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Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and

mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across

the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium.We identified

four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most

strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive

(OR ¼ 0.85 [0.82–0.88]) and ER-negative (OR ¼ 0.87 [0.82–0.91]) disease, and was also the SNP most strongly associated with percent

mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-pos-

itive (OR ¼ 0.93 [0.91–0.95] and OR ¼ 1.06 [1.03–1.09]) and ER-negative (OR ¼ 0.95 [0.91–0.98] and OR ¼ 1.08 [1.04–1.13]) disease.

There was weaker evidence for iCHAV4, located 50 of ADO, associated only with ER-positive breast cancer (OR ¼ 0.93 [0.90–0.96]).

We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1–4, respectively. Chromosome conformation capture

analysis showed that iCHAV2 interacts with the ZNF365 andNRBF2 (more than 600 kb away) promoters in normal and cancerous breast

epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in

iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.
Introduction

Breast cancer is one of the most commonly occurring

epithelial malignancies in women, with an estimated 1.7

million new cases and more than 520,000 deaths annu-

ally worldwide.1,2 Familial aggregation and twin studies
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have shown a substantial contribution of inherited

susceptibility to breast cancer.3 Genome-wide association

studies (GWASs) provide a powerful approach to identify

common disease alleles. In a two-stage genome-wide

association study conducted in European descendants,

Turnbull et al.4 identified five new susceptibility loci.
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One of the identified SNPs, rs10995190 (combined p ¼
5.1 3 10�15), lies within intron 4 of ZNF365 (MIM:

607818) at 10q21.2. Analysis by the Breast Cancer Associ-

ation Consortium (BCAC) confirmed this association (p ¼
1.3 3 10�36)5 in those of European ancestry, with a non-

significant association among Asians where this variant

is rare.6 Instead, Cai et al.7 identified a common SNP,

rs10822013 located 26.7 kb upsteam, associated with

breast cancer risk among East Asians. Further analysis by

the Consortium of Investigators of Modifiers of BRAC1

and BRACA2 (CIMBA) showed that rs10995190 is associ-

ated with breast cancer risk among BRCA2 carriers,8

particularly for estrogen-receptor-positive breast cancer.

This 10q21.2 locus was the first to be associated with

percent mammographic density (PD) (combined p ¼
9.6 3 10�10)9 and also shows a possible association with

breast size.10 Varghese et al.11 showed that rs10995190

and rs10509168 (r2 ¼ 0.13) are both associated with

mammographic density, and through analysis of poly-

genic risk scores found that PD and breast cancer have a

shared genetic basis.

These data indicate that 10q21.2 is an important suscep-

tibility region for both breast cancer and mammographic

density and must harbor one or more SNPs causally related

to these phenotypes. In an attempt to identify the most

likely causal SNPs underlying these associations, we as-

sessed 428 SNPs across the 10q21.2 region, applying

multiple analyses aimed at exploring the target genes

and functional basis of the associations with breast cancer

risk and mammographic density.
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Material and Methods

Genetic Mapping
Tagging Strategy for the Fine-Scale Mapping

We identified the fine-mapping region by taking the furthest

SNPs upstream and downstream with minor allele frequency

(MAF) > 2% and detectable correlation (r2 > 0.1) with

rs10995190, based on the 1000Genomes Project European popula-

tion (March 2010 Pilot version; data from 60 CEU individuals). We

also selected SNPs that tagged all remaining SNPs in the 560 kb in-

terval with r2> 0.9.With this strategy, we selected for inclusion on

the iCOGS array (see below) a total of 440 SNPs, between positions

64205327 and 64765654 (NCBI build 37 assembly), that had an

Illumina designability score (DS) above 0.9. Of these, 428 were

successfully genotyped on the iCOGS array and passed QC filters.

iCOGS Genotyping and Imputation

Case and control samples were drawn from 50 studies partici-

pating in the BCAC, of which 41 were from populations of pre-

dominantly European ancestry and 9 from populations of Asian

ancestry, as described previously.5 We performed iCOGS genotyp-

ing in four centers, as part of the Collaborative Oncological Gene-

Environment Study (COGS). All BCAC studies were approved by

the relevant local ethics committees, as described previously,5

and proper informed consent was obtained from all participants.

We used the genotype data from the 428 SNPs that passed quality

control to impute genotypes at all additional known SNPs in the

interval, using IMPUTE v.2.0 (IMPUTE2) and the 1000 Genomes

Project data (March 2012 version) as a reference panel.12 Rather

than preselecting a reference population, we followed the

approach of Howie et al.13 and used a multi-population reference

panel. IMPUTE2 was applied with default parameters and effective

population size (Ne) of 20,000.
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Mammographic Density

Mammographic density measurements were available for 6,886

women from nine BCAC studies that were also part of the Marker

Of DEnsity (MODE) consortium6 and DENSNP consortium14

(Table S1). Covariate data were obtained through self-adminis-

tered postal questionnaires, in-person interviews, or telephone

interviews, and anthropometric variables were self-reported or

measured by trained staff (Table S2 of Vachon et al.14). Seven

studies estimated density (absolute and percent dense area) with

the CUMULUS program,15 and two of the studies, the BBCC and

NBCS studies, used the Madena software.16

Statistical Analysis
For each SNP, we estimated a per-allele log-odds ratio (OR) and

standard error using logistic regression, including principal com-

ponents and per-study fixed-effects to adjust for study-specific

differences in allele frequency, as described previously.5 Analyses

were carried out separately for Europeans and Asians. We esti-

mated genetic main effects for ER-positive and ER-negative

breast cancer using logistic regression and restricting the cases

to a specific subtype. We evaluated heterogeneity of association

by tumor subtype in a case-only analysis, treating subtype status

as the dependent variable. We derived the p values for associa-

tion by means of a likelihood-ratio test (one degree of freedom);

all tests were two-sided. To identify the most parsimonious

model, we identified all SNPs with p < 10�4 and MAF R 2%

in the single SNP analysis and included these in forward selec-

tion regression analyses, utilizing the step function in R with

penalty term set to 10.17 To account for uncertainty in the

data resulting from the imputation process, we conducted

analysis by regressing on the allele dosage for each genotype.

