to the lower triangle, which will be 

estimated). Each row and column of this matrix is equal to the total number of variables (ntv), 

thus it is a two by two matrix in this example. This matrix is called expCovMZ and contains 

the expected variances and covariance for twin 1 height and twin 2 height. We also create a 

free and full matrix (i.e. all elements are estimated) with one row and the number of columns 

# Prepare Data 
# ---------------------------------------------------------------------- 
data(twinData) 
describe(twinData) 
nv <- 1 
nt  <- 2 
ntv <- nv*nt 
selVars  <- c("ht1","ht2") 
selVars 
twinData$ht1   <- twinData$ht1*100 
twinData$ht2   <- twinData$ht2*100 
describe(twinData) 
mzData  <- subset(twinData, zyg==2, selVars) 
dzData   <- subset(twinData, zyg==4, selVars) 
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equal to the total number of variables, thus two columns in this example. This matrix is called 

expMeansMZ and contains the expected means for twin 1 height and twin 2 height. The 

dataset is specified using the mxData function. The combination of mxExpectationNormal 

and mxFitFunctionML functions specifies that full-information maximum likelihood is used 

to estimate the free parameters in the expected means (expMeansMZ) and variance-

covariance (expCovMZ) matrices so that  -2 log likelihood is minimized. It is important that 

the covariance argument and the means argument of the mxExpectationNormal function 

specify the names of the matrices that hold the estimated parameters and not the object 

names. The most common mistakes make when writing or editing openMx scripts involve the 

omission or misplacement of commas and brackets examples of the error codes generated by 

these mistakes are provided in Note 3. 

 

After the objects of the submodels are created, each submodel is specified by listing all the 

necessary objects in the mxModel function and supplying each model with a name. Next, an 

object is created using the mxFitFunctionMultigroup function; by listing each submodel this 

specifies that the parameters are to be estimated and the fit optimized across all submodels 

simultaneously. Finally, the whole model is specified, again by using mxModel and listing 

the objects of the submodels and the mxFitFunctionMultigroup.  

 

 

modelMZ               <- mxModel("MZ", covMZ, meanMZ, dataMZ, expMZ, fitfun ) 
modelDZ                <- mxModel("DZ", covDZ, meanDZ, dataDZ, expDZ, fitfun ) 
multi              <- mxFitFunctionMultigroup( c("MZ","DZ")) 
modelUniTwinSat <- mxModel("UniTwinSat", modelMZ, modelDZ, multi) 

# Fit Univariate Saturated Model 
# ---------------------------------------------------------------------- 
# For MZ twins 
covMZ     <- mxMatrix(type="Symm", nrow=ntv, ncol=ntv, free=TRUE, values=StMZcov, 

labels=c("expVarMZt1","CovMZ","expVarMZt2"), name="expCovMZ") 
meanMZ <- mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, values=StMZmean, 

labels=c("expMeanMZt1","expMeanMZt2"), name="expMeanMZ") 
dataMZ   <- mxData(observed=mzData, type="raw" ) 
expMZ     <- mxExpectationNormal(covariance="expCovMZ", means="expMeanMZ", dimnames=selVars) 
fitfun       <- mxFitFunctionML() 
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2.1.4. Running the models and generating output 

After building the model, we run it. By copying the fitted/run model into a fit object we can 

print to the screen information on the fitted model. Requesting summary statistics is a good 

starting place.  

 

From the summary we can obtain the fit of the model (e.g. -2lnL), the estimated parameters, 

and their standard errors. This information can also be extracted with command lines, such as 

fitUniTwinSat$output$fit 

Similarly, we can extract the expected variance-covariance matrices 

fitUniTwinSat$output$matrices 

We can also view details of the specified model prior to it having been run, which is useful 

for checking that elements of matrices have been labeled correctly and allocated appropriate 

start values 

modelUniTwinSat$MZ$matrices 

(see Note 4 for screenshots of output and more detailed explanations). The results show that 

the expected means for height were about 177 cm and the expected variances were close to 

45 for both twins in each of the MZ and DZ groups. The significance of any differences 

between these means and variances is formally tested in the assumption testing steps. 

