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Worldwide consortia offer new opportunities for discovery in  
neuroscience, vastly expanding the scale of brain imaging and  
genomics studies. The higher power to discover genetic factors  
associated with brain differences has led to key insights in neurol-
ogy and psychiatry and helped us understand genetic pathways that  
shape the brain. Genes that contribute to mental illness and  
individual brain differences are now being reliably detected, mapped 
and quantified.

Large-scale genetic studies are uncovering common genetic  
variants associated with Alzheimer’s disease1, schizophrenia2 and 
many other disorders. These new discoveries often arise from genome-
wide association studies (GWAS), which compare large samples of 
patients with healthy controls to detect differences in allele frequen-
cies (or regress continuous traits on the number of risk alleles) at 
genetic markers across the genome.

What is perhaps less well known is that genomic screening efforts 
are also occurring in the brain imaging community. In the largest 
brain imaging studies yet performed, two consortia, Enhancing 
Neuroimaging Genetics through Meta-Analysis (ENIGMA) and the 
Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE), recently amassed brain magnetic resonance imaging 
(MRI) scans and genome-wide data from 21,151 individuals3,4. These 
worldwide consortium efforts have increased the power to identify 
genetic variations that influence brain structure and function. The 
combined sample sizes are not unusual in genetics, but in neuroim-
aging they are vast. Neuroimaging and genotyping of large cohorts 
can be costly. However, consortium models draw on repositories of 
existing data, fueling collaborations and combining the expertise of 
scientists from around the world.

Twenty years of data collection in neuroimaging have led to rich 
and diverse data sets for genetic analysis. In particular, GWAS of 
neuroimaging measures can localize genetic effects within the brain, 
offering new information on how variants increase disease risk. Here 
we review some opportunities that arise when analyzing the genomics 
of brain images, including new statistical methods. As images and 
genomic data are collected at ever higher resolutions, data analyses 
now draw on large branches of work in mathematics, signal process-
ing, informatics and basic neuroscience.

GWAS of imaging
For neurological diseases, a few common genetic variants of large 
effect have been identified. Similarly, few copy number variants of 
large effect have been identified, but only a few common genetic risk 
factors, individually, substantially affect disease risk. The best-known 
genetic risk factor may be apolipoprotein E4 (ApoE4), which was dis-
covered using a biologically informed approach5. Each copy of the E4 
haplotype in the APOE gene boosts Alzheimer’s disease risk by a factor 
of 3 or more; APOE explains around 6% of Alzheimer’s disease risk.  
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Whole-genome analyses of whole-brain data: 
working within an expanded search space
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Large-scale comparisons of patients and healthy controls have unearthed genetic risk factors associated with a range of 
neurological and psychiatric illnesses. Meanwhile, brain imaging studies are increasing in size and scope, revealing disease and 
genetic effects on brain structure and function, and implicating neural pathways and causal mechanisms. With the advent of 
global neuroimaging consortia, imaging studies are now well powered to discover genetic variants that reliably affect the brain. 
Genetic analyses of brain measures from tens of thousands of people are being extended to test genetic associations with signals 
at millions of locations in the brain, and connectome-wide, genome-wide scans can jointly screen brain circuits and genomes; 
these analyses and others present new statistical challenges. There is a growing need for the community to establish and enforce 
standards in this developing field to ensure robust findings. Here we discuss how neuroimagers and geneticists have formed 
alliances to discover how genetic factors affect the brain. The field is rapidly advancing with ultra-high-resolution imaging 
and whole-genome sequencing. We recommend a rigorous approach to neuroimaging genomics that capitalizes on its recent 
successes and ensures the reliability of future discoveries.

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3718
http://www.nature.com/natureneuroscience/


r e v i e w

792  VOLUME 17 | NUMBER 6 | JUNE 2014 nature neuroscience

From an imaging perspective, ApoE4 carriers lose brain tissue faster 
as they age. As young adults, carriers have thinner cortical gray matter 
than noncarriers6. The first GWAS studies of brain images searched 
for associations between common variants and volumes of key brain 
regions, such as the hippocampus, and were well powered to detect 
the effects of APOE (ref. 7).

In large-scale GWAS meta-analyses, variants with large effects 
are exceptional; when found, they tend to be associated with later-
onset diseases. The single nucleotide polymorphism (SNP) with the 
strongest evidence for association in the ENIGMA-CHARGE study3 
explained around 0.27% of the variance in hippocampal volume, 
although the differences between carriers and noncarriers had an 
effect comparable to that of several years of brain aging. In a related 
study of the overall volume of the brain, carriers of an HMGA2 allele 
averaged 9 cm3 larger brain volumes per allele.

Despite expectations that brain images might be more sensitive 
than clinical phenotypes to genetic effects, experience has indicated 
that, as with other complex traits, large sample sizes are needed to dis-
cover genetic variants that influence the brain. Significantly associated 
SNPs have an expected effect size <0.5% of the phenotypic variance8 
in quantitative traits, even for measures extracted from images. Work 
so far by imaging consortia such as ENIGMA and CHARGE suggests 
that the distribution of effect sizes for brain measures is similar to 
that seen when studying other quantitative traits, although only the 
simplest brain measures have so far been assessed with GWAS.

Even so, imaging studies can provide information that is not available 
in genetic comparisons of patients and controls. Imaging can identify 

potential mechanisms and circuits promoting disease risk, making it 
easier to develop and evaluate treatments. A more mechanistic under-
standing should make it easier to discover disease-modifying factors.

