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Abstract 

The diathesis-stress theory for depression states that the effects of stress on the 

depression risk are dependent on the diathesis or vulnerability, implying multiplicative 

interactive effects on the liability scale. We used polygenic risk scores for major 

depressive disorder calculated from the results of the most recent analysis from the 

Psychiatric Genomics Consortium as a direct measure of the vulnerability for 

depression in a sample of 5 221 individuals from 3 083 families. In the same we also 

had measures of stressful life events and social support and a depression symptom 

score, as well as DSM-IV MDD diagnoses for most individuals.  In order to estimate the 

variance in depression explained by the genetic vulnerability, the stressors and their 

interactions, we fitted linear mixed models controlling for relatedness for the whole 

sample as well as stratified by sex. We show a significant interaction of the polygenic 

risk scores with personal life events (0.12% of variance explained, p-value=0.0076) 

contributing positively to the risk of depression. Additionally, our results suggest 

possible differences in the aetiology of depression between women and men. In 

conclusion, our findings point to an extra risk for individuals with combined 

vulnerability and high number of reported personal life events beyond what would be 

expected from the additive contributions of these factors to the liability for depression, 

supporting the multiplicative diathesis-stress model for this disease. 
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Introduction 

A popular explanation for the aetiology of depression is the diathesis-stress 

model 1-6. Initially developed to explain the origins of schizophrenia in the 1960s5, 6  and 

adapted for the study of depression in the 1980s 1-4, this model states that stress may 

activate a diathesis or vulnerability, transforming the potential of predisposition into 

the actuality of psychopathology 7. The model proposes that there is a synergism 

between the diathesis and stress that yields an effect beyond their combined separate 

effects into depressive symptomatology and thus, the effects of stress on the depression 

risk are dependent on the diathesis. Implicit in this theory is that there will be not only  

additive but multiplicative interactive effects on the liability scale 7.  

Over fifty years ago David Rosenthal6 described the diathesis-stress theories as 

“the ones in which genuine meaning attaches to the commonly repeated statement that 

heredity and environment interact”. However, he criticised the vague formulations for 

the predispositions and stressors that these theories propose. This criticism has been 

highlighted by others like Monroe 7, who call for more research and more precise 

measures on the “conceptual essence” of the diathesis-stress premise, i.e. “the nature of 

the interaction between elements in the etiologic process over time”. The diathesis-

stress theory and research have been criticised for being “unproductive, either 

theoretically or empirically” 8.  

The genetically driven sensitivity to environments proposed by the diathesis-

stress model can be operationalised as a gene by environment interaction (GXE). GXE 

studies have commonly focused on single loci in candidate genes, such as the length 

polymorphism (5HTTLPR) in the serotonin transporter gene (SLC6A4), with mostly 

inconsistent or negative results 9-13. This approach has limitations related to poor 
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quality genotyping, inconsistent types of interactions, inconsistent grouping of 

genotypes, selective presentation of results, interactions arising from the scale of 

measurement, and publication bias 9. Moreover, MDD is a polygenic trait, arising from 

the effect of multiple risk variants, each with small effect sizes 14, 15. Therefore, MDD is 

influenced by many genetic variants of small effect, and it is more likely that affected 

individuals carry a polygenic burden of risk alleles rather than any single genotype of 

large effect. However, the progress from a candidate gene to an hypothesis-free 

genome-wide approach is hampered by the need for extremely large samples due to 

expected small effect sizes as well as necessarily imperfect assessment of 

environmental stressors across large cohorts 16, 17. 

Polygenic risk scores (PRS) provide a novel opportunity to test the diathesis-

stress model, since PRS can be conceptualised as an indicator of the diathesis and will 

likely prove a much stronger instrument than any single risk gene. PRS estimation uses 

Genome-Wide Association Study (GWAS) results to predict the genetic risk of each 

individual in an independent genotyped sample; PRS are estimated as the sum of risk 

alleles weighted by their respective independently estimated effect sizes 18. Note that, 

since GWAS are currently underpowered to detect all common genetic risk variants in 

complex traits, the variance explained by the PRS is usually lower than the twin 

heritability18.  