We estimated haplotype-specific ORs using an EM algorithm

implemented in the haplo.stats package in R. For this analysis

we used the most probable genotypes and included study and

principal components as covariates. We grouped haplotypes

with a frequency < 0.01 together into one subgroup of rare

haplotypes.

We assessed individual SNP associations with percentage den-

sity (PD), dense area (DA), and non-dense area (nDA) via linear

regression. Because the distributions of estimated PD, DA, and

nDA were positively skewed (skewness ¼ 1.31, 2.32, and 1.02,

respectively), each phenotype was square-root transformed. This

transformation reduces skewness and has previously been shown

to generate variables that are approximately normally distrib-

uted.18 In addition to study and principal components, we

included age, body mass index (BMI), postmenopausal hormone

replacement therapy (HRT), mammographic view, menopausal

status, and case-control status as covariates in each model. Age

and BMI were treated as continuous variables, and use of post-

menopausal hormones at time of mammogram (0, never; 1,

stopped prior to mammogram date; 2, current use at date of

mammogram; 9, unknown), menopausal status at time of

mammogram (0, postmenopausal; 1, premenopausal; 2, perimen-

opausal; 9, unknown), and case-control status were treated as cat-

egorical variables in the regression model. We also included

mammographic view (1, medio-lateral oblique [MLO] view; 2,

craniocaudal [CC] view) and treated it as categorical variable

because it has been shown that the percent density measure-

ments from the MLO view are systematically lower than those

from the CC view.9 The mean percentage density across all

studies was 17 from the MLO view as compared to 25 from the

CC view.
4 The American Journal of Human Genetics 97, 1–13, July 2, 2015
Expression Quantitative Trait Locus Analysis
We examined the associations of germline-genotyped and

-imputed SNPs within 1 Mb of the risk region with the expression

levels of all genes within 1Mb, up- and downstream, of the SNP in

question (including ADO [MIM: 611392], ARID5B [MIM: 608538],

c10orf107, EGR2 [MIM: 129010], JMJD1C [MIM: 604503], JMJD1C-

AS1, REEP3 [MIM: 609348], RTKN2 [MIM: 113705], and ZNF365)

in normal breast, adjacent normal, and breast cancerous tissue

from the following four cohorts. Normal breast I (NBI; n ¼ 116)

is comprised of women of European descent ascertained through

multiple Norwegian hospitals. Gene expression data for the

majority of women were derived from normal breast tissue in

women who had not been affected with breast cancer; data for

ten women were derived from normal tissue adjacent to a tumor.

Genotyping was performed with the iCOGS SNP array, and gene

expression levels were measured with the Agilent 44K array.18,19

NBII (n ¼ 93) is the European subset of the TCGA study, for

whom expression data were available from normal tissue adjacent

to a tumor. Germline genotype data from Affymetrix SNP 6 array,

processed through Birdseed, were obtained from TCGA dbGAP

data portal.20 Gene expression levels were assayed by RNA

sequencing, RSEM (RNaseq by Expectation-Maximization21)

normalized per gene, as obtained from the TCGA consortium.20

The data were log2 transformed, and unexpressed genes were

excluded prior to eQTL analysis. Breast carcinomas I (BCI; n ¼
241) is a series of women of European ancestry diagnosed with

breast cancer and recruited throughmultiple Norwegian hospitals.

Genotypes were obtained with the iCOGS SNP array, and mRNA

expression data were from the Agilent 44K array.22 BCII (n ¼
765) is the TCGA breast cancer cohort; all non-European samples

(as determined by clustering and PCA) were excluded from this

analysis.20 The genotyping platform was Affymetrix SNP 6, and

gene expression data, for the breast tumors, was derived from

RNA sequencing analysis, in a similar manner to NBII. There is

no overlap between women recruited to each of these studies.

In addition, we examined all the genotyped or imputed SNPs

used in the risk analysis for association with expression of nine

genes (ADO, ARID5B, c10orf107, EGR2, JMJD1C, NRBF2, REEP3,

RTNK2, and ZNF365, represented by 14 expression probes) in

the 1 Mb region on either side of the fine-mapping interval, using

data from normal tissue in patients from METABRIC. METABRIC

(n ¼ 135) comprises normal tissues adjacent to the tumors from

breast cancer patients of genetically confirmed European ancestry

from the Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) study.23 The samples were assayed

with the Illumina HT-12 v3 microarray. Matched germline SNP

genotypes were available from the Affymetrix SNP 6.0 platform.

For all cohorts, the genotyping data were processed as follows:

SNPs with call rates < 0.95 or minor allele frequencies < 0.05

were excluded, as were SNPs out of Hardy-Weinberg equilibrium

with p < 10�6. All samples with a call rate below 80% were

excluded. Identity by state was computed with the R GenABEL

package,24 and closely related samples with IBS > 0.95 were

removed. The SNP and sample filtration criteria were applied

iteratively until all samples and SNPs met the stated thresholds.

In total, 489 samples and 662,521 SNPs passed were kept in the

analysis. Imputation was run on both the iCOGS and Affymetrix6

germline genotype data using the 1000 Genomes Project March

2012 v.3 release as the reference dataset.25 A two-stage imputation

procedure, using SHAPEIT to derive phased genotypes and

IMPUTEv2 to perform the imputation on the phased data, has

been found to significantly reduce the computational burden.26
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The influence of germline genetic variations on gene expression

was assessed using a linear regression model, as implemented in

the R library eMAP. An additive effect was assumed by modeling

copy number of the rare allele, i.e., 0, 1, or 2, for a given genotype.

Only relationships in cis, i.e., where the SNP resided less than 1Mb

up or down from the center of the transcript, were investigated.