For logistic reasons, the largest collaborative analyses of brain 
images have so far focused on simple measures such as regional vol-
umes. Efforts are underway to examine whether larger gene effects 
may be found with diffusion tensor imaging (DTI) and functional 
MRI; a parallel effort (see below) seeks to prioritize brain measures 
and define new features to make genetic studies more efficient. Global 
harmonization efforts are underway to derive measures from MRI9–11, 
DTI12 and electroencephalography (EEG) scans in a consistent way, 
making it easier to integrate data from studies initially designed with 
different goals. Global collaborations are also using meta-analysis to 
combine evidence from many cohorts, to discover the genetic variants 
that influence the brain13.

Large-scale brain imaging consortia. For the major imaging con-
sortia that have published GWAS studies (Table 1)14,15, sample sizes 
are difficult to estimate and are increasing over time, as many studies 
are still enrolling participants. Published papers lag behind ongoing 
work: for instance, as of April 2014, collaborative work by ENIGMA 
and CHARGE has amassed MRI and GWAS data from 29,000 par-
ticipants, but the largest published studies (from 2012) have around 
11,000 participants per consortium and around 21,000 in aggregate3. 
Several new initiatives are planned (for example, the UK Biobank) 
that assess more cohorts with large-scale scanning and genotyping, 
offering ever-increasing power for genetic studies.

Table 1 Imaging consortia that have published GWAS
Name of imaging consortium, URL Sample sizea Goal Representative papers

ENIGMA (http://enigma.ini.usc.edu/) 13,171; ~29,000 with  
CHARGE and replication  
cohorts

Genetic analysis of brain MRI, DTI, EEG and 
other brain measures, in cohorts across the 
lifespan; working groups on major brain  
diseases, including schizophrenia, bipolar 
illness, major depression and attention  
deficit–hyperactivity disorder

Stein et al., 2012 (ref. 3) 

Jahanshad et al., 2013 (ref. 12) 

Thompson et al., 2014 (ref. 13) 

Hibar et al., 2013 (ref. 11) 

Hibar et al.b

CHARGE (http://web.chargeconsortium.com/);  
includes several large cohorts, for example,  
the Framingham Heart study, the Rotterdam 
Study, the Icelandic AGES study, 
Atherosclerosis Risk in Communities (ARIC) 
and the Cardiovascular Health Study (CHS)

~29,000 when combined  
with ENIGMA

Genetic analysis of neuroimaging and 
cardiovascular health data, including stroke

Bis et al., 2012 (ref. 4) 

Ikram et al., 2012 (ref. 64) 

Psaty et al., 2009 (ref. 65)

ADNI (http://adni.loni.usc.edu/) and related 
worldwide initiatives

~800 in phase 1 (ADNI1);  
~850 additional participants  
in ADNI-GO and ADNI2

Longitudinal study of MRI, PET and CSF  
and plasma biomarkers from elderly people  
at ~50 North American sites; includes  
people with mild cognitive impairment and 
Alzheimer’s disease

Weiner et al., 2012 (ref. 14) 

Shen et al., 2013 (ref. 39)

IMAGEN (http://www.imagen-europe.com/) 2,223 14-year-old children 
across Europe (in Pallière 
Martinot et al. 2013 (ref. 67))

European Research Project studying biological 
and environmental factors affecting mental 
health in adolescence

Nymberg et al., 2012 (ref. 66) 

Pallière Martinot et al., 2013 
(ref. 67)

PING (http://www.chd.ucsd.edu/research/ping-
study.html)

1,400 children, aged  
3–20 years

Studies of the genetic basis of individual 
differences in brain structure and connectivity, 
cognition, and personality

Eicher et al., 2013 (ref. 68)

IMAGEMEND (http://www.imagemend.eu/) 13,000 participants Primarily European study, focusing on 
schizophrenia, bipolar disorder and attention 
deficit–hyperactivity disorder

Project began October 2013

fBIRN (http://www.birncommunity.org/) 690 Functional and structural imaging study of 
schizophrenia patients in the United States

Potkin and Ford, 2009 (ref. 69)

Many neuroimaging consortia were formed with goals other than genetic analysis (for example, to study disease effects on the brain), so here we focus on studies that have  
published GWAS of brain images. Some multisite consortia, such as IMAGEN, publish their own studies but also take part in larger consortia such as ENIGMA. ENIGMA also 
conducts studies of nine major brain diseases for which GWAS data are not necessary, so those numbers are not included here.
CSF, cerebrospinal fluid; ENIGMA, Enhancing Neuroimaging Genetics through Meta-Analysis; CHARGE, Cohorts for Heart and Aging in Genomic Epidemiology; ADNI,  
Alzheimer’s Disease Neuroimaging Initiative; IMAGEN, Imaging Genetics; PING, Pediatric Imaging, Neurocognition, and Genetics Study; IMAGEMEND, Imaging Genetics  
For Mental Disorders; fBIRN: Functional Bioinformatics Research Network. In addition to the North American ADNI14, large-scale projects on the neuroimaging of Alzheimer’s 
disease are underway in Europe, Japan, Australia, Korea, Taiwan and Argentina, with a new program in China and a planned program in Brazil15.
aSample sizes are estimates as of April 2014. bHibar, D.P., Stein, J.L., Renteria, M.E., Arias-Vasquez, A., Desrivieres, S. et al. (unpublished data).
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One issue sometimes raised, when analyzing polygenic traits, is the 
fallacy of classical inference. Put simply, this means that, with a suf-
ficient number of subjects, one will inevitably declare trivial effect 
sizes to be significant. While the effect sizes identified by GWAS are 
typically small, this does not indicate that the importance of the gene 
on the development of a trait or its effectiveness as a potential treat-
ment target is trivial. For example, in studies of type 2 diabetes and 
cardiovascular diseases, the effect sizes of loci that are drug targets are 
small (<1% of the variation in disease risk), but the drugs themselves 
can be highly effective16–18. Thus, the effect size of a specific allele 
does not necessarily reflect the potential contribution of the pathway 
or mechanism to a trait.

