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The ongoing development of new antimalarial drugs and the increasing use of controlled human malaria infection (CHMI) stud-
ies to investigate their activity in early-stage clinical trials require the development of methods to analyze their pharmacody-
namic effect. This is especially so for studies where quantitative PCR (qPCR) is becoming the preferred method for assessing
parasite clearance as the study endpoint. We report the development and validation of an analytic approach for qPCR-deter-
mined parasite clearance data. First, in a clinical trial with the licensed antimalarial combination sulfadoxine-pyrimethamine
(S/P), qPCR data were collected from 12 subjects and used to determine qPCR replicate variability and to identify outliers. Then,
an iterative analytic approach based on modeling the log-linear decay of parasitemia following drug treatment was developed to
determine the parasite reduction ratio (PRR) and parasite clearance half-life, both measures of parasite clearance. This analytic
approach was then validated with data from 8 subjects enrolled in a second study with the licensed antimalarial drug meflo-
quine. By this method, the PRR and parasite clearance half-lives for S/P and Mefloquine were determined to be 38,878 (95% con-
fidence interval [95% CI], 17,396 to 86,889) at 3.15 (95% CI, 2.93 to 3.41) days and 157 (95% CI, 130 to 189) at 6.58 (95% CI, 6.35
to 6.83) days for the respective studies. No serious adverse events occurred in the two trials, and pharmacokinetic values were
within expected ranges for sulfadoxine and pyrimethamine. The robust statistical method that we have developed to analyze
qPCR-derived pharmacodynamic data from CHMI studies will facilitate the assessment of the activity of a range of experimental
antimalarial drugs now entering clinical trials. (This trial was registered with the Australian New Zealand Clinical Trials Registry
under registration numbers ACTRN12611001203943 and ACTRN12612000323820.)

Acritical determinant of the success of antimalarial chemother-
apy is the speed of clearance of parasites from the blood of

infected individuals. Indeed, this pharmacodynamic relationship
represents one of the few clinically validated examples in antimi-
crobial chemotherapy. For example, the superiority of artemisinin
antimalarials over comparator drugs, such as quinine, in terms of
clinical endpoints can be attributed to the more rapid clearance of
parasites from the blood following artemisinin combination che-
motherapy (ACT) (1). Indeed, the increasing number of reports
from the Greater Mekong Delta of slower clearance of Plasmo-
dium falciparum from the blood following ACT forebodes wors-
ening clinical outcomes (2–5).

Quantification of parasitemia has generally relied on counting
parasites on blood films. Advantages of this methodology include
the ease of collection from finger prick, the low cost of consum-
ables, and well-standardized methods. Additional useful informa-
tion can be obtained from blood films, including infection with
mixed parasite species, the presence of different life cycle stages,
and the presence of malaria pigment in white cells. Disadvantages
include the need for skilled microscopists who regularly under-
take Quality Assurance Programs, the inferior sensitivity of mi-
croscopy compared to molecular techniques, and the time-con-
suming nature of reading multiple slides in the context of an
ongoing clinical trial. Although quantitation of biomarkers of par-
asite biomass, such as histidine-rich protein 2, has some utility in
measuring parasite biomass (6), it is not well suited for serial esti-
mation of changes in parasite density in the context of drug treat-
ment due to the kinetics of clearance of circulating parasite anti-
gen differing from that of parasites (7).

Nucleic acid amplification tests (NAT) have assumed an im-
portant role in the diagnosis of a number of infectious diseases.

Likewise, quantitative estimation of the concentration of patho-
gen target sequences in blood or other biologic samples, using
quantitative PCR (qPCR), has assumed critical importance in the
management of a number of viral infections. Foremost of all test
cases is HIV-1, for which viral load as measured by qPCR is the
critical marker of success of antiretroviral therapy (8). Likewise,
qPCR for measurement of the level of malaria parasitemia has
been developed as a means of monitoring parasite growth and
clearance in clinical trials of drugs and vaccines (9, 10). Although
some quantitative assays have used nucleic acid sequence-based
amplification techniques (NASBA), most now employ a PCR-
based methodology and frequently target multicopy, highly con-
served parasite gene targets, such as the 18S ribosomal DNA
(rDNA) gene. Such PCR assays improve sensitivity 10- to 100-fold
over that of blood films, as well as offer the ability to batch and
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automate processing and sample analysis, potentially with the use
of robotic equipment now found in many modern clinical diag-
nostic laboratories (11, 12).

Until recently, parasite clearance time (PCT), as determined by
microscopy, has been the predominant endpoint that has been
reported in clinical trials. In many such studies, there has, how-
ever, been a paucity of reporting of measures of quality of slide
reading, such as reporting the limit of detection, the number of
blood film fields read, and the frequency of collection of blood
films. In a recent paper, Flegg et al. proposed a standardized
method for the reporting of parasite clearance, as determined by
blood films, in clinical trials (13).