Correction for multiple testing was performed using the false

discovery rate (FDR) as implemented in the p.adjust function

in R. Only FDR-adjusted, significant p values are reported in the

Results section of the paper. Genotyping quality control and

imputation for the METABRIC data are described in Guo et al.27

For the METABRIC data, association between genotype and

expression was tested by linear regression with FDR control as

implemented in the MatrixEQTL package in R. We also conducted

eQTL haplotype analysis in NBI and BCII which had been

genotyped on iCOGS. The correlations with expression for the

haplotypes residing in the four iCHAVs were estimated using the

haplo.score function implemented in the R library haplo.stats,

assuming a Gaussian distribution for the expression data.

Cell Lines
Normal breast epithelial cell lines MCF10A and Bre80 were

grown in DMEM/F12 media supplemented with 5% horse serum,

10 mg/ml insulin, 0.5 mg/ml hydrocortisone, 20 ng/ml EGF,

100 ng/ml cholera toxin, and antibiotics. The MCF7 breast cancer

cell line was grown in DMEMmedia supplemented with 10% fetal

bovine serum, 10 mg/ml insulin, sodium pyruvate, and antibiotics.

All cell lines were routinely tested for Mycoplasma and profiled

with short tandem repeats to confirm their identity.

Chromatin Conformation Capture
Cross-linked DNA from the above cell lines was digested with

EcoRI to generate chromatin conformation capture (3C) libraries

as previously described.17 3C interactions were quantitated by

real-time PCR, on at least two independent 3C libraries, using

primers designed against the EcoRI restriction fragments across

the 10q21.2 locus. Interactions were quantified in triplicate. The

primers are listed in Table S2. Primer efficiencies were calculated

using an artificial library of ligation products generated from two

BAC clones (RP11-629KB and RP11-1021P21) that spanned the

10q21 locus and NRBF2. 3C interaction products were visualized

by gel electrophoresis, gel purified, and sequenced to verify the

3C product.

In Silico Analysis
Genomic regions encompassing independent sets of correlated,

highly trait-associated variants (iCHAVs) were examined for po-

tential regulatory signals by overlaying epigenetic marks derived

from ENCODE data using the UCSC Genome Browser. Tracks

representing potential regulatory signals marked by DNaseI hyper-

sensitivity, H3K4me1, H3K4me3, and H3K27ac histone modifica-

tion, and transcription factor binding sites were obtained for

the normal mammary cell types, humanmammary epithelial cells

(HMECs) and human mammary fibroblasts (HMFs), and two

breast cancer cell lines, MCF7 and T47D. SNPs in each iCHAV

were examined for potential functional consequences using

HaploReg v.228 and RegulomeDB.29

Plasmid Generation
A 1,287-bp fragment containing the ZNF365 promoter and a

1,163-bp fragment containing the NRBF2 promoter were cloned
into the pGL3 basic luciferase reporter. Using a sample heterozy-

gous for rs2393886 as template, we then generated 1,875-bp

PCR fragments containing part of iCHAV2 using PCR primers

modified with BamH1 and Sal1 and cloned each haplotype into

both the ZNF365 and NRBF2 promoter constructs. PCR primers

are listed in Table S2.

Reporter Assays
Bre80, MCF10A, and MCF7 cells were transiently transfected with

equimolar amounts of luciferase reporter constructs using Renilla

luciferase as an internal control reporter. Luciferase activity was

measured 24 hr after transfection using Dual-Glo Luciferase

(Promega). To correct for any differences in transfection efficiency

or cell lysate preparation, Firefly luciferase activity was normalized

to Renilla luciferase, and the activity of each construct was

measured relative to the promoter alone construct, which had a

defined activity of 1. Association was assessed by log transforming

the data and performing two-way ANOVA, followed by Dunnett’s

multiple comparisons test; for ease of interpretation, values were

back transformed to the original scale for the graphs.
Results

We successfully genotyped 428 SNPs across the 560-kb

fine-mapping region in 46,450 case subjects and 42,600

control subjects from 41 case-control studies in popula-

tions of European ancestry, and in 6,269 case subjects

and 6,624 control subjects from 9 case-control studies

of Asian ancestry.5 We imputed genotypes for 3,409

SNPs in the interval in the European studies, at imputation

r2 > 0.3 and MAF R 1%, using known genotypes in com-

bination with data from the 1000 Genomes Project refer-

ence panel. Based on data from the European studies, 87

genotyped or imputed SNPs were convincingly associated

with overall risk of breast cancer (p values 10�7 to 10�29;

Figure 1). The results for all SNPs in the interval with an

association p value < 1 3 10�3 for overall breast cancer

risk (382 SNPs) are presented in Table S3.

Among the genotyped SNPs, the strongest evidence of

associationwith overall breast cancer risk among Europeans

was for rs10995194 (OR [95% CI] ¼ 0.86 [0.84–0.88],

p ¼ 3.77 3 10�29). This SNP lies within intron 4 of

ZNF365 and is strongly correlated with the original GWAS

hit rs10995190 (r2 ¼ 0.99). Analysis of the imputed SNPs

identified two markers with slightly stronger associations:

the most significantly associated marker was rs10995201

(OR ¼ 0.85 [0.83–0.88], p ¼ 1.05 3 10�29), which is also

strongly correlated with rs10995194 (r2 ¼ 0.94).

Multiple Independent Signals at 10q21.2

To determine whether there were additional independent

signals of association at the locus, we included in a forward

stepwise regression model 230 SNPs with MAF R 2% that

displayed evidence of association with overall breast

cancer risk at p < 10�4. The most parsimonious model

included four independent SNPs that mark four iCHAVs

(Figure 1; Table 1). These were as follows: iCHAV1,

rs10995201 (OR ¼ 0.85 [0.83–0.88], p ¼ 1.05 3 10�29;
The American Journal of Human Genetics 97, 1–13, July 2, 2015 5



Figure 1. Association Results for Overall
Breast Cancer Risk
Directly genotyped SNPs are shown as
filled black circles, and imputed SNPs
(r2 > 0.3, MAF > 0.02) are shown as open
red circles, plotted as the negative log of
the p value against relative position across
the locus.
(A) A schematic of the gene structures
is shown. iCHAVs, encompassing all
SNPs with a likelihood ratio of < 1:100
compared with the most significant SNP,
are labeled and are shown as gray regions.
The pattern of LD for all SNPs from the
1000 Genomes Project CEU population is
shown as a plot of pairwise r2 values using
a greyscale, where white and black signify
r2 ¼ 0 and 1, respectively. The dashed pur-
ple line represents genome-wide signifi-
cance (p < 5 3 10�8).
(B) iCHAV4 is shown in more detail.
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conditional p ¼ 4.92 3 10�16); iCHAV2, chr10:

64,258,684:D (OR ¼ 0.93 [0.91–0.95], p ¼ 4.24 3 10�14;

conditional p ¼ 3.24 3 10�5); iCHAV3, rs7922449 (OR ¼
1.06 [1.04–1.08], p ¼ 1.68 3 10�7; conditional p ¼
5.78 3 10�5); iCHAV4, rs9971363 (OR ¼ 0.94 [0.92–

0.97], p ¼ 6.54 3 10�5; conditional p ¼ 3.95 3 10�4)

(Figure 1B). These four SNPs were all imputed, with

IMPUTE2 info-score above 0.85. The strongest pairwise

LD r2 value among the four markers was 0.12 (between

rs10995201 and chr10: 64,258,684:D). Among the

genotyped SNPs, the top SNP correlated with the lead

iCHAV1 SNP was rs10995194 (OR ¼ 0.86 [0.84–0.88],

p ¼ 3.77 3 10�29, r2 ¼ 0.94), with the lead iCHAV2 SNP

was rs2393886 (OR ¼ 0.93 [0.91–0.95], p ¼ 4.50 3 10�14,

r2 ¼ 0.99), with the lead iCHAV3 SNP was rs4746428

(OR ¼ 1.06 [1.04–1.08], p ¼ 3.24 3 10�8, r2 ¼ 0.68), and

with the lead iCHAV4 SNP was rs10995312 (OR ¼ 0.95

[0.92–0.97], p ¼ 1.38 3 10�4, r2 ¼ 0.97).

In order to identify the candidate causal SNPs in each

iCHAV for subsequent functional analysis, we calculated

the likelihood ratio of each SNP relative to the best inde-

pendent signal with which it was correlated (r2> 0.6), after

adjusting for the lead SNP of preceding iCHAV(s). SNPs

with a relative likelihood ratio of <1:100 compared with

the most significant SNP for each iCHAV were excluded

from consideration as being potentially causative.16,30

Eleven SNPs had a relative likelihood ratio of >1:100

compared with the most significant SNP (rs10995201)

and hence could not be excluded as causative for the
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lead signal—these SNPs were all

strongly correlated with rs10995201

and span an interval of 31.2 kb

(iCHAV1, Figure 1, Table S4). A 12th

SNP, a single base insertion chr10:

64,291,099, was excluded at this

threshold, but not strongly so (likeli-

hood ratio ~1:600); all other SNPs
could be clearly excluded (likelihood ratios < 1:1012).

After adjustment for lead SNP of iCHAV1, we identified

16 strongly correlated SNPs and with a likelihood

ratio >1:100 relative to the lead SNP in iCHAV2 (chr10:

64,258,684:D); these SNPs span an interval of 25 kb

(iCHAV2, Figure 1, Table S5). SNP rs16917302 (OR ¼ 0.96

[0.93–0.99], p ¼ 1.03 3 10�2), reported by Couch et al.,31

lies within the region that iCHAV2 spans. However,

rs16917302 is only weakly correlated with the lead SNP

(r2 ¼ 0.12) in iCHAV2. After adjusting for the effects of

lead SNPs of iCHAV1 and iCHAV2, 17 highly correlated

SNPs had a relative likelihood >1:100 compared to

rs7922449 (iCHAV3, Figure 1, Table S6) and span an inter-

val of 29.1 kb. Finally, only one other SNP, rs7090365, had

a relative likelihood of >1:100 with respect to rs9971363

the lead SNP of iCHAV4, after adjusting for the lead SNPs

in iCHAVs 1–3 (Figure 1, Table S7). iCHAVs 1, 2, and 3 all

lie within ZNF365. The SNPs in iCHAV1 and iCHAV3

span regions that physically overlap, whereas the SNPs in

iCHAV2 lie telomeric to iCHAV1 and iCHAV3. iCHAV4

lies 50 of ADO, which encodes 2-aminoethanethiol dioxy-

genase (Figure 1).

Association with Breast Cancer Subtypes

Based on data from European studies, 31 genotyped

SNPs and 14 imputed SNPs were associated with risk of

ER-positive breast cancer (p values 10�7 to 10�23). The

most strongly associated SNP for overall breast cancer

(rs10995201) was also the most strongly associated SNP



Table 1. Four iCHAVs at 10q21.2 Associated with Breast Cancer Risk or Mammographic Density Phenotype in Europeans

iCHAV1 iCHAV2 iCHAV3 iCHAV4

rs10995201a chr10: 64,258,684:Da rs7922449a rs9971363a

p Valueb OR (95% CI)b p Valueb OR (95% CI)b p Valueb OR (95% CI)b p Valueb OR (95% CI)b

Overall 1.05 3 10�29 0.85 (0.83–0.88) 4.24 3 10�14 0.93 (0.91–0.95) 1.68 3 10�7 1.06 (1.04–1.08) 6.54 3 10�5 0.94 (0.92–0.97)

ERþ 2.51 3 10�23 0.85 (0.82–0.88) 8.01 3 10�11 0.93 (0.91–0.95) 6.70 3 10�6 1.06 (1.03–1.09) 1.26 3 10�5 0.93 (0.90–0.96)

ER� 9.60 3 10�8 0.87 (0.82–0.91) 0.0055 0.95 (0.91–0.98) 0.000268 1.08 (1.04–1.13) 0.776 0.99 (0.94–1.05)

p Valuec b (SE)c p Valuec b (SE)c p Valuec b (SE)c p Valuec b (SE)c

Density area 1.45 3 10�7 �0.25 (0.05) 0.00555 �0.09 (0.03) 0.308 0.04 (0.04) 0.634 �0.02 (0.05)