 

2.1.5. Assumption testing (mean differences) 

# Run the model 
fitUniTwinSat   <- mxRun(modelUniTwinSat) 
 
# Print output 
summary(fitUniTwinSat)  
modelUniTwinSat$MZ$matrices   
modelUniTwinSat$DZ$matrices    
fitUniTwinSat$output$matrices  
mxCompare(fitUniTwinSat) 
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The fewer parameters we estimate in a model, the more power we have to estimate them. We 

expect that our data are representative of the general population and that the trait (height) is 

normally distributed in the general population. Therefore, the most basic twin model assumes 

that there are no significant differences in means and variances between the different groups 

(e.g. twin 1, twin 2, MZ, DZ, males, females, etc.). If there are no significant differences, it 

means that data from all groups contribute to estimating a single parameter for the mean of 

height. However, before running the most basic twin model, we need to test whether these 

assumptions are valid in our data. Violations of these assumptions are not problematic, but 

need to be accounted for with more complex twin models that allow for separate parameter 

estimates for different subsamples and/or include covariates (e.g. sex differences). To start 

with, we test if the means of twin 1 and twin 2 (within each of the MZ and DZ groups) are 

significantly different. This tests potential birth effects in samples where twin 1 is the first 

born and twin 2 is the second born. To test this, the means are equated and the model fit is 

compared to the original saturated model. If the model fit of the restricted model is not 

significantly worse, the means are not significantly different and we keep them equated in 

subsequent modeling.  

 

To equate the means, a new model object is created from the fitted saturated model, 

fitUniTwinSat, and given a new name, modelEquateMeans1. The function omxSetParameters 

is used to modify parameters in the model. To use this function, we first indicate the name of 

the model to be modified, then use the labels argument to list the labels to be renamed, and 

the newlabels argument to specify the new label. It is simplest to repeat the use of 

omxSetParameters for each new label. For example, we have taken the parameters previously 

estimated as “expMeanMZt1” and “expMeanMZt2” and called both of them 

“expMeanMZt1t2” in the reduced model. Because we are taking estimated parameters that 
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probably have different values and creating a model where they will be estimated as a single 

parameter with the same value, we use the omxAssignFirstParameters function to specify that 

all occurrences of parameters with the same label will have the same starting value. Then the 

new reduced model is run and the summary statistics and output are requested. 

 

 

The output from the mxCompare function provides fit statistics on the saturated and the 

reduced model along with the P-values of the likelihood ratio test. As explained in 

Subheading 1.1, the change in fit between two nested models (diffLL) is asymptotically 

distributed as chi-square with degrees of freedom equal to the difference in degrees of 

freedom (diffdf) between the two models. Thus, it is possible to test whether constraining the 

means to be equal significantly worsens the model fit. With assumption testing the most 

sensitive test is to compare each reduced model with the previous model. For further 

information regarding output, model fit, and comparing models see Note 4. In the present 

example, the output shows no significant mean differences between twin 1 and twin 2. Other 

assumptions of the most basic twin model that are tested (not shown here but in the script 

online) are whether we can equate:  

- the means of the MZ and DZ groups, 

- the variances of twin 1 and twin 2 within each of the MZ and DZ groups, 

# Assumption Testing - Means - check for mean differences between the different groups  
# ----------------------------------------------------------------------- 
# Check for birth order effects - equate means of twin 1 and twin 2 for MZ and DZ twins 
modelEquateMeans1 <- mxModel(fitUniTwinSat, name="equateMeans1") 
modelEquateMeans1 <- omxSetParameters( modelEquateMeans1, labels=c("expMeanMZt1","expMeanMZt2"), 

newlabel="expMeanMZt1t2" ) 
modelEquateMeans1 <- omxSetParameters( modelEquateMeans1, labels=c("expMeanDZt1","expMeanDZt2"), 

newlabel="expMeanDZt1t2" ) 
modelEquateMeans1 <- omxAssignFirstParameters(modelEquateMeans1) 
fitEquateMeans1       <- mxRun(modelEquateMeans1) 
summary(fitEquateMeans1) 
modelEquateMeans1$MZ$matrices 
modelEquateMeans1$DZ$matrices 
fitEquateMeans1$output$matrices 
mxCompare(fitUniTwinSat, fitEquateMeans1) 
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- the variances of the MZ and DZ groups, 

- the covariance of the MZ and DZ groups (this is not an assumption, but is a 

preliminary test for genetic effects). 