However, additional considerations apply when parasite clear-
ance analysis is undertaken by qPCR. In addition to technical
issues related to the qPCR method used, which will not be ad-
dressed here, considerations such as reproducibility of assay data,
how many biologic and analytic replicates should be tested, ac-
ceptable limits of variation in replicates, and management of the
limit of detection (LOD) all apply.

Parasite clearance following antimalarial drug treatment fol-
lows a log-linear decay curve, consisting of three stages: the lag
phase, log-linear decay, and the tail phase (14) (Fig. 1). The log-
linear decay in the middle of the decay profile has been suggested
to have the least interindividual variance, and the slope of the
log-linear relationship of parasitemia over time can provide a rel-
atively robust estimate of parasite clearance (14). The parasite
reduction ratio (PRR), a mathematical representation of the ratio
of the parasite density between admission and 48 h posttreatment
(15), has been proposed as a means of describing the decay of
parasitemia. The PRR and the mathematically related parasite
clearance half-life (t1/2) are derived from the slope of the clearance
curve. These are less subject to methodological problems or other
confounders, such as the influence of starting parasitemia on
clearance time, than the previously used PCT (14).

In this paper, we used parasite clearance data from two clinical
trials to develop and then validate a methodology to analyze par-
asite clearance after antimalarial chemotherapy, specifically as it
applies to parasitemia data collected by qPCR rather than by mi-
croscopy. An important characteristic of the study design of these
trials is the relatively rich data collected from small cohorts of
subjects deliberately infected with blood-stage malaria parasites

(induced blood-stage malaria [IBSM]) (10, 16), rather than from
a larger group of patients with natural malaria parasite exposure
enrolled in a clinical trial in a setting of endemicity, where parasite
clearance data are generally collected by less frequent blood film
examination. The details of the modeling strategy to obtain the
most efficient subject-specific PRR estimate and corresponding
drug- and dose (cohort)-specific PRR estimates are reported. Sec-
ond, we report the safety and pharmacokinetic profiles of both
sulfadoxine and pyrimethamine (S/P) in the first clinical trial.

MATERIALS AND METHODS
Two single-center, uncontrolled studies of IBSM infection were under-
taken as described previously (10). Healthy, nonsmoking malaria-naive
adult volunteers between 18 and 45 years of age were enrolled. In the first
study, two cohorts of six subjects each were treated orally once only with
three tablets of S/P (500 mg/25 mg; Fansidar, Roche Products Pty. Lim-
ited). The plasma concentrations of the two antimalarial drugs were de-
termined at time points 0, 0.5, 2, 4, 8, 12, 18, 24, 36, 48, 72, and 96 h using
a high-performance liquid chromatography assay (17), and noncompart-
mental pharmacokinetic analysis was undertaken to estimate the maxi-
mum concentration of the drugs in serum (Cmax), time to maximum
concentration (Tmax), half-life (t1/2), and area under the curve (AUC). To
optimize estimation of clearance of parasitemia, blood sampling for
qPCR was designed to be most intensive at the early stages after treat-
ment (0, 0.5, 2, 4, 8, 12, 18, 24, 36, and 48 h). Clinical evaluation, safety
biochemistry, and hematology laboratory testing were conducted at
screening, prior to malaria inoculation (day 0), upon entry to the clinic
prior to confinement for antimalarial treatment, upon exit from con-
finement, and on day 28 or the end-of-study visit. This trial was reg-
istered with the Australian New Zealand Clinical Trials Registry under
registration number ACTRN12611001203943.

A second study of identical design was undertaken with a single group
of eight subjects, with mefloquine (Lariam; Roche Products Pty Limited)
administered as a single dose of 10 mg/kg of body weight. For this second
study, data reported here are restricted to the parasitemia data (time
points 0, 2, 4, 8, 12, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120, and 144 h) for
the purpose of validation of the methods developed; full details of this
study will be reported elsewhere. Adverse-event data were classified and
aggregated using the NCI’s common terminology criteria for adverse
events (CTCAE), version 4 (18). This second trial was registered with the
Australian New Zealand Clinical Trials Registry under registration num-
ber ACTRN12612000323820. The two clinical trials reported here were
approved by the Queensland Institute of Medical Research Human Re-
search Ethics Committee.

Details of the qPCR assay for assessment of parasitemia at each of the
time points used in this work have been previously published (19). Key
information from this assay includes results from effectively sampling 250
�l of packed red cells and retrospectively testing all samples from a single
subject in a single assay for final quantitation.