Data harmonization. To amass the largest possible sample, data from 
different genotyping chips are typically prepared using standardized 
quality control procedures and then imputed using publicly available 
references from the HapMap (http://www.hapmap.org/) or the 1000 

Genomes Project (http://www.1000genomes.org/). On the imaging 
side, automated algorithms can yield consistent measures from brain 
scans. For structural MRI, software packages such as FreeSurfer and 
FSL have been validated and widely used. For the main brain struc-
tures, these automated techniques give reproducible measures when 
a person is scanned repeatedly over time or on different scanners19. 
Further quality checks are possible when deriving measures from a large 
number of brain scans, such as spotting outliers from the distribution of 
values. Even so, genetic analyses have typically been more successful for 
the larger brain structures that tend to be measured more reliably.

Searching maps of the brain. A typical brain image—mapping brain 
activation with functional MRI, for example, or white matter micro-
structure with DTI—may have upwards of 2 million three-dimensional  
data points, or voxels (Fig. 1a). Statistical parametric maps have long 
been used by imagers to pinpoint regions where activation relates to 
behavior or to cognitive tasks performed in a scanner.
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Figure 1 Whole-brain GWAS. (a) Voxel-wise genetic association analysis. This kind of analysis involves a genome-wide search at each voxel in the brain, 
after aligning all subjects’ images to a common template. (b) Extending this method to study brain connections, Jahanshad et al.30 described connectome-
wide searches. They combined diffusion-based MRI tractography and cortical parcellations to perform GWAS at all connections between cortical regions of 
interest. Artificial Manhattan plots are illustrated here, with thresholds shown based on a single GWAS. Despite the vast number of tests, promising findings 
emerged, even after correction, from these whole-connectome genetic screens.
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Voxel-wise, genome-wide scans, or vGWAS20, extend this idea. 
They search the image, examining evidence for associations across 
the genome at each voxel in the image. Depending on the resolution 
adopted, vGWAS methods can aim to find genetic variants influenc-
ing up to 2 million locations in the brain. The sheer number of statisti-
cal tests requires sufficient computational power, as well as analytical 
rigor to avoid reporting false positive findings.

As a proof of principle, Stein et al.20 screened 31,622 voxels and 
448,293 SNPs to search for genetic variants related to regional brain 
volumes in around 700 participants scanned as part of the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu/). 
This initial study was underpowered, but later refinements focused 
on gene-based or pathway analyses and detected genetic effects that 
replicated across independent cohorts21.

Maps of brain circuitry can be screened as well (Fig. 1b). There is 
a wide range of methods to find fiber tracts in images, and we can 
extend the search to identify genetic effects on fiber bundles, one 
bundle at a time and one genetic variant at a time. In the first success-
ful genome-wide screen of the human connectome, Jahanshad et al.22 
analyzed brain connections traced using tractography methods and 
found that a variant in the gene SPON1 influenced brain connectivity 
in vivo. This gene’s protein product is a key factor in the processing 
and cleavage of amyloid-β precursor protein, APP—a key pathological 
hallmark of Alzheimer’s disease. This finding linked risk for neurode-
generation in old age with brain integrity in young adulthood, around 
50 years before Alzheimer’s disease typically hits. Only a few weeks 
later, the same gene (though a different variant) was implicated in an 
independent study of cognitive decline23.

Biological interpretation of GWAS results. After identifying sig-
nificant genetic effects, further work is needed to understand their 
biological mechanism and functional or behavioral significance. With 
a couple of notable exceptions (APOE and possibly a newly discov-
ered Alzheimer’s disease-associated variant in TREM2 (refs. 24,25)), 
individual SNPs account for approximately 0.5% of the variance in  
imaging features tested so far. This effect size is comparable to that 
of SNPs affecting cognitive measures or psychiatric diagnosis. As 
with other GWAS, many imaging genetics studies follow up their top  
statistical findings with functional evaluations of the top SNPs.

SNPs identified in a GWAS of imaging data may affect gene 
expression, disease susceptibility or behavior—or they may have 
no detectable effects on any of these. Collaborative partnerships 
between genetics consortia in psychiatry or neurology (such as 
PGC or GERAD) and imaging consortia (such as ENIGMA) are 
beginning to show that some SNPs associated with brain volumes 
do indeed overlap with some SNPs that confer heightened risk for 
disease. Methods to test the overlap of two GWAS, such as rank-rank  
hypergeometric overlap (RRHO)26, can detect enrichment of SNPs 
affecting two traits, without relying on any one set of candidate genes 
selected in advance. They assess the rank order of SNPs in one GWAS 
and test whether it has any relation to the rank order of SNPs in 
another GWAS. Some brain-associated SNPs detected by screening 
images can predict histological measures from the same regions in 
mice when the homologous mouse gene is used as a predictor. Follow-
up functional assessments of GWAS results may involve analyses of 
multiple kinds of images (MRI, functional MRI or DTI), as well as 
blood and plasma biomarkers. In the case of the TREM2 variant, a 
potent risk factor for Alzheimer’s disease24,25, carriers show faster 
brain atrophy and faster cognitive decline24,25,27. These multimodal  
imaging assessments can identify biological roles for the genes 
involved and their consequences for brain function.