Percent density 1.32 3 10�5 �0.15 (0.04) 0.00155 �0.08 (0.02) 0.634 0.01 (0.03) 0.629 �0.02 (0.04)

SNPd p Valued Infoe SNPd p Valued Infoe SNPd p Valued Infoe SNPd p Valued Infoe

rs10995181f 5.07 3 10�28 1 rs4489633f 1.45 3 10�9 0.96 rs1878253f 6.54 3 10�8 1 rs9971363a,g 6.54 3 10�5 0.97

rs10995182g 3.42 3 10�28 0.92 rs4282885f 8.51 3 10�10 0.99 rs1914200f 1.03 3 10�7 1 rs7090365g 6.59 3 10�5 0.97

rs10995187f 6.66 3 10�29 1 rs10995173f 3.89 3 10�10 1 rs10740081g 9.17 3 10�8 0.99

rs4746419f 4.43 3 10�29 1 rs10822012g 3.93 3 10�10 0.99 rs10761639g 1.01 3 10�7 0.98

rs34511355f 6.22 3 10�29 1 rs10761637g 3.92 3 10�10 0.99 rs7901318g 7.26 3 10�8 0.98

rs10995189f 6.04 3 10�29 1 rs12098307g 4.16 3 10�10 0.99 rs2393894g 5.95 3 10�8 0.97

rs10995190f 5.61 3 10�29 1 rs10822013f 8.81 3 10�11 1 rs7922449a,g 1.68 3 10�7 0.86

rs10995191f 6.04 3 10�29 1 rs10509168f 2.22 3 10�13 1 rs10995196g 2.70 3 10�8 0.98

rs11524313g 4.16 3 10�29 0.97 rs10995176g 7.17 3 10�14 0.99 rs4746428f 3.24 3 10�8 1

rs10995193g 3.67 3 10�29 0.99 c10_pos64258017f 1.03 3 10�13 1 chr10: 64,293,571:Dg 1.94 3 10�8 0.88

rs10995194f 3.77 3 10�29 1 rs2393886f 4.50 3 10�14 1 rs9633558g 2.62 3 10�8 0.99

rs10995201a,g 1.05 3 10�29 0.95 chr10: 64,258,684:Da,g 4.24 3 10�14 0.98 rs7915519g 2.63 3 10�8 0.99

chr10: 64,258,692:Dg 8.51 3 10�13 0.86 rs6479823g 2.66 3 10�8 0.99

rs12243471f 4.00 3 10�10 0.99 rs1914182g 2.62 3 10�8 0.99

rs12245332f 3.95 3 10�10 1 rs10822017g 2.07 3 10�8 0.99

rs2393887f 6.94 3 10�10 1 rs7901573g 2.93 3 10�8 0.99

rs4746409f 3.06 3 10�12 1 rs12258134g 2.94 3 10�8 0.99

rs1949356f 3.61 3 10�8 1

aLead SNP for each iCHAV.
bp value, odds ratio (OR), and 95% confidence interval (CI) for association with overall breast cancer risk, estrogen-positive (ERþ), and estrogen-negative (ER�) disease.
cp value, beta, and standard error (SE) for association with percentage density, dense area.
dSNPs correlated (r2 > 0.6) with a likelihood ratio of >1:100 with respect to overall risk association relative to lead SNP of each iCHAV and corresponding p value for association with overall breast cancer risk.
eIMPUTE2 info score.
fGenotyped marker.
gImputed marker.
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for ER-positive disease (OR ¼ 0.85 [0.82–0.88], p ¼ 2.51 3

10�23) and had a similar association for ER-negative disease

(OR ¼ 0.87 [0.82–0.91], p ¼ 9.60 3 10�08, pheterogeneity ¼
0.34) (Table 1, Figures S1 and S2). The most strongly asso-

ciated, well-imputed SNP (IMPUTE2 info-score > 0.9) for

ER-negative disease was rs10995182 (OR ¼ 0.85 [0.8–0.9],

p ¼ 6.68 3 10�8), another SNP within iCHAV1 strongly

correlated with rs10995201. Thus, the results indicate

that susceptibility SNPs in iCHAV1 confer similar relative

risks for ER-positive and ER-negative disease. Similarly,

the lead SNPs in iCHAVs 2 and 3 showed similar associa-

tions for ER-positive and ER-negative disease (ORERþ ¼
0.96 [0.94–0.98], pERþ ¼ 8.77 3 10�04, ORER� ¼ 0.98

[0.94–1.02], pER� ¼ 0.309, pheterogeneity ¼ 0.44 for chr10:

64,258,684:D adjusted for iCHAV1, ORERþ ¼ 1.04 [1.02–

1.07], pERþ ¼ 1.54 3 10�03, ORER� ¼ 1.07 [1.02–1.11],

pER� ¼ 4.36 3 10�03, pheterogeneity ¼ 0.44 for rs7922449

adjusted for iCHAVs 1 and 2). However, the lead SNP

in iCHAV4 showed no association with ER-negative disease

(ORERþ ¼ 0.93 [0.90–0.97], pERþ ¼ 7.72 3 10�05, ORER� ¼
1.00 [0.94–1.05], pER� ¼ 0.862, pheterogeneity ¼ 0.016 for

rs9971363 adjusted for iCHAVs 1, 2, and 3).

To determine whether there were additional subtype-

specific signals of association, we included all SNPs display-

ing evidence for association with ER-positive disease (222

SNPs, p < 10�4 and MAF R 2%) and ER-negative disease

(19 SNPs, p < 10�4 and MAF R 2%) in separate forward

stepwise regression models. For ER-positive disease,

two iCHAVs were identified: iCHAV1-ERþ rs10995201

(OR ¼ 0.85 [0.83–0.88], p ¼ 2.51 3 10�23; conditional

p ¼ 1.65 3 10�18) in iCHAV1 and iCHAV2-ERþ chr10:

64,258,684:D (OR ¼ 0.93 [0.91–0.95], p ¼ 8.01 3 10�11;

conditional p ¼ 2.59 3 10�05) in iCHAV2.