 

In a model including data from female MZ and DZ twins, we would set up submodels for 

each of the four groups in the saturated model, and after testing for mean differences between 

zygosity groups, we would then equate means across females and males. If there are 

significant mean differences between the sexes the basic twin model can easily be extended 

to include sex as a covariate on the means. If variances and covariance are different between 

the sexes, then the basic twin model should be extended to test for qualitative and quantitative 

sex effects. To test assumptions regarding opposite-sex DZ twins it is common to arrange the 

data by sex such that all twin 1 are female and twin 2 are male. To model both the effects of 

sex and birth order two opposite-sex twin groups are required, one in which twin 1 is male 

and second in which twin 1 is female. 

 

For the present example, assumption testing showed no mean or variance differences between 

twin 1 and twin 2 or between the MZ and DZ groups. Therefore, in the ACE model below, we 

only estimate one mean and one variance for the whole sample (i.e. we equate the means and 

the variances over the different groups). The covariance between MZ twins was significantly 

higher than for DZ twins, indicating a genetic influence on height variation. This will be 

formally tested in the ACE model below. 

 
2.2. Univariate ACE modeling  

 
2.2.1 Saturated model fitting 



Estimating heritability 
 

After the data are prepared and starting values are specified for the standardized A, C, and E 

estimates (see Note 2), a saturated ACE model (modelAce) is fitted to estimate the relative 

contribution of A, C, and E to variation in height (i.e. the square of the a, c, and e pathways 

presented in Fig. 1). Three free lower matrices (i.e. each element in the upper triangle of the 

matrix is fixed to zero, the other elements are estimated) are created using the mxMatrix 

function, one for each of the a, c, and e estimates.  Note that in a univariate model the lower 

matrix would be a one by one matrix; however, the scripts are set up so that they can be 

easily expanded to a bivariate or multivariate model. We compute the variance components 

for A, C, and E using matrix multiplication (a Kronecker product, for which the R notation is 

%*%) and multiplying a by the transpose of a. This is followed by algebra to compute the 

total variance by summing the matrices of the three variance components A, C, and E to 

produce a matrix called V. In multivariate models this V matrix will hold total trait variances 

on the diagonal. To standardize the variance components, we first create an identity matrix 

(I), which contains a value of one in all diagonal elements and zeros in all off-diagonal 

elements. Second, we create a matrix with the standard deviations on the diagonal by taking 

the square root of the total variance matrix multiplied by the identity matrix. Third, we then 

take the inverse of the standard deviation, thus matrices that hold path estimates can be 

multiplied by this matrix (iSD) to be standardized.  

 

 

# Fit ACE Model with RawData and Matrices Input 
# ----------------------------------------------------------------------- 
pathA     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=St_a, labels="a11", name="a" ) 
pathC     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=St_c, labels="c11", name="c" ) 
pathE     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=St_e, labels="e11", name="e" ) 
 
covA      <- mxAlgebra( expression=a %*% t(a), name="A" ) 
covC      <- mxAlgebra( expression=c %*% t(c), name="C" )  
covE      <- mxAlgebra( expression=e %*% t(e), name="E" ) 
 
covP      <- mxAlgebra( expression=A+C+E, name="V" ) 
matI      <- mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I") 
invSD     <- mxAlgebra( expression=solve(sqrt(I*V)), name="iSD") 
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Using the mxAlgebra function, three objects are created containing the standardized path 

coefficients for the a, c, and e effects. This is achieved by multiplying the matrix of the 

inverse standard deviation by the path coefficients a, c, and e. Note that the order of matrices 

in star matrix multiplication is important, particularly when expanding to multivariate scripts. 

Matrices are also created to hold the standardized genetic and environmental variance 

components. This is achieved by dividing the respective A, C, and E matrices by the total 

variance matrix (V). 