To minimize interassay variation, samples were tested in replicate on a
single qPCR plate. This enabled estimation of assay replicate variability
and the development of a set of guidelines to identify sample outliers in
future qPCR analyses. To calculate an estimate of the expected analytic
replicate variance of the qPCR assay, samples for 10 time points for each
subject were analyzed by qPCR analysis in quadruplicate. Statistical mod-
eling was performed on the log10-transformed parasitemia values using
general linear models (GLMs) to estimate variation. The GLM included
main effects and an interaction for the subject and time (in hours) from
antimalarial treatment to take into account the repeated measurements
on the subject. The mean square error (MSE) of the GLM was used as the
estimate of the variance of the replicates. The variance of the PCR repli-
cates (PCR assay replicate variance) was estimated as the pooled variance
from S/P cohorts 1 and 2. This pooled variance estimate is expected to be
stable and therefore could be used as the expected qPCR assay replicate
variance. The derived estimated assay replicate variability was used to

FIG 1 Effect of lag phase and tail exclusion on the calculation of the clearance
rate constant. (Modified from reference 13 with permission of the author.)
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develop a set of guidelines to identify outliers in future qPCR samples. The
guidelines were developed to determine if the observed variability of sam-
ples when tested by qPCR in duplicate, triplicate, or quadruplicate is ex-
cessive compared to the expected assay replicate variability.

The within-sample variance in parasitemia of the replicates was calcu-
lated for every subject and time point (SO

2), where O stands for “observed.”
The rule for determining a sample outlier was based on a variance ratio
test that compares the observed replicate variability in a qPCR sample to
the expected assay replicate variability by the F test. The F test is defined as
follows:

F �
SO

2

SE
2 � F�,nO�1,nE�1 (1)

where SE
2 is the expected assay replicate variance estimated previously, � is

the significance level, n0 is the number of replicates for the observed sam-
ple (i.e., duplicates, triplicates, or quadruplicates), and nE is the number of
replicates used to calculate the replicate variability (assumed to be infin-
ity).

Correction for multiple testing was incorporated into the rule, as each
subject contributed multiple samples over time. The test statistic was ad-
justed for multiple testing by using Bonferroni correction to the signifi-
cance level, such that the corrected test statistic is given by the equation

Fcorrected �
SO

2

SE
2 � F �

N ,nO�1,nE�1 (2)

where N is the total number of time points for which the subject has
parasitemia above the LOD. By rearranging equations 1 and 2, the mini-
mum observed analytic replicate variance that will indicate a qPCR sam-
ple outlier can be determined when there is a significant difference be-
tween the observed replicate variability and the expected assay replicate
variability. When this violation is detected at any time point, the qPCR
assay is required to be repeated for all samples for that subject.

Once potential outliers had been appropriately handled, the replicate
parasitemia data were next cleaned to take into account parasitemia values
where a derived value fell below the LOD or tests returned a negative
value. For any replicate parasitemia values below the LOD, the value was
substituted with LOD/2 (20). For any values that were not detected (ND),
the value was replaced with 1 such that when the data were log10 trans-
formed, ND was equal to log10(1), which is equal to 0. If all replicates for
a subject within a time point were ND, the first time point with all values
ND was included in model fitting and all subsequent time points were set
to missing, regardless of whether parasitemia values increased afterwards
due to potential recrudescence. The data used for all subsequent model
selection and fitting were comprised of the arithmetic mean of the repli-
cate log10 parasitemia value per time point per subject up to the first time
all replicates were not detected.

Statistical analysis entailed two steps: an initial calculation of the decay
rate (slope coefficient from the log-linear decay regression) for each indi-
vidual and then calculation of the weighted average slope estimate and
corresponding standard error using the inverse-variance method (21) to
obtain a cohort-specific PRR estimate and 95% confidence interval (95%
CI). Before calculating the PRR, it was necessary to deal with the lag and
tail phases (13, 14) of the parasitemia decay profile (Fig. 1). To achieve
this, an algorithm was developed to remove potential lag and/or tail
phases in order to determine the optimal log-linear decay regression. The
algorithm considers removing parasitemia data points in an iterative pro-
cess from both ends of the parasitemia curve, i.e., by a combination of
right censoring (removing values from the tail phase) and left censoring
(removing values from the lag phase), and uses model selection tech-
niques to find the optimal log-linear regression.

The algorithm to obtain the log-linear decay for each subject is based
on the log-linear regression detailed in equation 3, where time is the num-
ber of hours since administration of antimalarial treatment (time � 1,. . .,
m), and �0 and �1 are the intercept and slope estimates, respectively.

log10 parasitemia � �0 � �1time (3)

Based on the cleaned and processed parasitemia data for each subject,
the iterative algorithm to determine the optimal log-linear decay for each
subject is summarized in Table 1. The iterative algorithm is continued
until a minimum of four observations are available. The optimal log-
linear regression model for a subject was deemed an appropriate fit if the
overall model P value was less than 0.001.

Estimating the subject-specific PRR. The slope and corresponding
standard error estimate of the optimal linear regression model for subject
i was used to calculate the subject PRR estimate and corresponding 95%
CI, as shown in equations 4 and 5, respectively.

PRR48,i � 10�48 � �1,i (4)

95% CI � 10�48��1,i � 1.96 � SE(�1,i)� (5)

where �1,i and SE(�1,i) are the slope and corresponding standard error of
the slope parameter of the optimal linear regression model, respectively.