The first ones to use PRS for MDD to test for GXE interaction in MDD were Peyrot 

et al. 17. Using a sample of 1 645 participants with a DSM-IV diagnosis for MDD and 340 

screened controls from the Netherlands Study of Depression and Anxiety, they showed 

increased effects of PRS on MDD in the presence of childhood trauma, with evidence for 

interaction. Musliner et al 19 studied the association between PRS-MDD, SLEs and 
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depressive symptoms in a sample of 8 761 participants from the Health and Retirement 

Study in the United States. SLEs were operationalised as a dichotomous variable 

indicating whether participants had experienced at least one stressful event in the 

previous two years. Depressive symptoms were measured using an 8-item Center for 

Epidemiological Studies Depression subscale and operationalised as both a 

dichotomous and a continuous variable. They found that both SLEs and PRS were 

significantly and independently associated with depressive symptoms, but found no 

evidence that SLEs moderated the association between PRS-MDD and depressive 

symptoms. Instead, their results were compatible with an additive model. Most recently, 

Mullins et al. 20 examined the idea using 1 605 cases with recurrent MDD and 1 064 

controls all with SLE data, and a subset of 240 cases and 272 controls with childhood 

trauma data from in the RADIANT UK study. Both PRS and SLEs were significant 

predictors of case/control status but no interactions were found between PRS for MDD 

and SLEs, in agreement with previous findings by Musliner et al. 19. Significant 

interactions were found between PRS and childhood trauma but, contrary to Peyrot et 

al. 17, there was an inverse association with depression status. In summary, these 

studies do not present consistent results. Studies to date have used the first wave of 

GWAS data (MDD1) from the Psychiatric Genomics Consortium (PGC) MDD working 

group (PGC-MDD), based on 9 240 cases and 9 519 controls 14, and so are likely 

underpowered. 

We report here a direct test of the diathesis-stress model for depression using 

PRS for MDD and measures of Stressful Life Events (SLEs) and Social Support (SS; lack 

of SS being considered a stressor); we predict diathesis using an updated version of 

PGC-MDD GWAS results (N total=159 601, after excluding QIMR data). Given the higher 

lifetime risk of MDD in women 21, we also tested the hypothesis in sexes separately. 
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Materials and Methods 

Phenotypic data were collected as part of a general Health and Lifestyle 

questionnaire (HLQ) mailed to adult twins enrolled in the Australian Twin Registry 

between 1988 and 1992 22-24. It included self-report questions about depression, recent 

personal or network stressful life events (PSLE, NSLE) and SS. The content and details 

of data collection have been previously described 22-24 . Data used in this analysis were 

collected in 3 waves. The first wave ran between 1988 and 1992 (N=5 843) and 

targeted adult twins (mean age 41.2, SD=12.8, range 24-86, 61.0% females) 23. The 

second wave (N=3 646, collected between 1990 and 1992) focused on younger twins 

(mean age 23.2, SD=2.2, range 16-31, 65.6% females) and the questionnaire was slightly 

adapted to cover some of the more common issues of that age group 22, 23.  Finally, the 

last wave (N=236) targeted twin pairs whose information was partially missing from 

the original 1980 survey, using the same questionnaire (collection between 1990-1992, 

mean age 42.0, SD=9.9, range 27-73, 58.5% females). This study was approved by the 

Queensland Institute of Medical Research Human Research Ethics Committee and the 

storage of the data follows national regulations regarding personal data protection. All 

of the participants provided informed consent.  

Depression scores were calculated by combining the 7 depression items from the 

Delusions-Symptoms-States Inventory (DSSI) 25, 26 with 5 depression items from the 

Symptom CheckList (SCL-90) 27. The factor structure of the scale has been reported 

previously in the younger dataset 22 and the score has been used in several publications 

9, 22, 23, 28, 29.  