 

 

A means vector is created for the expected means of twin 1 and twin 2. Only one mean value 

is estimated because the assumption testing indicated that the means can be equated across 

twin 1 and twin 2 and across zygosity. We indicate in the script that it is the same value by 

using only one label for each element in the means matrix. Next, the algebra for the expected 

variance/covariance matrix for MZ and DZ twins is specified. The function cbind joins the 

matrices horizontally while rbind joins the expected variances and covariances together 

vertically. For the DZ twins, A is multiplied by 0.5 using a Kronecker product (for which the 

R notation is %x%), as only half of the genes are shared between the DZ twins. 

 

 

meanG    <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=Stmean, label=c("mean","mean"), 
name="expMean" ) 

 
covMZ     <- mxAlgebra( expression= rbind( cbind(A+C+E , A+C), 
                                                 cbind(A+C   , A+C+E)), name="expCovMZ" ) 
covDZ     <- mxAlgebra( expression= rbind( cbind(A+C+E     , 0.5%x%A+C), 
                                                cbind(0.5%x%A+C , A+C+E)), name="expCovDZ" ) 

stpatha   <- mxAlgebra( iSD %*% a, name="sta") 
stpathc   <- mxAlgebra( iSD %*% c, name="stc") 
stpathe   <- mxAlgebra( iSD %*% e, name="ste") 
 
stcovA   <- mxAlgebra( A/V, name="stA") 
stcovC   <- mxAlgebra( C/V, name="stC") 
stcovE   <- mxAlgebra( E/V, name="stE") 
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After this, the data objects specify the data and the type of data to be used in the MZ and DZ 

submodels. Then the expectations of each submodel are defined, mxExpectationNormal will 

calculate these under the assumption of multivariate normality. Because the assumption 

testing indicated that the means could be equated across zygosity groups, expMean is used for 

both submodels; in contrast the covariances are different for each submodel. The 

mxFitFunctionML function specifies that the model fit is to be optimized by computing the -2 

log likelihood. Each submodel requires data, expectations, and a fit function, and the same 

type of fit function is used in each submodel.  

 

 

Each of the MZ and DZ models are specified with the mxModel function by listing all of 

their objects. This has been abbreviated in this script by creating a list of objects that are in 

common to each submodel and placing the object of that list in each submodel. The fit of the 

model as a whole is specified with the mxFitFunctionMultigroup. Finally, 95% confidence 

intervals are specified on the standardized variance components, and the confidence interval 

object included in the final model. In order to estimate the confidence intervals the argument 

“intervals = TRUE” is included when the model is run. 

 

 

 
2.2.2. Fitting submodels 

pars            <- list( pathA, pathC, pathE, covA, covC, covE, covP, matI, invSD, stcovA, stcovC, stcovE, stpatha, stpathc, 
stpathe ) 

modelMZ   <- mxModel( pars, meanG, covMZ, dataMZ, expMZ, fitfun, name="MZ" ) 
modelDZ    <- mxModel( pars, meanG, covDZ, dataDZ, expDZ, fitfun, name="DZ" ) 
multi           <- mxFitFunctionMultigroup( c("MZ","DZ")) 
CIs               <- mxCI( c('stA','stC','stE')) 
modelAce  <- mxModel( "ACE", pars, modelMZ, modelDZ, multi, CIs ) 
fitAce          <- mxTryHard(modelAce, intervals=TRUE) 

dataMZ    <- mxData( observed=mzData, type="raw" ) 
dataDZ     <- mxData( observed=dzData, type="raw" ) 
 
expMZ     <- mxExpectationNormal( covariance="expCovMZ", means="expMean", dimnames=selVars ) 
expDZ      <- mxExpectationNormal( covariance="expCovDZ", means="expMean", dimnames=selVars ) 
fitfun        <- mxFitFunctionML() 
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After the general ACE model is run, submodels can be fitted to test the significance of 

parameters specified in the saturated model. To do this we simply drop the parameter of 

interest, by fixing it to zero, and compare the model fit of the reduced with the full model. 