Multiple-testing issues
As genome-wide approaches to genetic analysis became possible, the 
genetics community derived statistical thresholds to limit the report-
ing of false positive discoveries that would fail to replicate. These 
thresholds were based on theoretical and empirical analyses of the 
number of independent tests that would be conducted if one were to 
examine evidence of association across the genome28,29. Basing these 
thresholds on the number of independent tests across the genome 
rather than the number of variants tested in any given study, as well 
as focusing on replication, has helped limit the reporting of type I 
errors in the literature.

In imaging also, decades of statistical work have been applied  
to evaluate whether a statistical association is likely robust. In  
imaging genetics, the significance threshold may depend on whether 
a study is a discovery study at the whole-brain and whole-genome 
levels (for which the threshold will be the strictest) or an attempt to 
replicate a previous finding. It may also change when the effects of 
disease-associated variants that already meet genome-wide signifi-
cance are subsequently examined in neuroimaging data.

How many tests? Whole-genome analyses of whole-brain images 
involve running GWAS on multiple brain measures. For example, 
ENIGMA’s second large-scale genetics study analyzed MRI scans from 
29,000 people (Hibar, D.P., Stein, J.L., Renteria, M.E., Arias-Vasquez, A.,  
Desrivieres, S. et al., unpublished data). They performed a GWAS 
on 8 different brain measures. Analysis of correlations among the  
8 measures revealed that the effective number of statistical tests was 
approximately 7. As such, the threshold for declaring a result signifi-
cant was adjusted, by dividing the standard threshold for a genome-
wide screen by 7, to P < (5 × 10−8)/7 = 7.1 × 10−9.

Although neuroimaging data may appear very high dimensional 
(with millions of voxels), the effective number of degrees of freedom 
is generally much smaller. This is because imaging data have spatial 
contiguity properties that mean they are better treated as continuous 
functions of space. Thus, not all the tests are independent, as signals 
at neighboring voxels are correlated. Statistical parametric maps, the 
mainstay of voxel-based analyses, take into account the effective number 
of independent tests, which depends on, among other variables, the 
resolution of the scan and biological correlations of the signal30. If all 
the voxels in the brain were completely correlated, the effective number 
of tests would be 1, regardless of the scanner resolution. The correc-
tion for multiple comparisons is thus much less severe than might be 
anticipated at first glance, as we show in the next sections.

Correcting for the number of voxels. The history of brain mapping 
suggests why a strict voxel-based correction may not be widely adopted 
or used: genes are not likely to produce highly focal effects in images, 
and their effects are not likely to affect just a single voxel in isolation. 
Performing tests at each voxel without reference to what is going on else-
where in the image is equivalent to a ‘peak height’ test or ‘maximum sta-
tistic’ test: it frames only one hypothesis about the most extreme statistic 
in the whole image. Neglecting information in the rest of the scan leads 
to tests that are not very sensitive to spatially extended effects. Imagers 
soon developed more complex, ‘cluster-based’ tests that considered the 
spatial extent of an effect in an image, in addition to its peak height31.

Brains also vary in structure. Because of this, it is not expected 
that the same activation will occur at the exact same three- 
dimensional spatial coordinate (or voxel) in every person scanned. 
Although genomes can be aligned to a reference panel, registra-
tion of brain images to a standard three-dimensional template does 
not perfectly align functional areas of the brain across individuals. 
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‘Warping’ algorithms can now align structural imaging data with high 
precision, but function still varies relative to the anatomy, and rela-
tive to the three-dimensional coordinates of the reference template. 
To accommodate individual differences in locations of effects, tests 
of suprathreshold clusters (regions of images exceeding a statistical 
threshold) are much more widely used. These tests are much more 
sensitive to nonfocal signals that are not especially strong in any one 
voxel but are strong enough to reject the null hypothesis of no effect. 
Arguably, the effect of a gene on the brain, such as a growth factor, will 
be widespread and not focused on any one specific voxel.

If a correction is made for the total number of tests in an image, a 
second, more intriguing problem may arise: for some data, the image-
wide threshold may depend on the magnetic field or the resolution 
of the scanner and the actual detail in the signal. Some measures 
extracted from an image—for example, the size of a tract or major 
nucleus—do not depend highly on the scanner resolution, and thus 
the effective number of tests is unchanged. But other signals—from 
diffusion MRI, for example—resolve finer scale fibers and connec-
tions when the scanner resolution or field strength is increased. This 
is addressed with methods that find features at multiple scales, pri-
oritizing the most spatially extended signals32. In genetics, similar 
issues were observed as the coverage and depth of whole-genome 
sequencing improved. To a large extent, the sequencing of publicly 
available reference samples in the HapMap and 1000 Genome Projects 
has helped resolve many of these issues.