8 
 

The HLQ also assessed Personal Stressful Life Events (PSLE) and Network 

Stressful Life Events (NSLE), adapted from the List of Threatening Experiences 30. For 

PSLE, participants were asked to report adverse events (divorce, marital separation, 

broken engagement or steady relationship, separation from other loved one or close 

friend, serious illness or injury, serious accident, burgled or robbed, laid off or sacked 

from job, other serious difficulties at work, major financial problems, legal troubles or 

involvement with police, living in unpleasant surroundings) that happened in the last 

12 months. In addition, they were asked if they had had serious problems getting along 

with their close network (spouse, someone living with you e.g. child/elderly parent, 

other family member, co-twin, a close friend, neighbour or workmate) in the past 12 

months. These 19 yes/no items were summed to calculate the PSLE score.  

NSLE was calculated from 21 yes/no questions, in which the participants could 

report death, injury or crisis that their close network (spouse, child, mother/father, co-

twin, other brother/sister, other relative, someone else close to them) experienced in 

the last 12 months.  

Perceived Social Support (PSS) was measured using the Kessler Perceived Social 

Support (KPSS) Measure 31. Several publications from our group have made use of these 

data 9, 23, 28, 32-34.  

We used Item Response Theory 35, 36, which weights the item responses by their 

difficulty and discrimination, to calculate individuals’ scores of depression, PSLE, NSLE 

and SS. First, we performed an exploratory non-parametric IRT analysis the 

KernSmoothIRT package in R 37. It allows estimation of the probability of endorsing 

each option of each item as a function of the latent underlying trait (known as Item 

Response Step Functions: IRSF), without any constraint on the shape of the fitted curve 
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36. We used it to confirm the monotonicity of IRSF necessary to ensure the property of 

stochastic ordering on the sum score 38. It further allows choosing the most appropriate 

parametric IRT models based on the shapes of the non-parametric IRSF. 

IRSF plotted in Supplementary Figures 1-4 show, for all scales and items, 

monotonic IRSF in the normal range of the latent trait continuum (-2 2). Small breaches 

of monotonicity were observed for extreme values of the latent trait and can be 

attributed to small numbers of participants that lead to unstable non-parametric kernel 

estimation (as indicated by widening 95% CIs). Consequently, we estimated the IRT 

scores using a 2-parameter logistic model in WinBUGS v. 1.4.3 39 that constrains all left 

asymptotes to be 0 and all right asymptotes to be 1. In such a model, the IRSF only differ 

in term of difficulty and discrimination 35, 40. Such IRT scores are maximum likelihood 

estimates of the latent trait and carry the same information as a sum score while 

presenting more normal distributions, thus reducing the influence of extreme values in 

later analyses.  

Missingness in the depression items was limited to less than 2% of the 

respondents and most of the missing answers (88 or 60%) were found in the item 

“recently, I have lost interest in sex or have found not found sex pleasurable”. The 1.6% 

of the respondents who omitted this item tended to be females (p-value=4.2e-04), 4 

months older on average (p-value=9.7e-06), and with a slightly higher DSSI score (+0.1 

pts, p-value=3.6e-05). Missingness not at random (i.e. potentially dependent on 

depression level) implies that excluding participants may create a sampling bias. Thus, 

we chose to impute the missing observations using WinBUGS (described in 34, 41) using 

age, sex and the depression items as predictors. Overall, due the low missingness rate 

imputation should have little influence on the results. 
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Lifetime DSM-IV depression diagnoses were obtained in most of the cohort in 

two telephone interview follow-up studies using the clinical Semi-Structured 

Assessment for the Genetics of Alcoholism (SSAGA 42, 43 in 1992-1993 and 1996-2000 

(see Supplementary Figure 5 for a summary of the phenotypic data collection). Details 

of data collection are described elsewhere 29, 44-47. The depression score significantly 

predicted lifetime DSM-IV MDD status assessed 4 to 7 years later 44, 45 (OR=1.96, 95%CI 