Estimating study-specific PRR. The average PRR and corresponding
95% CI for each cohort were estimated by using the inverse-variance
method (21) to calculate the weighted average linear regression slope (�1)
and corresponding standard error [SE(�1)]. The cohort-specific PRR cal-
culation is based only on the s subjects with the optimal regression model
having a P value of 	0.001. The weighted average slope for s subjects in the
cohort is given in equation 6, where the weight is the inverse of the squared
standard error [wi � 1/SE(�1,i)

2] for i, which is equal to 1, . . .s.

�1
—

�
�i�1

s (wi � �1,i)

�i�1
s wi

(6)

The standard error of �1
—

is estimated as SE(�1
—

) �� 1

�i�1
s wi

. There-

fore, the cohort-specific PRR (PRRc) and corresponding 95% confidence
interval are shown in equations 7 and 8, respectively.

PRRc � 10�48 � �1
—

(7)

95% CI � 10�48 � ��1
—

� 1.96 � SE(�1
—

)� (8)

Parasite clearance t1/2. The parasite clearance half-life is a character-
istic of a mono-exponential decline and is seen within other natural sys-
tems, e.g., the decay of a radioisotope, the decline in drug concentrations,
etc. The half-life is a transformation of the gradient (per time, equivalent
to PRR) into a time period. The relationship between PRR and parasite
reduction t1/2 is a simple transformation of the PRR,

t1⁄2 � log10(2) � 	 48 h

log10(PRR48)
 �
log10(2)

��1
(9)

where the PRR48 is the parasitemia ratio estimated over a 48-h interval
that is subsequently transformed into a per-hour gradient.

TABLE 1 Iteration process to determine the optimal log-linear decay
curve

Step Process for each subject

1 Fit the full model; i.e., fit a linear regression (as defined by
equation 3) to all m parasitemia values of subject i

2 Fit two models; i.e., fit the linear regression model to m �
1 parasitemia values by (i) removing the first
observation and (ii) removing the last observation

3 Determine the best model of steps 2i and ii, defined as the
model corresponding to the minimum overall model P
value

4 Of the best model defined in step 3, repeat steps 2 and 3
in an iterative process until a minimum of four
observations have been taken

5 Of the m � 3 best models selected per iteration (including
the full model [step 1]), the optimal model is defined
by the minimum overall model P value

qPCR in Malaria Clinical Trials
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Comparison of study-specific PRRs. To determine whether there are
differences between study-specific PRRs, an omnibus test for between-
group differences is used (22). The test is used to assess whether there are
differences in the weighted mean slope of the J studies, using the following
test statistic:

QB � �
j�1

J

wj.(��j. � ��..)2 � 
J�1
2 (10)

where j equals 1, . . ., J. The weight for the jth cohort is denoted by

wj. � �i�1
s wij for subject i in cohort j. The �j.

� is the weighted average
slope for cohort j as defined in equation 6, and �� .. is the weighted grand
mean given by

��· · �
�j�1

J wj.�j.
�

�j�1
J wj.

(11)

Post hoc pairwise comparisons can be calculated using the test statistic

zG �
G

�vG

, where G is the contrast (G � c1�1.
—

� . . . � cJ�J
�) and vG is the

variance of the contrast 	vG �
c1

2

w1.
� ... �

cJ
2

w J.

. The P value of the L

pairwise comparisons can be calculated using the Scheffe method, by
comparing ZG

2 to a chi-squared distribution with L � 1 degrees of
freedom.

Software implementation. All data processing and statistical analyses
were performed in R (version 2.12).

RESULTS
Safety outcome of the clinical trial. Twelve male volunteers (11
Caucasian and 1 Asian) were enrolled in a clinical trial of the
activity of sulfadoxine-pyrimethamine (S/P) in the IBSM chal-
lenge model. The median age, weight, height, and body mass index
(BMI) of these 12 subjects were 24 years, 83 kg, 183 cm, and 24.7
kg/m2, respectively. The safety outcome of this study is presented
in detail in the supplemental material (see Table S1). A total of 57
adverse events, none of which were serious adverse events, were
reported during the conduct of the S/P study. Twenty-two of these
were related to clinical malaria, and 15 were assessed as possibly
and 7 as probably related. Of these 22 adverse events, 6 were head-
ache, 3 were fatigue, 3 were fever, 2 were myalgia, 2 were neck
pain/stiffness, and 1 each was rigors, dizziness, arthralgia, malaise,
body ache, and nausea (Table S1). These adverse events were tran-
sient and resolved with either paracetamol or without treatment.
One adverse event was assessed as possibly related to the S/P (a
metallic taste 30 min after treatment). The remaining 34 adverse
events were assessed as unlikely or unrelated to either malaria or
the antimalarial treatment. No clinically significant deviations in
vital signs from the normal range were detected. Likewise, no
echocardiogram abnormalities were reported in any of the volun-
teers during the study. Apart from transient falls in neutrophil
counts in three volunteers (nadirs of 2.0, 1.4, and 1.9), no clinically
significant derangements in laboratory results were detected. De-
tails of the clinical study with mefloquine will be reported else-
where.