Setting a statistical threshold. To assess the dimensionality of imaging 
data and estimate a genome-wide significance level for the analysis of 
voxel level data, we extracted whole-brain voxel-level data (2,019,874 
voxels) for 208 healthy, unrelated individuals for whom genotype data 
(Illumina Human610-Quad BeadChip) were available. These data were 
computed with methods previously described33 using data from ADNI 
collected with 1.5-T scanners. We performed quantitative tests of asso-
ciation at each voxel using 100 independent markers. We then sam-
pled these results to assess the average minimum P value. Following 
Dudbridge and Gusnanto28, we then estimated the dimensionality of 
the voxel-level analysis to be 9,122. Adopting a conservative correction 
for testing 10,000 independent traits, the genome-wide, voxel-wide 
significance threshold would then be (5 × 10−8)/10,000 = 5 × 10−12.  
We plot the growth in the effective number of tests, based on the  

minimum uncorrected P value observed in null data (Fig. 2). 
Encouragingly, the largest imaging genetics studies to date show 
effects on the order of P ≈ 10−23 (Hibar, D.P., Stein, J.L., Renteria, M.E.,  
Arias-Vasquez, A., Desrivieres, S. et al., unpublished data),  
so such a threshold is within the reach of available sample sizes.

Other considerations apply when testing effects of a single, GWAS-
significant disease locus across the whole brain, or testing its effects 
on a single region of interest. If a candidate gene is well validated at 
the genome-wide level—as is, for example, APOE—one could per-
form a legitimate hypothesis test for its effects on a region of interest, 
such as the hippocampal volume (at P < 0.05) or across the whole 
brain—either using the conservative Bonferroni correction of 0.05/1 
or 0.05/10,000, respectively, or less conservative cluster- or set-based 
tests, which are more commonly used in neuroimaging.

Power and replication
Replication is vital to verify association signals and minimizes type I 
error in the literature. This push for replication comes from both the 
genetics and neuroimaging communities. If brain imaging studies 
are pooled after the data have been collected, it is unlikely that many 
similar cohorts will be scanned with exactly the same methods; if 
anything, the push for innovation has led to studies with different 
and ever-evolving designs. Even so, recent large-scale international 
imaging consortia galvanized the field to identify genetic associations 
with worldwide support. This offers a credible basis for prioritizing 
findings for follow-up analyses.

How much power do we have? Methods exist to compute how many 
subjects are needed to secure a given level of statistical power in a 
GWAS of a single trait, such as Alzheimer’s disease diagnosis, or the 
size of a specific region of the brain. The power to identify a given 
genetic effect, at a given voxel, can be determined if we can estimate  
the proportion of variance in the signal at that voxel due to the  
variant. One commonly used tool to calculate power is the Genetic 
Power Calculator (GPC)34.

For example, if we ran a univariate GWAS to find SNPs influenc-
ing a single voxel, the sample size required to detect a SNP effect as 
strong as ApoE4’s effect on Alzheimer’s disease (namely, 6% of the 
variance) with 80% power would be 660 participants. For a brain-
wide voxel-wise search, we would apply an additional multiple test-
ing correction. While work is currently underway to determine a 
suitably robust correction factor that can be used for both voxel- and 
connectome-level analyses, for the purposes of this illustration we 
will correct for 10,000–15,000 effectively independent voxels. Using 
this additional correction factor the threshold to declare significance 
increases from 5 × 10−8 to 3 × 10−12. With this threshold, a sample 
of 1,015 individuals is needed to detect this same SNP effect in a 
voxel-level analysis with 80% power. For a more realistic SNP effect 
explaining around 0.5% of the variance, these sample sizes increase to 
7,915 and 12,200 respectively—around the size of the first successful 
meta-analytic studies. These sample sizes are typically well beyond 
the reach of any single MRI study but well within the reach of  
collaborative consortia.

Do discoveries generalize? Replicated genome-wide association 
results are expected to generalize, but they may not if factors such 
as age or ethnicity influence the measures analyzed. Replication 
studies can determine whether discoveries generalize across popula-
tions—and if not, why not. This is especially important in genetic 
studies where a seemingly significant discovery could lead to further 
useful biological validations, including mouse knockout models and 
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Figure 2 Testing genetic associations in an image. As a greater percentage 
of the voxels in the brain image are tested for associations (x axis), the 
minimum uncorrected P value will increase (y axis) even if the SNPs have no 
effect (that is, the null hypothesis is true). To correct for this, the genome-
wide significance threshold can be divided by the effective number of 
independent tests on the image, based on P values that actually occur in 
simulated null data with the same spatial coherence.
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genetic pathway analyses. If results are not robust, these efforts may 
be a waste of time.

Tactics to reduce the search space
Perhaps, in these early days of imaging genomics, it would be pru-
dent to take a conservative approach for reducing the search spaces. 
One could imagine a series of hierarchical tests, first performing 
whole-genome association analysis with brain-wide measures—
structural and functional, as well as measures of brain connectivity 
and networks. This would ensure an unbiased screen at both the 
genomic and imaging levels. Subsequent follow up studies might 
include, for example, screening all significant disease GWAS hits 
with whole-brain data and then screening significant whole-brain 
hits, in independent samples, in specific regions of interest (Fig. 3).  
In all cases, the critical factor will be selecting the appropriate  
statistical threshold and ensuring sufficient power considering the 
expected effect size.