1.85-2.08, p-value=3.0e-108, N=8 607), which translates to a 6.1 fold increased odds of 

MDD between participants in the top and bottom deciles of depression IRT scores 

(Figure 1a), so demonstrating the utility of the score. For our analysis we used the 

continuous IRT score rather than the binary diagnosis as continuous models provide 

greater statistical power than logistic regressions (>99.9% vs. 88.0%, N= 5 221, O.R.= 

1.1, beta = 0.095, with α= 0.05, proportion of cases and SD of outcome and predictor 

measured in our sample) and is available for larger sample size (5 179 vs. 5 221 with 

IRT score). 

DNA collected from blood was genotyped using commercial arrays (Illumina 

317K, 370K, 610K, ‘1st generation’, or Core Exome plus Omni-family, ‘2nd generation’ 

48-50.) and imputed from a common SNP set to the 1000 Genomes (Phase 3 Release 5) 

reference panel 51-53, a strategy that allows genotype data from different arrays to be 

combined. Observed genotypes were cleaned (by batch) for call rate (≥95%); MAF 

(>=1%); Hardy-Weinberg equilibrium (p≥10-3; PLINK1. 9 54), GenCall score (≥0.15 per 

genotype; mean ≥0.7) and standard Illumina filters, before integrating batches and re-

running the quality control and Mendelian checks. We imputed the genotype data via 

the University of Michigan Imputation Server 55 or in-house (chr. X only) using the 1000 

genomes Phase 3 Release 5 ‘mixed population’ reference panel) 51-53, with phasing by 

SHAPEIT 56, 57 followed by imputation using minimac3 58. ‘1st generation’ and ‘2nd 
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generation’ were imputed separately due to poor overlap between observed markers. 

Imputation was based on 277 690 (‘1st generation’) and 240 297 (‘2nd generation’) 

observed markers; and the two combined after imputation to maximise sample size. 

This resulted in 9 411 304 SNPs available for analysis, after QC. 

PRS 59, 60 were calculated from the imputed genotype dosages, using GWAS 

summary statistics from the most recent PGC MDD release [July 9th 2016], with the 

exclusion of the contribution of QIMR, for a final sample of 49 524 cases and 110 074 

controls (see Supplementary Table 1 for cohort contributions). For comparison, we 

also calculated the PRS using the first wave GWAS summary statistics published by the 

PGC-MDD 14. From our data, we excluded SNPs with low imputation quality (r2<0.6) and 

MAF below 1%. We selected the most significant independent SNPs using PLINK1.9 54 in 

order to correct for signal inflation due to Linkage Disequilibrium (LD) (criteria LD 

r2<0.1 within windows of 10MBp). We calculated 8 different PRS using different p-value 

thresholding of the GWAS summary statistics (see Supplementary Table 2 for number 

of SNPs included in each threshold). Histograms of PRS for MDD (1000G imputation, 

GWAS results from July 2016), together with the histograms of the IRT scores for 

depression, PSLE, NSLE and SS scores are reported in Supplementary Figure 6. 

Our final sample comprised 5 221 individuals (from 3 083 twin families) of 

European ancestry with available phenotypic and genetic data (mean age at 

questionnaire 35.7, SD=12.2, range 17-85, 65.6% females). Covariates (age, age2, sex, 

age*sex and age2*sex interactions, and the first four genetic principal components) 

were regressed from the PRS and the stress scores before inclusion in the models to 

guard against confounding influences on the PRS-stress interactions 61.  
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In order to estimate the variance explained by the PRS, the stressors and their 

interactions in the depression score, we then fitted linear mixed models which 

controlled for relatedness for the whole sample as well as stratified by sex. ). The 

parameters of the model were estimated using GCTA 1.26.0 (student test to test the 

significance of the fixed effects) that accounts for twin relatedness using a Genetic 

Relatedness Matrix (GRM). The linear model used is as follows: 

Depression = intercept + b*Covariates + c*PRS_z + d*PSLE_z + e*NSLE_z + f*SS_z 

+ g*PRS_z*PSLE_z + h*PRS_z*NSLE_z + i*PRS_z*SS_z + j*G 

With b,c,d,e,f,g,h,i the vectors of fixed effects 

Covariates used in this analyses were age, sex, age2, sex*age, sex*age2, GWAS 

array, wave, and first 4 genetic principal components. Note that sex and its interaction 

were not included when stratifying the analyses by sex. 