Based on the parameter estimates in our example, we dropped the C component first (shown 

below), by setting the c estimate to zero, and fitted this AE model. The results of the 

likelihood ratio test are reported using mxCompare; if there is no significant loss of model fit 

from reducing a model, then this supports a conclusion that the more parsimonious model is 

an acceptable model of the data. If A could be dropped from the model, this would suggest no 

significant genetic influences on the trait. Note that the E parameters can never be dropped as 

E includes measurement error.  

 

 

In the assumption testing script we tested each reduced model against the previous model, we 

can also test each reduced model against the saturated model. This is done by creating a list in 

the second argument of the mxCompare function. For more information on model output and 

model fit please see Note 4.

# Fit AE model 
# ----------------------------------------------------------------------- 
modelAe   <- mxModel( fitAce, name="AE") 
modelAe   <- omxSetParameters( modelAe, labels="c11", free=FALSE, values=0 ) 
fitAe          <- mxTryHard(modelAe, intervals=FALSE) 
summary(fitAe) 
mxCompare(fitAce,fitAe) 
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Notes 

 1. Data set preparation 

OpenMx uses a very flexible file format. The only real restriction is that data from each unit 

of analysis need to be on a separate line. Thus, if we were running a multivariate analysis on 

a sample of unrelated individuals (where the unit of analysis is an individual) each line in the 

data file would contain the data for a different person, and all the variables for an individual 

would be one line. In the analysis of twin data, data for each twin pair (or family) are listed 

on a separate line. The only other restriction on the data is that missing values are correctly 

identified within the data, either using the default missing code “NA” or by specifying how 

missing data are coded when reading in the data, e.g. via the argument “na.strings=-99”. 

 

Data can be prepared using a standard data management or statistics package (e.g. SPSS or 

SAS). Alternatively, the data can be prepared within R. Numerous web based tutorials have 

been developed that describe importing and managing data in R; we recommend the Quick-R 

pages e.g., http://www.statmethods.net/input/index.html. 

 

2. Starting Values 

OpenMx optimises a likelihood function under the provided model and tries to find the 

combination of parameter estimates that best fit the data. It does this via iteration: OpenMx 

chooses a set of parameters and determines the difference between the observed and the 

expected variance-covariance matrix, then chooses another set of parameters and refits the 

model; this process continues until no further improvement in model fit is available. For the 

first iteration it is necessary to provide a reasonable starting point for each of the parameters 

to be estimated to speed up the optimisation process. Starting values should ideally be close 

http://www.statmethods.net/input/index.html
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to the actual estimates, but starting the optimizer at the solution itself is problematic and the 

analyses generally fail. 

 

For the expected means and variance-covariance matrix it is possible to use the observed 

means, variances, and covariances. You could manually enter starting values in the values 

argument of the mxMatrix function. Alternatively, users can take advantage of using objects 

and the ability to calculate means and variances using inbuilt R functions. For example  

StMZmean <- vech(mean(mzData,na.rm=T)) 

This code obtains the means of each variable in the mzData dataframe and places them as a 

vector in the object called StMZmean. This object can then be used in the values argument of 

the matrix that will hold the MZ means  

mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=StMZmean, 

name="expMeanMZ" ) 

 

Determining starting values for the a, c, and e parameters is less straightforward. Based on 

the observed data you know what the total variance for a trait is. You can use the observed 

twin pair correlations and Falconer’s formulas (7) (see equations 3, 4, and 6 in section 1.1) to 

determine the approximate proportions of A, C, and E. Use these approximations to partition 

the unstandardized trait variance into A, C, and E; then take the square root of these 

unstandardized variance components to obtain estimates of the unstandardized a, c, and e 

paths. These can be then be used as start values. In general, it is a good idea to provide higher 

starting values for the e estimates than for a or c as this avoids the possibility of non-positive 

definite matrices (where the estimates for the covariances become larger than the estimates of 

the variance). 
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In our script, we set starting values for the a path coefficient by using inbuilt R functions to 

calculate the standard deviation of height in our data and multiply it by a guesstimate of the 

magnitude of the effect. In this way start values will be place on an appropriate scale for the 

unstandardized estimates but the values will be inexact. For example 

St_a <-(vech(sd(twinData$ht1, na.rm=T)))*.3 

Providing starting values becomes more complicated when the model includes more than one 

dependent variable, in which case the cross-twin-cross-trait variance-covariance matrix can 

be used to assist in obtaining appropriate starting values for the pathways. 