Parasite clearance and pharmacokinetic profiles. The 12 sub-
jects in the S/P study became qPCR positive on either day 6 or day
7 following the inoculation and then followed the expected in-
creasing sinusoidal pattern up to treatment, with values reaching
the qPCR treatment threshold of 1,000 parasites/ml on day 9 and
day 10; on this day, the subjects were administered the designated
single-dose treatment, with rapid clinical and parasitological re-
sponse, as shown in Fig. 2a. Levels of parasitemia reduced rapidly

FIG 2 Parasitemia curves and pharmacodynamic profiles for the 12 subjects
administered sulfadoxine-pyrimethamine. (a) Pre- and posttreatment para-
sitemia curves; (b and c) pharmacokinetic profiles for pyrimethamine (25-mg
dose) and sulfadoxine (500-mg dose), respectively. Average Pre and Average
Post, average at pretreatment and posttreatment, respectively.
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from their peak level, and all subjects except one became PCR
negative by 48 h after drug administration. For this final subject,
parasitemia did not disappear after retreatment with artemether-
lumefantrine (Riamet) but cleared after primaquine therapy, sug-
gesting that this low-level parasitemia was due to gametocytemia.
The pharmacokinetic profiles of pyrimethamine and sulfadoxine
are shown in Fig. 2b and c and pharmacokinetic parameters pre-
sented in Table 2. The average elimination half-lives of pyrimeth-
amine and sulfadoxine in the subjects were 7.3 and 3.9 days, re-
spectively. The Cmax values were 135 mg/liter and 714 �g/liter for
sulfadoxine and pyrimethamine, respectively. These pharmacoki-
netic profiles are similar to previously published data (23, 24). A
full description of the mefloquine study, including details of ad-
verse events and pharmacokinetics, will be reported elsewhere
(submitted for publication).

qPCR analytic replicate variability. The variance estimate of
the analytic replicates determined from the pooled variance from
S/P cohorts 1 and 2 was calculated as 0.0207 (parasites/ml)2. This
estimated analytic replicate variability was used to establish the
rules to identify PCR sample outliers (equations 2 to 3), and ap-
propriate cutoff points are presented in Table S2 in the supple-
mental material. For example, the critical value for analytic vari-
ance is 0.1634 (parasites/ml)2 when there are duplicate samples
from 10 time points and a P value of 0.05 is used (Table S2).
Hence, if any of the analytic variance estimates exceed this critical
value for any of the 10 time points, an outlier is identified. The
consequence is reanalysis by qPCR for duplicate samples of all 10
time points for this subject. From practical experience, violation
of this rule is a rare occurrence, and this may partly be explained
by the controlled experimental design that we utilize.

Optimal linear-decay modeling. To assess the performance of
calculating subject- and cohort-specific PRRs, the proposed algo-
rithm detailed in Table 1 was applied to each subject in both the
S/P and the mefloquine study data sets. Figure 3 shows an example
of fitting the algorithm to parasitemia data from a subject
treated with single-dose mefloquine (10 mg/kg), for whom 13
valid parasitemia values were available for model fitting after
data cleaning and preparation. Figure 3a to k show the plot of
parasitemia over time of the best model for each of the 10
iterations (including the full model) and show that the optimal
fit, corresponding to the smallest overall model fit P value (P �
0.00005), is iteration 5 (Fig. 3f).

Of the 12 subjects in the S/P study, seven subjects (S02, S05,
S06, S10, S11, S19, S24) had significant optimal regression models
(P 	 0.001) that could contribute to the cohort-specific PRR cal-
culation. The optimal regression model fit and subject-specific
PRR estimates of the seven subjects are presented in Fig. 4, and the
S/P PRR estimate is 38,878 (corresponding 95% CI, 17,396 to
86,889). The corresponding parasite clearance half-life for S/P was
calculated as 3.15 (95% CI, 2.93 to 3.41) days. The optimal regres-

sion model fit of the five subjects who did not have significant
optimal regression models are displayed in Fig. S3 in the supple-
mental material. Of the five subjects excluded from the S/P PRR
estimate, the optimal regression P values ranged from 0.002 to
0.02. Two subjects (SP-08, SP-17) had high intrasubject variabil-
ity, two had fewer than 6 positive parasitemia values (SP-12, SP-
18), and one (SP-22) had an extremely low starting parasitemia.

All eight subjects in the mefloquine study had significant opti-
mal regression models, and the results from these subjects there-
fore contributed toward the mefloquine-specific PRR estimate.
The optimal regression model fit and subject-specific PRR esti-
mates are presented in Fig. 5, and the mefloquine study PRR esti-
mate is 157 (corresponding 95% CI, 130 to 189). The correspond-
ing parasite clearance half-life for mefloquine was calculated as
6.58 (95% CI, 6.35 to 6.83) days.

The slope estimates of the log-linear regression of S/P (�1 �
– 0.096) and mefloquine (�1 � – 0.046) studies were significantly
different (QB � 171; P value � 0.001). This indicates that S/P
results in faster parasite clearance than mefloquine.