Breast Cancer Risk Associations in Asian Studies

The top associated marker among Asians was the geno-

typed SNP rs7914770 (OR ¼ 0.93 [0.89–0.98], p ¼ 0.006).

This SNP, which lies between iCHAV1 and iCHAV4,

as defined in analysis of the European population, was

not associated with overall breast cancer risk among Euro-

peans (OR ¼ 1.01 [0.98–1.03], p ¼ 0.534; Table S8). The

most strongly associated genotyped SNP in Europeans,

rs10995194 in iCHAV1, showed a borderline association

with breast cancer risk in Asians, but in the opposite direc-

tion (Asians: OR ¼ 1.18 [1.00–1.39], p ¼ 0.04; Europeans:

OR ¼ 0.86 [0.84–0.88], p ¼ 3.77 3 10�29). The minor (C)

allele of rs10995194 (MAF ¼ 0.15) and the other iCHAV1

SNPs were much rarer in Asians (MAF ¼ 0.02), but the

ORs estimates nevertheless differed significantly (p ¼
10�4). In iCHAV2, the most strongly associated genotyped

SNP in Europeans, rs2393886 (OR ¼ 0.93, MAF ¼ 0.47 for

the A allele), was also associated with risk in Asians;

however, in contrast to iCHAV1, the effects were in the

same direction and of comparable magnitude (OR ¼ 0.95

[0.90–1.00], p ¼ 0.04, allele frequency 0.51 for the A allele

in Asians). In this iCHAV the most strongly associated SNP

in Asians was rs4746409 (OR ¼ 1.06 [1.00–1.11], p¼ 0.03),
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but this is strongly correlated with the lead SNP rs2393886

(r2 ¼ 0.88). SNP rs10822013 within iCHAV2, recently iden-

tified by Cai et al. in an Asian GWAS,7 was more weakly

associated with risk in Asians in our data (OR ¼ 0.96

[0.90–1.10], p ¼ 0.07). None of the genotyped markers in

iCHAV3 or iCHAV4 that were significant in Europeans

showed association with overall breast cancer risk in the

Asian population.

Haplotype Analysis

We conducted haplotype analysis using the most probable

genotype for the imputed lead SNPs in each of the iCHAVs.

We grouped haplotypes with a frequency < 0.01 into one

(rare) group. The haplo.score procedure estimated 11 hap-

lotypes with non-zero frequencies for all three phenotypes

(overall, ERþ, and ER� risk) (Table S9). The most significant

association was observed for haplotype H6, carrying the

rare allele of the lead SNPs of iCHAV1 and iCHAV2:

OR ¼ 0.86 (0.82–0.90), p ¼ 8.52 3 10�10. Consistent

with the regression analyses, the three haplotypes (H6,

H14, H5) carrying the rare allele of the iCHAV1 SNP

rs10995201 were all associated with a similar, reduced

breast cancer risk. Three other haplotypes, all carrying

the rare allele of the iCHAV2 SNP, chr10: 64,258,684:D,

were also associated with a reduced risk, relative to the

baseline haplotype, consistent with an independent effect

of iCHAV2.

Association with Mammographic Density Phenotypes

Multiple linear regression was used to investigate the

association between mammographic density phenotypes

(PD, percent density; DA, dense area; nDA, non-dense

area) and genotypes after adjustment for other covariates.

Among the three density phenotypes, the strongest associ-

ations were observed with DA. The strongest association

with DA and PD was seen with the lead SNP of iCHAV1,

rs10995201 (b (SE) ¼ �0.25 [0.05], p ¼ 1.45 3 10�07 for

DA, b (SE) ¼ �0.15 [0.04], p ¼ 1.32 3 10�05 for PD; Tables

S10, S11; Figures S3 and S4). After adjusting for the lead

SNP in iCHAV1, no SNPs in iCHAV2 were associated with

any of the density phenotypes at p< 0.01 (Table S12); simi-

larly, none of the iCHAV3 or iCHAV4 SNPs were associated

with density phenotypes (Tables S13 and S14). The stron-

gest association with nDA was seen with imputed marker

rs224303 about 33 kb away from iCHAV4 (Figure S5),

which was not associated with overall risk of breast cancer

(p ¼ 0.745).

To assess the extent to which the observed association

with breast cancer risk might be mediated through a

mammographic density phenotype, we estimated the asso-

ciation with breast cancer risk before and after adjustment

for PD, DA, or nDA in a pooled analysis of the 2,379 breast

cancer case subjects and 4,507 control subjects for whom

density measurements were available. The association be-

tween lead iCHAV1 SNP rs10995201 (i.e., the only iCHAV

for which an association with mammographic density had

been identified) and breast cancer in this subset (OR¼ 0.87



Figure 2. Chromatin Interactions with
the ZNF365 and NRBF2 Promoters at the
10q21.2 Locus
(A) 10q21.2 locus showing the distances
from iCHAVs 1–4 and the nearest genes.
(B–G) Chromatin interaction frequencies
were plotted at the corresponding chromo-
somal position for MCF7 (B and E),
MCF10A (C and F), and Bre80 (D and G)
for the ZNF365 and NRBF2 promoters,
respectively. iCHAV2 is marked in green,
iCHAV1 (which physically overlaps
iCHAV3) in blue, and iCHAV3 in red.
Representative graphs are shown (N ¼ 3)
and error bars denote SD.
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[0.77–0.98], p ¼ 0.02) was similar to that in the complete

BCAC set and was only slightly attenuated after adjust-

ment for PD (OR ¼ 0.88 [0.78–1.00], p ¼ 0.05) or DA

(OR ¼ 0.89 [0.79–1.01], p ¼ 0.06) (Table S15).