 

3. Explanation of errors when commas and brackets are omitted or in excess and how to 

remove/find them 

There are two main types of errors encountered when running OpenMx, errors relating to the 

code and errors relating to the optimization. The three most common code errors are typos, 

missing commas/brackets/quotation marks, and extra commas/brackets/quotation marks. 

Typos typically result in an error message that looks something like this 

Error in mxModel("MZ", covMZ, meanMZ, dataMZ, expMZ, fit) :  

  object 'fit' not found  

A missing comma typically results in an error message that looks something like this 

Error: unexpected symbol in "modelMZ   <- mxModel("MZ", covMZ, meanMZ, 

dataMZ, expMZ fitfun"  

Whereas an extra comma typically results in an error message that looks something like this: 

Error in mxModel("MZ", covMZ, meanMZ, dataMZ, expMZ, fitfun, ) :  

  argument is missing, with no default  
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There are also a number of important optimizer error messages. Any serious errors will be 

reported in the output. However, it is worth checking for errors on each analysis run. For the 

ACE example these can be viewed by typing:  

fitUniTwinSat@output$status[1] 

which yields the following output: 

> fitUniTwinSat@output$status[1] 

$code 

[1] 0 

The status code, which in this case is 0, summarizes the status of the optimizer run, which can 

take several possible values. A value of 0 means a successful optimization — no error 

returned. A value of 1 means that it is highly likely that an optimal solution was found but the 

iterations did not converge. These estimates can generally be considered correct solutions, so 

this code is labeled (Mx status GREEN). Status codes of -1, 2, 3, 4, 5, 6 reflect critical 

optimizer failures and results should not be used. Strategies to deal with these errors include, 

check that the model is correctly specified, check that the starting values are realistic, check 

that the variance-covariance matrix is positive definite. It is possible that the optimizer 

required more time to reach a solution, using the function mxTryHard instead of mxRun will 

take the best fitting parameter estimates from one run and use them as starting values for a 

subsequent run. The default maximum number of runs for mxTryHard is 11. 

 

 4. Output  

If we request the matrices from our specified model (i.e. the model before it is run, not the 

fitted model), we can see which parameters we decided to estimate.  
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If we request matrices from the fitted model, we can display the expected variance-

covariance matrix as well as the expected means for MZ and DZ twins. Here we can see that 

the differences in means and variances between zygosity groups and twin 1 and twin 2 are 

small, although the significance of any differences was assessed in the assumption testing. 

 

After equating the means of twin 1 and twin 2 within each zygosity group, we can see those 

means matching when we request to see the matrices from the fitted reduced model 

> fitUniTwinSat$output$matrices 
$MZ.expCovMZ 
         [,1]     [,2] 
[1,] 44.50668 38.40409 
[2,] 38.40409 42.76752 
$MZ.expMeanMZ 
         [,1]     [,2] 
[1,] 177.7721 177.6414 
$DZ.expCovDZ 
         [,1]     [,2] 
[1,] 48.34238 15.66656 
[2,] 15.66656 43.19497 
$DZ.expMeanDZ 
         [,1]     [,2] 
[1,] 177.7643 177.5032 

> modelUniTwinSat$MZ$matrices 
$expCovMZ 
SymmMatrix 'expCovMZ'  
$labels 
     [,1]         [,2]     
[1,] "expVarMZt1" "CovMZ"    check labels are in 
[2,] "CovMZ"      "expVarMZt2"   the correct position 
$values 
         [,1]     [,2] 
[1,] 45.64889 39.49632     check start values 
[2,] 39.49632 43.86638     are sensible 
$free 
     [,1] [,2] 
[1,] TRUE TRUE       TRUE elements 
[2,] TRUE TRUE       are estimated 
$lbound: No lower bounds assigned. 
$ubound: No upper bounds assigned. 
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The mxCompare output reports the fit of each model in the column called minus2LL; the 

diffLL reports the difference in model fit, and diffdf reports the difference in degrees of 

freedom between the two models. The reduced model should have more degrees of freedom 

and a poorer fit (larger minus2LL) than the full model. We can see from these results that 

there is no significant loss of fit when the means were equated across twin 1 and twin 2 

within the zygosity groups. 