PSLE_z, SS_z, NSLE_z and PRS_z are the residuals of the scores after regressing 

out the covariates listed above 

G is the random effect that models the sample relatedness G~ N(0, GRM), with 

GRM the NxN matrix of relatedness estimated from SNPs 

We used OpenMx 62 to calculate the heritability and correlations (likelihood-ratio 

test, using a kinship matrix to account for familial relatedness) of the depression score 

and the stressors, correcting for age, sex, age2, sex*age, sex* age2, and wave. Following 

the significant genetic correlations estimated from twin models, we investigated how 

much of the variance in stress scores could be accounted for by the MDD-PRS. We 

controlled for age, age2, sex (and their interactions), study, imputation batch and 4 

genetic principal components. Model parameters were estimated using GCTA 1.26.0 63 

that accounts from twin relatedness. 
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Results and Discussion 

PRS for MDD significantly predicted the depression score (maximum variance 

explained =0.46%. p-value= 5.01e-08, Figure 1b, right panel), which represents a 

substantial improvement compared to PRS predictions based on earlier GWAS 

14(Figure 1b, left panel, variance explained = 0.08%, p-value=0.018), reflecting the 

increased sample size of the GWAS discovery samples 64, 65. The main effects of PSLE, 

NSLE, and lack of SS were also significant, explaining respectively 12.9%, 0.3% and 3% 

of the depression score variance (Figure 1c), with effects in the expected directions. 

Lack of SS predicted more of the depression score in women than it did in men 

(between sex differences, p-value= 4.7e-03) but there were no other differences 

between sexes that reached significance.  

The significance of main effects allowed testing the significance of the interaction 

between each stress type (PSLE, NSLE, lack of SS) and the most predictive PRS (using all 

SNPs: p<1). The interaction with PSLE was significant (0.12% of variance explained, p-

value=0.0076) and contributed positively to the risk of depression, predominantly in 

women (Figure 1d). Overall, the variance explained by PRS main effect plus the 

interaction was comparable in men (0.73%) and women (0.60%). The interaction was 

not significant in men while explaining almost as much variance as the main effect in 

women. However, there was no significant difference when comparing the size of the 

interaction across sexes (p-value=0.21).  For completeness, interactions between each 

stressor and all PRS are also reported in Supplementary Figure 7. 

Our finding of a significant diathesis-PSLE interaction points to an extra risk for 

individuals with combined vulnerability and high number of reported PSLE beyond 
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what would be expected from their additive contributions to liability (Figure 1d, 1e). In 

the full sample 0.58% of the depression score variance was explained by the PRS and 

interaction, of which ~80% corresponds to the main effects and ~20% to the 

interaction. As the power of the PRS increases with larger GWAS 64, and if these 

proportions are maintained, the interaction explaining about 20% of the heritability 

would be typical of the size of GXE estimates for other traits in other species66. We 

cannot dismiss the possibility of diathetic interactions with NSLE or SS, as the power of 

our study is still limited by the PRS instrument 64 and our sample size. This is evidenced 

by our measure of genetic predisposition still only explaining a small fraction of the 

depression score variance (Figure 1b), in comparison with the twin based heritability 

(Supplementary Figure 8 and 67), or even the SNP heritability for MDD (h2SNP=0.2118). 