Genomic efforts. As so many tests can be performed on an image, 
many attempts have been made, in study design and analysis, to 
reduce the search space for an association. This includes selecting 
specific regions of interest, connections, pathways or genes. However, 
GWAS has typically shown little support for candidate genes studied 
in this way. For instance, the largest schizophrenia GWAS so far2 did 
not support previous claims about several candidate genes involved 

in the disorder. This is often the case for candidate genes selected  
on the basis of biological plausibility. Many polymorphic growth  
factor genes, such as BDNF, were initially expected to be strong  
candidates for affecting regional brain volumes. Perhaps surprisingly, 
in the ENIGMA-CHARGE analysis of 21,151 people, the only well-
known candidate gene affecting hippocampal volume was APOE.  
A more nuanced interpretation is that some gene effects may be  
context dependent—they may depend on the age or diagnostic  
status of the cohort or interact with other factors that diminish their 
aggregate effect in a meta-analysis.

Depending on the goal at hand, rather than performing GWAS, it 
may be of interest to assess effects on the brain of candidate genes that 
have been previously identified in GWAS as exploratory follow-ups  
of the initial discoveries. For example, when a strong genome-wide 
supported variant or mutation has been found to be highly signifi-
cant in a neurological disease on the basis of GWAS, then mapping 
its pathways of action in the brain is a high priority. While the rare 
variant in the TREM2 gene was recently found to greatly increase 
disease risk in a genome-wide analysis of Alzheimer’s disease24,25, 
the neuroanatomical pathways remained unknown. Owing to the 
low prevalence of this variant (minor allele frequency ~0.005), even 
current imaging sample sizes may not be able to detect these dras-
tic effects if a genome-wide image-wide threshold of P ≈5 × 10−12 
is applied. Instead, a candidate gene–type study of this variant was 
able to determine that elderly carriers of the mutation exhibit greatly 
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enhanced rates of temporal lobe atrophy27, offering a plausible expla-
nation for the reduced cognitive functioning presented in the original 
discovery paper.

In addition to single SNP candidate analyses, the genetic search 
space can be narrowed by searching only genes or pathways of  
interest. However, without strong and robust evidence for such  
analyses, such approaches may be unwarranted.

Dimension reduction. As genomes and images are both high- 
dimensional, new mathematical techniques may be useful to pick out 
weak signals in these vast computational searches. One promising  
data reduction method uses penalized regression to detect weak  
signals in large data sets, using sparse regression or independent  
components analysis (ICA), among other data reduction models35.  
The mathematically related field of compressive sensing36 has  
achieved great success in engineering and applied mathematics. Sparse 
methods try to model signals using as few predictors as possible:  
they penalize the number of predictors and favor those that explain 
the most variance in the data. These ‘heavy-tailed priors’ embody 
the prior belief that associations or effects have a sparse distribu-
tion. In other words, there are a small number of strong associa-
tions and a large number of weak associations. These data reduction 
methods boost the power and efficiency of the search when all 
predictors are weak. Even so, they often make effective predictions  
when aggregated37.

Whatever methods are used for dimensionality reduction, they need 
to be validated. In genetics, robust association studies are designed 
using simulations with real genomic data, and similar methods are 
being applied to different imaging tests to ensure that they are vali-
dated before becoming widely adopted.

Results so far. It is too early to predict what may be learned from 
genome-wide analyses of voxel-level data. The published studies that 
have addressed this research question are underpowered, with <1,000 
participants (see Supplementary Table 1). Initial image-wide screens 
by Stein et al.20 and Hibar et al.38 on voxel-based GWAS failed to 
find any results after appropriate correction for multiple comparisons. 
There are some promising findings using dimension reduction, but 
these await replication.

While systematic comparisons are not yet possible, there are mixed 
results regarding the effects on the brain of popular candidate genes in 
psychiatry. As noted by ref. 39, many of the main Alzheimer’s disease 
risk genes do indeed have robust effects on brain structure and pathol-
ogy assessed using MRI and positron emission tomography (PET). 
By contrast, candidate genes encoding growth factors and genes in 
classical neurotransmitter pathways have not appeared among the top 
hits in the larger imaging GWAS. However, we must bear in mind that 
only the simplest brain measures have been tested in samples large 
enough to produce findings with genome-wide significance.

Should we rank brain measures? A more neuroscientifically driven 
approach is to rank features in brain images for genetic analysis if 
they are already implicated in a disease of interest. Meta-analyses of 
brain differences in different disorders can help to rigorously define 
these. ENIGMA’s Schizophrenia10 and Bipolar Disorder9 Working 
Groups, for example, meta-analyzed regional brain volumes in the 
largest psychiatric MRI studies yet (2,047 patients and 2,059 controls 
for schizophrenia and 1,747 patients and 2,615 controls for bipolar 
disorder). Several basal ganglia components and the hippocampus 
show robust case-control differences in cohorts worldwide, and their 
volumes are highly heritable40.

Glahn et al.41 advocated selecting brain measures on the basis of 
both their heritability and their relevance for a disease being studied. 
They defined the endophenotype ranking value (ERV) on the basis 
of the square root of the heritability (hi

2) of the disorder, the square 
root of the heritability (he

2) of the brain measure, and their genetic 
correlation (ρg):

ERVie i e= h h2 2 r

In schizophrenia, for example, decades of studies report morpho-
metric differences in patients versus controls, for a range of different  
structures. The ENIGMA Schizophrenia Working Group is now  
ranking brain measures in order of their effect sizes for case-control  
differences; weighting these effects on the basis of their genetic  
correlation with the illness would give another ranking. This takes 
into account that there is not complete overlap between the variants 
influencing a disease-related trait and the disease itself. Clearly, a 
disease will not affect the brain identically in all patients. But the 
variety of cohorts in ENIGMA makes it possible to dig deeper into 
medication-related, geographic or demographic, and genetic factors 
to explain why brain differences vary so drastically across studies.