DISCUSSION

There is a growing consensus in the malaria drug development
and drug resistance communities that measures of drug efficacy in
clinical trials, specifically the rate of parasite clearance, need to be
standardized and based on robust parasitological and statistical
methods. This is particularly the case with the increasing concern
regarding diminished rates of parasite clearance in the Greater
Mekong Delta following ACT (2–5). It also represents a critical
methodological aspect of clinical trials for assessment of new
antimalarial drugs, whether such trials are undertaken in con-
trolled human malaria infection (CHMI) studies or in settings
of endemicity with “natural” infection. To this end, the World
Wide Antimalarial Resistance Network (WWARN) parasite
clearance estimator, described by Flegg et al. (13) and available online
(http://www.wwarn.org/tools-resources/toolkit/analyse
/parasite-clearance-estimator-pce), represents a valuable tool for un-
dertaking this analysis in a standardized way and, further, for curating
clearance data for the malaria chemotherapy community.

In a manner similar to that of documented standards for char-
acterization of pharmacokinetic parameters, a full characteriza-
tion of the accuracy in estimating the gradient of parasite clear-
ance should be available. Reporting of results should ideally
include minimum-fit criteria, the number of subjects excluded
from reporting a PRR, the time period used for regression, the
number of time points used in the regression, and the handling of
values where the parasitemia is below the limit of quantification
and the first nondetectable results. These aspects determine the
reliability of the reported PRR and its interpretation. Additionally,
plots of the data would facilitate independent assessment of how
well a reported gradient reflects the overall data. In studies con-

TABLE 2 Pharmacokinetic measures as means and corresponding ranges for Cmax, Tmax, t1/2, and AUC measurements of sulfadoxine and
pyrimethamine

Drug

Mean (range)a

Cmax Tmax (h) t1/2 (days) AUC0–96 AUC0–	

Sulfadoxine 135 mg/liter (110–176) 10.8 (4–36) 7.3 (4.9–13.2) 10,044 (8,422–12,244) 31,848 (21,705–49,365)
Pyrimethamine 714 �g/liter (610–832) 3.8 (2–8) 3.9 (2.1–6.5) 42,701 (33,922–53,872) 87,786 (51,612–140,201)
a AUC0 –96 and AUC0 –	, AUC from 0 to 96 h and from 0 h to infinity, respectively.
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FIG 3 Example of the algorithm to determine the optimal log-linear decay for subject MQ-16, treated with mefloquine at 10 mg/kg (as a single dose).
Linear-regression fit of log10 parasitemia over time for each iteration of the algorithm. (a) The first iteration fits the regression model to all the data. (b) Best model
after removal of observations from either the lag or tail phase from panel a. The data show that the best fit corresponds to removal from the lag phase. (c) The best
fit is after removal of another observation from lag phase and continues on until panel j, where the final model fits a linear regression to the minimum 4
observations. A total of 10 iterations was performed, and the optimal model corresponding to the minimum P value is iteration 5 (f), which involved removing
the first three observations and the last observation shown in panel a. Pr, probability.

4254 aac.asm.org July 2015 Volume 59 Number 7Antimicrobial Agents and Chemotherapy

 on June 16, 2016 by Q
U

E
E

N
S

LA
N

D
 IN

S
T

IT
U

T
E

 O
F

 M
E

D
IC

A
L R

E
S

E
A

R
C

H
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/


ducted subsequent to this study in which we used the methodol-
ogy described here, we further optimized the logistic aspects of
undertaking IBSM studies and also integrated pharmacokinetic
and pharmacodynamic data to model the relationship between
these for experimental antimalarial drugs (unpublished). These
include optimizing the timing of administration of the test anti-
malarial so as to approach the maximal safe level of parasitemia in
this system, qPCR testing in triplicate, and rich sampling over the

first 24 h after drug administration. These improvements have
provided the opportunity to collect several data points before ap-
proaching the limit of quantification, thereby facilitating model-
ing while preserving volunteer safety. Factors such as timing of
drug administration to defined points in the parasite life cycle
have also been investigated. As a consequence of these improve-
ments, we rarely see subject-specific data failing quality assurance
by the methods described here.

FIG 4 Optimal regression models for sulfadoxine-pyrimethamine subjects, with significant regression fits.

qPCR in Malaria Clinical Trials

July 2015 Volume 59 Number 7 aac.asm.org 4255Antimicrobial Agents and Chemotherapy

 on June 16, 2016 by Q
U

E
E

N
S

LA
N

D
 IN

S
T

IT
U

T
E

 O
F

 M
E

D
IC

A
L R

E
S

E
A

R
C

H
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/


The method described here differs from the WWARN estima-
tor in a number of ways. First, our method is designed to enumer-
ate parasite density in blood by using qPCR rather than by micro-
scopic examination of blood slides. Handling of assay replicates
from qPCR-derived data requires defining a set of rules to deter-
mine outliers based on assay replicate variability, with a require-
ment to retest biologic samples where replicate variability falls
outside a prespecified range. However, in the rare situation where
a biologically implausible result is obtained (perhaps due to assay

failure or qPCR contamination), additional assessment of the
consistency of results with immediately preceding and succeeding
measurements as incorporated in the WWARN estimator could
be beneficial.