Note that for all psychiatric and complex traits, it is common that the variance explained 

by PRS corresponds to a fraction of the heritability, especially when only a few variants 

are known 68. Much larger GWAS samples are required to better differentiate the true 

SNP signals from the noise and to provide a greater level of prediction 64.  

We confirmed using a twin analysis of the dataset (1 110 MZ pairs, 1 032 DZ 

pairs, 961 singletons) that our measure of depression and all 3 stress measures are 

moderately heritable (30-40%, p-value<2.1e-25; Supplementary Figure 8), as 

reported previously 69, 70. AE models showed the best fit to the data and shared 

environment could not explain the association (p-value<1.7e-03).  We also replicated 

that self-reported measures of stress are genetically correlated with the depression 

score (Supplementary Figure 9) 71, 72.  
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PRS for MDD predicted PSLE and SS (p-value<0.001), no significant association 

was observed with NSLE (Supplementary Figure 10). This is consistent with 

heritability and genetic correlation results reported from twin models.  

On the scale of measurement for depression that we have used, our results 

support the multiplicative diathesis-stress model for depression proposed in the 1980s. 

In addition, our results suggest possible differences in the aetiology of depression 

between women and men, which may have implications for the tailoring of treatments. 

However, we must caution that the presence and size of interaction are completely 

dependent on the scale of measurement and more perfectly normal scales for 

depression and stressors may have produced a different result 66, 73. For example, using 

a simple sum score for depression, with an extreme reverse-J distribution yields an 

even larger and more significant estimate of interaction (0.39% variance explained; p-

value = 6.8e-07) whereas using logistic regression to analyse the binary DSM IV 

diagnosis, predicated on an underlying normal liability, produces a smaller and only 

marginally significant estimate (0.06% variance explained; p-value = 0.059), although 

this analysis has much lower power than using a continuous variable.  

In addition, the substantial genetic correlation between PSLE and depression 

hinders attributing the interaction solely to a GxE effect. To investigate this point, we 

broke down PSLE into events in which the individual may have played an active role 

(PSLE-active: divorce, separation, having difficulty at work, financial or legal troubles, 

not getting along with people) as opposed to passive role 74, 75 (PSLE-passive: illness, 

accident, being burgled, sacked or living in unpleasant surroundings) and calculated the 

IRT score for them.  This follows previous publications reporting that PSLE-active was 

more heritable than PSLE-passive 74, 75, which we confirmed in our sample (twin h2PSLE-
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Active=0.29, 95%CI 0.24-0.34; h2PSLE- Passive=0.11, 0.05-0.17).  We tested whether the less 

heritable PSLE-passive may drive the observed interaction, which may point towards a 

more likely GxE interaction. However, in the models, active PSLE explained most of the 

variance explained by the PSLE score (r2PSLE- Active=10.5%, p-value=3.2e-123 vs. r2PSLE-

Passive=0.77%, p-value=4.1e-12) and the interaction (r2PSLE- Active * PRS=0.085%, p-

value=0.030 vs. r2PSLE-Passive * PRS=0.0084%, p-value=0.46) (results given for the PRS 

“P<1”, consistent with our other analyses, see Supplementary Figure 12 for all details). 

This approach was unable to confirm the nature of the interaction, since both PSLE-

active and -passive are significantly heritable. 

To tackle this question more directly, we calculated environmental and genetic 

factor scores for PSLE (PSLE-E and PSLE-A) via an independent pathway model fitted to 

the 19 items of the PSLE questionnaire 76 (Supplementary Figure 13). Conceptually, this 

divides the IRT PSLE score, which estimates the (phenotypic) latent trait underlying the 

participants’ responses in the questionnaire, into its additive genetic and environmental 

dimensions (Supplementary Figures 13 and 14).  We then replaced the PSLE IRT score 

by each of its components in a mixed model to investigate the source of the interaction: 

GxG if interaction between PRS and PSLE-A or GxE if interaction between PRS and PSLE-