One intriguing tactic is to use information from one very widely 
available imaging modality to inform the genetic analysis of another. 
For example, worldwide, there are many more structural brain MRI 
scans from people who have been genotyped than functional imaging 
scans or scans of pathology (such as amyloid imaging). To empower 
the search for variants affecting data that is in shorter supply, methods 
such as seemingly unrelated regression (SUR) can exploit information 
from all data types, such as clinical and imaging features combined, 
boosting power to detect associations42. Other multivariate methods 
combine data from multiple scan types; however, they often require 
a complete data set, where all subjects have all sets of information. 
Because it is less commonly collected, there will never be as much 
PET, DTI or functional MRI data as standard anatomical MRI data; 
therefore, methods are helpful to impute or explicitly model these 
complex missing data structures43,44.

Integrating diverse imaging methods and genomic variation
Functional neuroimaging. Genetic analysis of functional neuroimag-
ing data is an active field45,46, as functional MRI has been widely used 
for over two decades. Data standardization across protocol designs 
and consortia has not yet been fully established. So far, researchers 
have mainly used structural MRI measures to examine the genetic 
architecture of the brain. Future studies are likely to develop large 
databases of EEG and functional MRI measures. It is too early to say 
whether these measures will offer more explanatory power as media-
tors of genetically driven variability in behavior and related risk for 
psychopathology. Some groups advocate the adoption of standardized 
functional probes across large, federally funded studies, as is being 
done for behavioral phenotypes (for example, PhenX).

Functional imaging measures may be more challenging to har-
monize than structural measures of regional brain volumes. For 
anatomical MRI, automated analysis software, such as FreeSurfer 
(http://freesurfer.net/) and FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), 
is widely used. This has led to an understanding of the statistical 
norms and reliability of structural brain measures that informs sub-
sequent GWAS. Ongoing efforts in data harmonization for genetic 
analysis include functional MRI, DTI and EEG12,47.

Once processing steps have been harmonized, and reliable and 
genetically influenced phenotypes have been extracted from the func-
tional scans of multiple groups, then tests of genetic associations can 
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be performed. As with structural imaging GWAS, functional neu-
roimaging associations with the genome will likely begin with a hand-
ful of phenotypes of interest. When studies are sufficiently powered, a 
whole-brain approach will ultimately supplant the need for candidate 
regions based on incomplete knowledge of disease circuits. In either 
case, multiple-comparisons corrections are needed that take into 
account the number of independent tests performed.

Neurogenetic syndromes. A somewhat more consistent picture 
emerges from neuroimaging studies of neurogenetic syndromes. These 
include 22q deletion syndrome, fragile X syndrome, Williams syn-
drome, Turner syndrome and others. Neuroimaging shows generally  
consistent patterns of abnormalities in these disorders. In general, 
their effects on the brain and behavior are far greater than the effects 
of common genetic variants (see our review in ref. 48). Some neuroge-
netic disorders result from deletion of chromosomal material impor-
tant for development, leading to brain abnormalities and characteristic 
behavioral and cognitive effects. Williams syndrome, for example, 
arises as a result of a contiguous deletion of about 26–28 genes from 
chromosome 7 and is characterized by abnormal social and emotional 
processing and abnormal brain structure and function.

In Williams syndrome, cortical folding is more complex in  
some regions, with distinctive patterns of greater and lesser gray 
matter thickness in different cortical areas; polymicrogyria and 
gyral anomalies are common. A related neurodevelopmental  
disorder, fragile X syndrome49 involves an abnormal expansion of  
the CGG trinucleotide repeat affecting the fragile X mental retarda-
tion 1 (FMR1) gene on the X chromosome. This leads to impaired 
executive function and visuo-spatial skills. In affected females,  
brain volume abnormalities correlate with reduction in systemically 
measured levels of the fragile X mental retardation protein (FMRP), 
the gene product of FMR1, supporting theories that FMRP is required 
for normal dendritic pruning in fronto-striatal-limbic pathways.  
The neuroimaging findings in these and other neurogenetic  
disorders have led to a growing understanding of many genetic  
factors crucial for axonal guidance and migration, cortical folding  
and dendritic pruning. Aberrations in these processes can lead to 
widespread macroscopic effects in neuroimaging data. Consortia 
(such as the ENIGMA-22q initiative) are also studying neurogenetic  
syndromes to assess brain differences in children with these  
neurodevelopmental disorders, and what factors promote better brain 
and cognitive outcomes.

Structural and rare variation. For traits such as psychiatric diagnosis, 
genetic analyses have assessed an assortment of genetic variants. At 
this point, few brain imaging studies have evaluated copy number 
variants (CNVs), rare variants or other kinds of genetic variation; 
common variants are more widely studied because standardized pro-
tocols are available and because sufficiently large sample sizes needed 
to power a study are only now becoming available for other variants. 
When examining the impact of rare variation on imaging phenotypes, 
several different analytic approaches may be adopted. However, as 
explored by Zuk et al.50, the sample sizes required for rare variant 
analyses are as large or larger than those required for common vari-
ant analyses.