Second, our method specifically models and censors both the
lag and the tail phase within the iterative process. As articulated by
White (14), a robust method for defining the end of the lag phase
and the beginning of the tail phase is of major importance in terms
of defining the PRR. By including parasitemia values below the

FIG 5 Optimal regression models for subjects in the mefloquine study, with significant regression fits.
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limit of detection and nondetectable values, information about
the tail is retained and can provide a model for the entire decay
profile. By incorporating both right and left censoring and not
restricting ourselves to left censoring only, the proposed method is
not restricted to potential anchoring issues that may arise if too
much weight is given to the tail region. The right censoring of our
method can then remove any potential tails in a standardized way.
This differs from the WWARN calculator in that the last value
included in the model is determined by either replacing a nonde-
tectable value with the limit of detection or removing repeated
values below a threshold.

Third, our method is based solely on linear regression and does
not use tobit models to account for the potential censoring of
values below the limit of detection or nondetectable values. It has
been suggested that only substantial differences between the re-
sults of using a tobit regression and a linear regression will occur
when the last recorded parasitemia value before the censored
value is high (13). However, as our screening method incorporates
values below the limit of detection and nondetectable values, the
differences between the last parasitemia value and the censored
values is expected to be negligible. Finally, our proposed method
identifies and removes potential lag phases without the need to
incorporate higher-order polynomials and assess potential convex
curvature.

The PRR or the mathematically related parasite clearance half-
life should reflect the maximum rate of parasitemia reduction and
should specifically exclude the influence of the lag or tail phase
(Fig. 1) independently of their causation. The lag in drug effect is
not unique to antimalarial chemotherapy and can be drug related,
being influenced by the pharmacokinetic profile of the drug, i.e.,
to drug absorption into the circulation and/or distribution into
the efficacy biophase, in this case the blood. A number of malaria-
specific effects also apply. First, many antimalarials are believed to
exert their pharmacodynamic effect at specific phases in the par-
asite life cycle (25). Indeed, it is the loss of activity of the artemis-
inin antimalarials in the early stages of the parasite life cycle that is
believed to underlie the slow-clearance phenotype reported in the
Greater Mekong Delta. Another related consideration is that in
IBSM trials, parasitemia is synchronous; i.e., parasites are together
in the same life cycle stage. Therefore, administration of drug in a
clinical trial at different time points in the parasite’s 48-h life cycle
is likely to influence the lag effect. In addition to life cycle-specific
drug susceptibility, the effect of parasite sequestration and the
related rapid rise in parasite counts following erythrocyte rupture
may exert a confounding effect on the assessment of drug activity
if the lag phase is not objectively addressed.

Additional considerations apply at the tail of the parasite clear-
ance curve, specifically how to handle the limit of quantification
and limit of detection. Again, these issues are not unique to ma-
laria or to diagnostic pathology, and a literature regarding statis-
tical approaches to this issue exists (26, 27). However, the “tailing”
in parasitemia reduction can have specific relevance in malaria
beyond stochastic variation at the detection limit of the test or in
association with the statistical approach adopted to address the
issue. As concentration of the antimalarial falls below the mini-
mum parasiticidal concentration, the parasite reduction deceler-
ates and is observed as a tail. Tailing may occur at parasitemia
levels approaching the limit of quantification but also above the
limits of detection. The limit of quantification is determined as the
assay limits when replicate variance is greater than a coefficient of

variation of 20%. Parasitemia values at these levels can be consid-
ered inaccurate but informative. However, any trend observed
with these concentrations should be considered in light of their
inaccuracy.

It is important to differentiate between parasitemia values be-
low the limit of detection and nondetect values. The nondetect
values provide additional information about the tail phase of the
parasitemia decay profile, such as by identifying the first time
point that parasitemia levels are not detectable by qPCR. Tech-
niques to deal with values below the LOD exist and include sub-
stitution methods (20), quantile regression, and tobit regression
(28). The impact of substituting qPCR values below the LOD with
LOD/2 has been assessed by performing sensitivity analyses. The
sensitivity analyses considered different substitution techniques,

including no substitution, LOD⁄�2, and LOD. Sensitivity anal-
ysis suggests minimal difference in results of estimating both sub-
ject-specific and cohort-specific PRR values (results not shown).
There is scope for further work to appropriately include values
below the LOD.