E. As in our previous analyses, we regressed covariates out of the factor scores and also 

included them in the model. The model including PSLE-E was the best fitting as 

indicated by lower AIC (AICPSLE-E=2645, AICPSLE-A=2798). Further, the interaction term 

points towards a greater GxE effect, as the interaction between PRS and PSLE-E explains 

0.11% of the variance (p-value=0.0076), although we cannot rule out the presence of an 

interaction with PSLE-A (r2=0.076%, p-value=0.037) (results given for the PRS “P<1”, 

see Supplementary Figure 15 for more details). Results were showed a similar pattern 

when we modelled the A and E factors of PLSE-active. 
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Notwithstanding the above caveats, more work is needed to evaluate different 

mechanisms of interaction, including a bi-causal relationship between PSLE and 

depression or molecular interaction (e.g. through methylation changes). We are aware 

of potential confounds of interaction analyses: in addition to sensitivity of the analyses 

to the properties of the scale 77 and unavoidable departures from normality in the 

outcome and predictors as discussed above (Supplementary Figures 6 and 11), 

problems may also arise from the stress and depression measures being self-reported 

in the same questionnaire, and the fact that the stress measures are genetically 

correlated with the outcome variable. Replication of our findings in independent 

cohorts, consideration of other variables such as the perceived impact of stressors and 

improvement of PRS via larger GWAS and larger samples with both depression and risk 

factors evaluated will allow us further to refine our understanding of the aetiology of 

depression.  
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Legend Figures 

Figure 1: (a) Increased odds of DSM IV MDD diagnosis per decile of depression 

IRT score assessed 4-7 years previously. (b) Association between MDD-PRS and 

depression scores (main effects, one-sided tests, results expressed in % of variance 

explained). Full sample analyses using the two versions of the PRS were run in the same 

target dataset with the exact same covariates. Red bars indicate positive correlation 

with the depression score. PRS were calculated using different p-value thresholds from 

the GWAS summary statistics. The most conservative only includes independent loci 

with genome wide significant SNPs (p-value<5e-8), while the least conservative include 

the most significant SNP of each haplotype (p-value<1). (c) Association between self-

reported stress (PSLE, NSLE, lack of SS) and depression IRT score (main effect, one-

sided tests, results expressed in % of variance explained). Blue bars indicate negative 

correlations and red bars indicate positive correlation with the depression score. 

Dashed bars indicate sex specific effects. (d) Variance of the depression score explained 

by the interaction between PRS and PSLE (2-sided tests). Dashed bars indicate sex 

specific effects. We focused on the association with the PRS comprising all haplotypes 

but the other associations are also reported for completeness. Blue bars indicate 

negative correlations and red bars indicate positive correlation with the depression 

score. (e) Increase in depression score (fitted values, vertical axis) as a function of PSLE 

and MDD-PRS. For example, the effect of the PSLE-diathesis interaction is visible when 

comparing the bottom (minimal PSLE) and top (maximal PSLE) edges of the surface. 

The difference in slopes indicates that PSLE mediates the effect of the genetic 

predisposition on the depression score. From right to left, results for the whole sample, 

females and males. In all analyses, we accounted for familial relatedness using a kinship 

matrix (a) or a genetic relatedness matrix calculated from SNPs (b-d). For (a) we used 
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R package “hglm” 78 to estimate the odds ratios (student test to test the significance of 

the fixed effects). For panels (b-d) the parameters of the model were estimated using 

GCTA 1.26.0 (student test to test the significance of the fixed effects) 63. All analyses 

controlled for age, age2, sex, age*sex and age2*sex interactions, study, array, and the first 

four genetic principal components in the outcome variable and predictors 61. 

Supplementary Figure 1: Item Response Step Function for each option of each 

item included in the depression score. All items were 4 points Likert scales (coding 0: 

not at all, 1: a little, 2: a lot, 3: unbearably). 

Supplementary Figure 2: IRSF of the PSLE scale. All items were yes (1), no (0) 

questions. 