Current SNP chip technologies genotype around 250,000 to 5 million  
variants across the genome. However, with the advent of next 
 generation sequencing (NGS) technology it is now theoretically 
 possible to evaluate not just some, but all genetic variants. Two com-
mon modalities for NGS experiments are whole-exome sequencing 
(WES), which aims to capture all genetic variation, common and rare, 

in the coding regions of the human genome (with some additional 
content such as noncoding RNAs), and whole-genome sequencing 
(WGS), which aims to capture the entire genome. In practice, the 
proportion of the variants obtained from WES and WGS depend on 
several factors, including the depth of the coverage (how many times 
each section of DNA is sequenced), error rates and the sequence com-
plexity of the region (repetitive sequences, for example, are still dif-
ficult to sequence). As discussed elsewhere in this issue51, WES and 
WGS can evaluate rare and de novo (newly arisen) variation. Insights 
into neuropsychiatric disorders, such as epilepsy52,53 and autism54–57, 
are already emerging from WGS studies. These discoveries explain a 
modest percentage of the variance in disease risk.

Recommendations
In summary, some imaging studies are now large enough to discover 
reproducible effects of single SNPs on simple brain measures—for 
example, the volume of the hippocampus3,4 and other subcortical 
regions. Some neuroimaging projects, such as ADNI, began by har-
monizing the image acquisition across multiple centers, achieving 
samples of over a thousand individuals. A far larger sample, in the 
tens of thousands, can be achieved by combining data from multiple 
centers, even if the data were originally collected with other goals 
in mind. Consortium efforts such as ENIGMA and CHARGE show, 
without doubt, that there is sufficient harmony in the acquisition and 
analysis of brain scans to identify consistent genetic effects across 
cohorts worldwide.

Effect sizes of individual SNPs are small for all imaging traits 
examined so far. There is a need for rigor in declaring genome-wide 
significance, especially when several traits are assessed in the same 
study. Arguably, this issue is not avoided by focusing on a small set of 
candidate genes or biological pathways.

When searching the whole brain for an effect of genetics, consortia 
now have sufficient power to correct for the effective number of inde-
pendent tests performed on the image. The history of neuroimaging 
has shown that tests for focal effects are not as powerful in detecting 
widespread effects, and other tests of cluster size or image-derived 
features can be more powerful. Even so, given the vast number of 
association tests undertaken, approaches are needed to correct for 
type I error.

Dimension reduction methods for ‘big data’ abound, and there is no 
substitute for replication. More efficient generative models of genomic 
and imaging variation will be created in the future, seeking the most 
relevant features to test and thus leading to tests performed on a more 
restricted set of parameters58. Such models have been successful in 
modeling natural languages, where the latent structure in the signals 
is modeled using a generative grammar of much lower dimension 
than the signals used to represent or record the data.

In the future, mutational load or burden tests of rare mutations 
might be applied to imaging data, as well as any other genetic analy-
ses amenable to quantitative traits. A brain structural pathway or 
functional network might be treated similarly to a cellular pathway 
or protein interaction network; a burden test for rare loss-of-function  
mutations could be applied in a voxel-wise or connectome-wide manner  
to aspects of brain networks. In statistical analyses of the connec-
tome, for example, we can test for effects on pathways or networks 
at various levels59. Often we test for associations element-wise—at  
single connections or hubs—and then we move to a more global  
level, aiming to detect more systematic relationships in whole  
pathways or organizational properties. Future studies are likely to 
identify specific genetic associations for higher order properties  
of brain organization.
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Finally, imaging studies using sequencing-based genotypes can 
effectively be limited to study genomic regions already implicated 
in standard GWAS. One may then use data reduction methods such 
as least absolute shrinkage and selection operator (LASSO) or ridge 
regression to estimate the variance explained in the neighborhood 
of a sequenced locus60–62. Bayesian methods can also target causal 
disease associated SNPs in densely genotyped regions63. The experi-
ence of global consortia, at least for the limited structural measures so 
far subjected to GWAS, suggests that measures extracted from brain 
images do not show larger effect sizes than other quantitative traits. 
With rapid innovations in image acquisition and processing, the pool 
of phenotypes available from imaging is essentially infinite.

Conclusion
Ongoing collaborations between brain imagers and geneticists  
have led to worldwide consortia dedicated to finding factors that 
influence brain imaging measures. This review has focused on 
GWAS, which have accelerated consortium studies worldwide. As 
sample sizes and power increase in imaging studies, other types of 
genetic variation—rare variants and CNVs—may also be assessed. As 
geneticists and neuroimagers work together, there have been several 
surprises along the way. Genetic analyses of brain images still require 
thousands of individuals to find credible genetic associations that 
replicate across cohorts.

Brain imaging can measure signals at over 2 million locations in 
the brain; if each signal is surveyed while screening the genome as 
well, the resulting statistical search is so vast that collaboration is 
essential to secure enough power to detect associations. The future 
is likely to bring ever more complex imaging data into the hands of 
geneticists, for genetic screening of the elaborate networks derived 
from brain connectivity analyses30 and other deep phenotyping 
efforts. These worldwide efforts will reveal new factors that affect 
the brain and mechanistic factors that drive resilience and risk for 
disease, as well as normal variations in brain function and structure 
over the lifespan.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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