eQTL Analysis

We analyzed 2,238, 5,122, 2,250, 5,211, and 3,814 SNPs

in NBI, NBII, BCI, BCII, and METABRIC, respectively, for

association with the expression levels of all genes within

1 Mb, up- and downstream, of the SNP in question. Signif-

icant eQTL associations were observed for both normal

breast and tumors. Multiple SNPs within the fine mapping

region associated with expression of c10orf107 in the

NBII cohort (strongest association, chr10: 63,427,159:D,

which is not a candidate causal risk SNP; FDR-adjusted

p ¼ 6.1 3 10�5 and r2 ¼ 0.325). For the BCI cohort, multi-

ple eQTLs were found for both c10orf107 and RTKN2

(strongest associations chr10: 63,427,159:D, FDR-adjusted

p ¼ 4.3 3 10�6 and r2 ¼ 0.15, and rs870988, FDR-adjusted

p ¼ 1.4 3 10�5 and r2 ¼ 0.13, respectively). In BCII we

observed multiple eQTLs for three different genes,

c10orf107, EGR2, and ADO (rs12781009, FDR-adjusted
The American Journal o
p ¼ 5.6 3 10�9 and r2 ¼ 0.066;

rs34632941, FDR-adjusted p ¼ 0.02

and r2 ¼ 0.02; and rs224045, FDR-

adjusted p ¼ 0.02 and r2 ¼ 0.02,

respectively). No significant associa-

tions with expression were found for

NBI or METABRIC, and there were

no significant associations between

the putative causal SNPs in iCHAVs

1–4 and expression of any of the

genes analyzed in the region in any

study (Tables S16 and S17). Signifi-

cant associations (without correction

for multiple testing) were found be-

tween haplotypes of iCHAV1 and

NRBF2 in NBI and BCI (p ¼ 0.005

and p ¼ 0.042, respectively) and be-

tween haplotypes of iCHAV2 and

NRBF2 in NBI (p ¼ 0.011). In addi-

tion, we found associations between
haplotypes of iCHAV1 and REEP3, EGR2, and RTKN2

(p ¼ 0.011–0.049), haplotypes of iCHAV2 and RTKN2

(p ¼ 0.012), haplotypes of iCHAV3 and REEP3, JMJD1C,

ARID5B, ADO, RTKN2, and TMEM26 (p ¼ 0.001–0.036),

and haplotypes of iCHAV4 and ARID5B (p ¼ 0.012) in

either NBI or BCI, but not both.

Chromosome Conformation Capture Analyses

Identify ZNF365 and NRBF2 as Target Genes

We performed 3C experiments to determine whether there

were any chromatin interactions between the ZNF365 and

NRBF2 promoters and iCHAVs 1, 2, and 3. We identified

significant interactions between iCHAV2 at the 10q21.2

locus and both promoter regions in the breast cancer cell

line, MCF7, and in two normal breast cell lines, MCF10A

and Bre80 (Figures 2 and S6). No reproducible interactions

were detected between iCHAVs 1 or 3 and ZNF365 and

NRBF2 in the cell lines analyzed. Although we did observe

some possible interactions in MCF7 and MCF10A between

different parts of iCHAV 1/3 and the promoters of both

ZNF365 and NRBF2, they were not reproducible (Figures

2 and S6).
f Human Genetics 97, 1–13, July 2, 2015 9



Figure 3. Chromatin Marks in Breast Cells in iCHAVs at 10q21.2
The region encompassing 1 Mb at 10q21.2 is shown in (A). Candidate causal SNPs lying within iCHAVs 1–4 are shown as tick marks in
matching colors to iCHAVs. DNaseI hypersensitive sites found in mammary cell types from ENCODE are depicted under the gene sche-
matics. iCHAV2 is shown in (B). ENCODE tracks are shown for mammary DNaseI HS, histone modification ChIP-seq, and transcription
factor ChIP-seq. The cloned PRE2 region for the iCHAV2 reporter construct is marked.
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Identification of a Putative Regulatory Region within

iCHAV2 Regulating both ZNF365 and NRBF2

We used available ENCODE ChIP-seq data to identify puta-

tive regulatory elements (PREs) within iCHAV2 (Figure 3A).

We identified two PREs (PRE1 and PRE2), as defined by

DNaseI hypersensitivity sites (indicative of regions of

open chromatin), in several normal and cancer breast cell

lines, and H3K4me1 and H3K4me2 histone modifications

in HMECs (Figure 3B). PRE1 lies in a complex repetitive

region and we were unable to clone and analyze this

region. However, 6 (chr10: 64,258,684:D, rs2393886,

rs10995176, c10_pos64258017, rs10509168, and chr10:

64,258,692:D) of the 17 candidate causal SNPs lie within

PRE2 (Figure 3B). We examined the regulatory capability

of PRE2, combined with the effect of the protective haplo-

type, using luciferase constructs containing the ZNF365

or NRBF2 promoters. Inclusion of the reference haplotype

of iCHAV2 did not significantly alter the effect of the

NRBF2 promoter in Bre80 cells. However, the construct

containing the protective haplotype acted as a silencer

relative to the iCHAV2 reference allele (p ¼ 0.003; Figures

4A and S7). A similar trend was seen in MCF7 cells (p ¼
0.029; Figure 4C). Although constructs containing the

ZNF365 promoter showed a trend reducing its activity

with the reference haplotype of iCHAV2, this was signifi-

cant only in MCF7 cells (Figures 4B and 4D). Similarly,

inclusion of the protective haplotype reduced the

ZNF365 promoter activity but had no effect relative to

the iCHAV2 reference haplotype in either Bre80 or MCF7

cells (Figures 4B and 4D).
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Discussion

Our large combined dataset provides clear confirmation of

a susceptibility locus for breast cancer at 10q21.2 for breast

cancer as originally reported by Turnbull et al.4 and for

mammographic density as reported by Lindström et al.9

Multiple regression and haplotype analyses showed clear

evidence of at least two, and potentially four, independent

susceptibility loci in this region in Europeans. The most

strongly associated SNP, rs10995201 in iCHAV1, showed

clear evidence of association with both ER-positive and

ER-negative disease, with the ORs being similar, and was

also the SNP most strongly associated with mammo-

graphic density (DA, and hence PD). iCHAV2 (lead SNP,

chr10: 64,258,684) and iCHAV3 (lead SNP, rs7922449)

also appeared to be associated with both ER-positive and

ER-negative disease. Evidence of a fourth iCHAV, associ-

ated only with ER-positive breast cancer, was weaker. In

contrast to the results in Europeans, there was less evi-

dence of association between SNPs at this locus and breast

cancer risk in Asian women. The top associated genotyped

SNP among Asians was rs7914770, which was not associ-

ated with overall breast cancer risk among Europeans.