Supplementary Figure 3: IRSF of the NSLE scale. All items were yes (1), no (0) 

questions.  

Supplementary Figure 4: IRSF of the SS scale. All items were 4 points Likert 

scales (coding 0: not at all, 1: a little, 2: quite a bit, 3: a great deal) 

Supplementary Figure 5: Timeline of the phenotypic data collection. Health and 

Lifestyle Questionnaire, waves 1, 2 and 3 (HLQ1, HLQ2, HLQ3), and follow-up clinical 

assessment of lifetime major depressive disorder as per DSM-IV criteria (DSM). 

Supplementary Figure 6: Histograms of the IRT scores for depression, personal 

stressful life events (PSLE), network stressful life events (NSLE), social support (SS) and 

polygenic risk scores for major depressive disorder (PRS MDD, July 2016 GWAS). There 

were no sex differences in the distributions of the PRS. 

Supplementary Figure 7: Variance of the depression score explained by the 

interactions between personal stressful life events (PSLE) network stressful life events 
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(NSLE), social support (SS) and polygenic risk scores for major depressive disorder 

(PRS MDD, July 2016 GWAS). We focused on the association with the PRS comprising all 

haplotypes but the other associations are also reported for completeness. Blue bars 

indicate negative correlations and red bars indicate positive correlation with the 

depression score. 

Supplementary Figure 8: Twin heritability of depression and self-reported 

stress levels (diagonal) and phenotypic correlations between measurements (above 

diagonal). Coloured squares indicate significant association (p-value<0.001). 

Supplementary Figure 9: Genetic (above diagonal) and environmental 

correlations (below diagonal). Coloured squares indicate significant correlations (p-

value<0.001). 

Supplementary Figure 10: Association between MDD-PRS (July 2016 release) 

and self-reported measures of stress (PSLE, NSLE, SS). Red bars indicate a positive 

correlation; blue bars a negative correlation between PRS and stress scores. 

Supplementary Figure 11: Jinks-Fulker plot (79, p. 313) of absolute MZ pair 

differences (1 110 MZ pairs) on corresponding pair sums for IRT depression scores. The 

significant linear (p-value = 3.24e-12) plus quadratic regression (p-value = 0.0495) 

indicates heteroscedasticity which may generate scale dependent GxE interaction. 

However, while significant, the effect is not numerically large and the interaction is 

almost significant (p-value = 0.059) in the logistic regression analysis of the less 

powerful binary DSM-IV MDD diagnosis 

Supplementary Figure 12: From left to right: variance of the depression score 

explained by PSLE- active and -passive, variance explained by the PRS, variance 

explained by the interaction between PSLE- passive and PRS, variance explained by the 
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interaction between active PSLE and PRS. PSLE-active explained most of the reported 

association between PSLE and depression score, as well as most of the interaction. Note 

that the scale of the y-axis is different. 

Supplementary Figure 13: A) Phenotypic model that corresponds to the IRT 

score calculation, in which items are weighted and combined to provide an accurate ML 

estimate of the latent trait. B) Twin model that allows estimating the A and E factor 

scores (we used the regression method 76) by explicitly modelling the environmental 

and additive genetic latent variables.  

Supplementary Figure 14: The high correlation between the PSLE IRT score 

and the sum of factor scores (PSLE-E + PSLE-A) confirms that the twin model approach 

appropriately breaks up the IRT score into its additive genetic and environmental 

components.  

Supplementary Figure 15: From left to right: Variance of the depression score 

explained by the PSLE-A and PSLE-E factor scores; Variance of the depression score 

explained by the PRS; Variance of the depression score explained by the PSLE-E*PRS 

interactions; Variance of the depression score explained by the PSLE-A*PRS 

interactions. P-values as well as direction of effect are reported as previously. Models 

including PSLE-E showed lower AIC, hence better fit to the data. For all PRS, the GxE 

interactions explained a greater proportion of the depression score variance than GxG 

interactions. Note that the scale of the y-axis is different. 
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