To facilitate comparison, the data from studies analyzed here
were submitted for analysis using the WWARN estimator. Both
unprocessed and processed data for the two data sets were submit-
ted. The unprocessed data were defined as the raw mean of the
data from replicates, and the processed data were defined as the
cleaned and processed back-transformed mean of the log10 data
from replicates. In comparison to the WWARN method, our
method generally resulted in slope estimates that were within the
estimates based on the unprocessed and processed data (see Table
S4 in the supplemental material). In the S/P study, four subjects
(SP-02, SP-06, SP-10, SP-19) had significant models for both the
WWARN calculator and our method, and in one case (SP-02), the
results for the processed WWARN and our method were identical,
as there were no points below the LOD and no lag phase identified.
Three subjects (SP-08, SP-12, SP-17) were excluded from our
model yet could be analyzed in the WWARN calculator; con-
versely, three subjects (SP-05, SP-11, SP-24) could be analyzed in
our model but were excluded from analysis with the WWARN
calculator. Two subjects (SP-18 and SP-22) were not estimated in
either method. The cohort-specific PRR based on subjects with
significant regression models in our method (PRR � 38,878) was
within the WWARN estimates for the unprocessed (PRR � 1437)
and processed (PRR � 105,110) data. In the mefloquine study, all
subjects except for one (MQ-25) had significant models for both
the WWARN and our method. Subject MQ-25 was analyzed in
our model but was excluded from the analysis in the WWARN
method. The cohort-specific PRR for our method (PRR � 157)
was within the WWARN estimates for the unprocessed (PRR �
33) and processed (PRR � 228) data.

It is therefore reassuring that the two different methods for assess-
ing the pharmacodynamic activities of antimalarial drugs result in
estimates of similar magnitudes. It should be noted, however, that
significant processing of PCR data tested in replicate is required be-
fore input into the WWARN calculator. In this respect, with the field
moving toward molecular methods for parasite quantification, a
method such as the one described here or a modification to the
WWARN calculator to facilitate input of PCR-derived data would be
desirable.

The method described here enables detection of outliers based
on the variability within qPCR replicates. This is appropriate in

qPCR in Malaria Clinical Trials

July 2015 Volume 59 Number 7 aac.asm.org 4257Antimicrobial Agents and Chemotherapy

 on June 16, 2016 by Q
U

E
E

N
S

LA
N

D
 IN

S
T

IT
U

T
E

 O
F

 M
E

D
IC

A
L R

E
S

E
A

R
C

H
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/


most situations. However, there may be scenarios where there are
biological outliers at successive time points (i.e., subject MQ-08).
For example, in the method described by Flegg et al. (13), values
that were not consistent with the two immediately preceding and
succeeding measurements are censored, with consistency deter-
mined by comparing the rate of change in parasitemia at the time
point to the average rate in the subject profile. It is possible that an
additional check of consistency between time points could further
enhance the method described here. Equally, it should not be used
to exclude true variance outside these two phases. Parasitemia
responses that are intrinsically variable or display trends that are
not mono-exponential should be identified, and while a log-linear
regression is ideal, it should not be applied with exclusion of data
outside a true tail or lag phase.

The analytic method reported here is specific for the study of drug
action in IBSM. Although methodological aspects, such as replicates
and reproducibility, are of some relevance to IBSM studies, such as
those in which proof of parasitemia is the study endpoint and where
parasite multiplication rate in the setting of a blood-stage vaccine is
being tested, equally stringent methodological considerations will ap-
ply. This method documents the maximum velocity of parasite clear-
ance and does not capture the full pharmacodynamic relationship
between parasite and drug concentration, something that can be
done by more formal pharmacokinetic/pharmacodynamic analysis.
The outstanding pharmacodynamic characteristics include the lag
phase and drug potency. Drug potency is often characterized by the
50% inhibitory concentration (IC50), although in the malaria and
infectious disease area, the surrogates maximum parasiticidal con-
centration (MPC) and MIC are used. The MPC is the drug concen-
tration above which the parasite clearance is maximal; as drug levels
fall below it, the clearance decelerates. The approach described here
may also provide an estimate of MPC which can serve as prior infor-
mation for further analysis. The described log-linear regression re-
quired to calculate the PRR also identifies the period that the para-
sitemia displays a maximum log-linear clearance of parasites. The
time point marking the end of this regression (especially when recru-
descence may follow) may signal when the MPC is reached in the
drug concentration. Extension of this work should include additional
semimechanistic aspects added to the regression which serve to
model growth data (when it exists) and the onset of drug action,
including any synchronous behavior. A more comprehensive phar-
macokinetic/pharmacodynamic model-based approach should be
used for characterizing parasitemia and the influence of an antima-
larial. This will require further changes in collecting optimal data and
the collation of a model suitable for the simultaneous characteriza-
tion of drug pharmacokinetic profiles and the resultant pharmacody-
namic effects.

Conclusion. The statistical method that we have developed pro-
vides a robust method to objectively analyze qPCR-derived pharma-
codynamic data from CHMI studies. Application of this method in
studies aimed at assessing the activities of a range of experimental
antimalarial drugs now entering clinical trial will facilitate the selec-
tion of specific drugs to take further into development, as well as the
dose and dose regimen to be tested in phase II efficacy studies.
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