 

 

The summary of the ACE model is shown below. First the parameter estimates for a, c, and e 

are shown, each with its standard error. Subsequently, standardized variance components of A 

(heritability), C, and E are presented with confidence intervals. The exclamation marks 

against the standardized C variance component indicate that the 95% confidence intervals 

were not suitably estimated, in this case it is probably the result of the near zero estimate for 

C. Next, information about the model fit, including -2 log likelihood (-2lnL) and Aikaike’s A 

Information Criterion (AIC). A smaller AIC indicates a better model fit. Reduced models 

> mxCompare(fitUniTwinSat, fitEquateMeans1) 
    base   comparison ep minus2LL df  AIC   diffLL   diffdf p 
1 UniTwinSat <NA>   10 5740.330 917  3906.330   NA   NA  NA 
2 UniTwinSat equateMeans1   8 5740.974 919  3902.974   0.6443898 2 0.724557 

> fitEquateMeans1$output$matrices 
$MZ.expCovMZ 
         [,1]     [,2] 
[1,] 44.52930 38.40438 
[2,] 38.40438 42.76180 
$MZ.expMeanMZ 
         [,1]     [,2] 
[1,] 177.6962 177.6962 
$DZ.expCovDZ 
         [,1]     [,2] 
[1,] 48.36900 15.66329 
[2,] 15.66329 43.21206 
$DZ.expMeanDZ 
         [,1]     [,2] 
[1,] 177.6215 177.6215 
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always have a greater -2 log likelihood, indicating a worse fit, but as long as this fit is not 

significantly worse, the more reduced submodel is the more parsimonious one.  

 
 

The likelihood ratio test from the mxCompare function tests if the reduced model fit is 

significantly worse. We can either compare the reduced model to the previous one, or to the 

full model, in this example all nested models are compared to the saturated model. The 

results indicate that C can be dropped from the model without a significantly poorer model 

fit, but A cannot. Therefore, genetic effects significantly influence variation in height in 

males. 

 
 
  

>mxCompare(fitUniTwinSat,list(fitAce,fitAe,fitCe,fitE)) 
base    comparison ep minus2LL df  AIC   diffLL  diffdf p 

1 UniTwinSat  <NA> 10 5740.330 917  3906.330 NA   NA  NA 
2 UniTwinSat  ACE 4 5745.863 923  3899.863 5.53248 6  4.775396e-01 
3 UniTwinSat  AE  3 5745.863 924  3897.863 5.53248 7  5.952689e-01 
4 UniTwinSat  CE  3 5911.061 924  4063.061 170.730 7  1.760800e-33 
5 UniTwinSat  E  2 6156.235 925  4306.235 415.905 8  7.402437e-85 

> summary(fitAce) 
Summary of ACE  
  
free parameters: 
  name     matrix row col     Estimate Std.Error A 
1  a11          a   1   1 6.374162e+00 0.2005139   
2  c11          c   1   1 2.462840e-07 1.1262497   
3  e11          e   1   1 2.312030e+00 0.1028260   
4 mean MZ.expMean   1 ht1 1.776703e+02 0.2846936   
 
confidence intervals: 
                   lbound     estimate     ubound note 
ACE.stA[1,1] 7.975177e-01 8.837317e-01 0.90502701      
ACE.stC[1,1] 1.319309e-15 1.319309e-15 0.08473914  !!! 
ACE.stE[1,1] 9.497295e-02 1.162683e-01 0.14311327      
 
observed statistics:  927  
estimated parameters:  4  
degrees of freedom:  923  
fit value ( -2lnL units ):  5745.863  
number of observations:  479  
Information Criteria:  
      |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted 
AIC:     3899.86258               5753.863                       NA 
BIC:       49.38292               5770.549                 5757.854 
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