Furthermore, the lead genotyped SNP in Europeans,

rs10995194, showed borderline evidence of association

with breast cancer in Asians in the opposite direction,

such that the effect sizes were clearly different. There are

several possible explanations for the difference in the

effect of iCHAV1 by ethnicity. The difference might reflect

the differential effect of another SNP, or SNPs, in the



Figure 4. Protective Haplotype of iCHAV2 Silences NRBF2 Promoter Activity
Both haplotypes of the iCHAV2 PRE2were cloned upstream ofNRBF2- and ZNF365-promoter-driven luciferase reporters. Cells were tran-
siently transfected with the common (PRE2) and the protective (Prot Hap) haplotype constructs and assayed for luciferase activity 24 hr
later. Results for the NRBF2 and ZNF365 promoters in Bre80 cells are shown in (A) and (B) and results for NRBF2 and ZNF365 promoters
in MCF7 cells are shown in (C) and (D). Error bars denote 95% confidence intervals from three independent experiments performed in
triplicate. p values were determined by two-way ANOVA followed by Dunnett’s multiple comparisons test (**p < 0.01, *p < 0.05) on log
transformed data; for ease of interpretation, back-transformed data have been graphed.
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10q21.2 region. Alternatively, it might reflect trans-

interactions with SNPs elsewhere in the genome. Larger

studies in Asian populations, both for breast cancer risk

and mammographic density, might help to resolve this

paradox. The SNPs in iCHAV2, however, showed effects

that were consistent between the two populations.

The A allele of rs10995190 in iCHAV1 is associated with

decreased ER-positive and ER-negative breast cancer risk,

as well as with lower percent mammographic density and

reduced dense area. These results are consistent with the

hypothesis that the same causal SNP confers susceptibility

to both mammographic density and breast cancer risk.

However, adjustment for percent density or dense area

caused only a minor attenuation of the association

between breast cancer risk and the lead iCHAV1 SNP. The

implications of this finding are not clear, but it is likely

that percent and absolute mammographic density as

captured by a two-dimensional mammogram, despite be-

ing strong predictors of breast cancer risk, are imperfect

measures of the underlying mechanism that drives breast

cancer risk. Alternatively, it might be that different SNPs

in this iCHAV are acting independently on mammo-

graphic density and breast cancer risk, and through

different mechanisms. We did not observe associations

with mammographic density for breast cancer-associated

SNPs in the other iCHAVs, but the smaller sample size,

and hence lower statistical power, for the mammographic

density analysis mean that more subtle effects in other

iCHAVs would not have been detectable.

As we have reported for the breast cancer loci at 11q1317

and 2q35,32 we did not find any evidence for single

SNP eQTLs for any of the putatively causal SNPs in iCHAVs
T

1–4 in normal or cancerous breast samples. This might be

because the power of the eQTL studies (n ¼ 93–765) is

limited, or because eQTLs are context dependent and

might be expressed only in certain cell types or in response

to certain stimuli. We have, however, identified a putative

regulatory element in iCHAV2 at the 10q21.2 locus that in-

teracts with both the NRBF2 and ZNF365 promoters in

both normal breast and breast epithelial tumor cells. It is

interesting that we detected haplotype associations with

iCHAV1 and iCHAV2 and NRBF2 expression, but the

significance of these is difficult to interpret given their

modest p values and the fact that these iCHAVs are far

too big to be cloned in their entirety for luciferase assays.

We prioritized the 3C analysis to look for interactions

between iCHAVs 1, 2, and 3 and the promoters of

ZNF365 and NRBF2 because of their function. NRBF2 en-

codes nuclear receptor binding protein 2, an interaction

partner of the peroxisome proliferator-activated receptor

alpha (PPARa), and exhibits a gene activation function in

mammalian cells.33 Furthermore, NRFB2 is thought to

have a role in cell survival in neural progenitor cells34

and to suppress autophagy,35 a process that needs to be

tightly controlled in breast cells during normal develop-

ment, tissue differentiation, and response to stress.36 To

our knowledge, NRBF2 has not previously been implicated

in breast cancer tumorigenesis. Our results suggest that the

haplotype in iCHAV2 associated with reduced risk of breast

cancer is associated with silencing of the NRBF2 promoter.

ZNF365 encodes the zinc finger protein 365, which plays a

critical role in stabilizing fragile sites within the genome

and telomeres37 and maintaining genome stability,38

and is therefore a good candidate for a breast cancer
he American Journal of Human Genetics 97, 1–13, July 2, 2015 11
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susceptibility gene. Although we did not observe a differ-

ential effect of the protective haplotype on the ZNF365

promoter in luciferase assays, the protective SNPs might

act through differential looping as we have previously

observed at the 2q35 breast cancer risk locus.32 Alterna-

tively, other candidate causal SNPs in PRE1 or elsewhere

in iCHAV2 might have a differential effect on transactiva-

tion of the ZNF365 promoter. We did not find any

convincing evidence for interactions between iCHAV1/3

and the promoters of ZNF365 or NRBF2 in MCF7,

MCF10A, or Bre80 cells. It is possible that other genes,

such as ADO, which encodes 2-aminoethanethiol dioxyge-

nase, or EGR2 encoding early growth response-2, are the

targets of these iCHAVs, or that their interactions with

ZNF365 or NRBF2 are manifest in different cell types,

such as of the immune system, or only in response to

specific stimuli.

In conclusion, we have found evidence for four sets of

correlated genetic variants (iCHAVs) at 10q21.2 indepen-

dently associated with breast cancer risk, one of which is

also associated with mammographic density. In one of

these iCHAVs, we have identified candidate causal SNPs

that affect expression of NRBF2, which lies more than

600 kb away, suggesting that expression of NRFB2 might

play a role in transformation or progression of transformed

breast cells.
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