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Abstract: The cerebral cortex underlies our complex cognitive capabilities, yet we know little 

about the specific genetic loci influencing human cortical structure. To identify genetic variants 

impacting cortical structure, we conducted a genome-wide association meta-analysis of brain 

MRI data from 51,665 individuals. We analyzed the surface area and average thickness of the 

whole cortex and 34 regions with known functional specializations. We identified 199 significant 5 

loci and found significant enrichment for loci influencing total surface area within regulatory 

elements active during prenatal cortical development, supporting the radial unit hypothesis. Loci 

impacting regional surface area cluster near genes in Wnt signaling pathways, which influence 

progenitor expansion and areal identity. Variation in cortical structure is genetically correlated 

with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and ADHD. 10 

One Sentence Summary: Common genetic variation is associated with inter-individual 

variation in the structure of the human cortex, both globally and within specific regions, and is 

shared with genetic risk factors for some neuropsychiatric disorders. 

Main Text: The human cerebral cortex is the outer grey matter layer of the brain, which is 

implicated in multiple aspects of higher cognitive function. Its distinct folding pattern is 15 

characterized by convex (gyral) and concave (sulcal) regions. Computational brain mapping 

approaches use the consistent folding patterns across individual cortices to label brain regions 

(1). During fetal development excitatory neurons, the predominant neuronal cell-type in the 

cortex, are generated from neural progenitor cells in the developing germinal zone (2). The radial 

unit hypothesis (3) posits that the expansion of cortical surface area (SA) is driven by the 20 

proliferation of these neural progenitor cells, whereas thickness (TH) is determined by the 

number of their neurogenic divisions. Variation in global and regional measures of cortical SA 

and TH have been reliably associated with neuropsychiatric disorders and psychological traits (4) 

(table S1). Twin and family-based brain imaging studies indicate that SA and TH measurements 

are highly heritable and are influenced by largely different genetic factors (5-7). Despite 25 

extensive studies of genes impacting cortical structure in model organisms, our current 

understanding of the genetic variation impacting human cortical size and patterning is limited to 

rare, highly penetrant variants (8, 9). These variants often disrupt cortical development, leading 

to altered postnatal structure. However, little is known about how common genetic variants 

impact human cortical SA and TH.  30 

 

To identify genetic loci associated with variation in the human cortex we conducted genome-

wide association meta-analyses of cortical SA and TH measures in 51,665 individuals from 60 

cohorts from around the world, who were primarily of European descent (~94%; tables S2–S4). 

Cortical measures were extracted from structural brain MRI scans in 34 regions defined by the 35 

commonly used Desikan-Killiany atlas, which establishes coarse partitions of the cortex. The 

regional boundaries are based on gyral anatomy labeled from between the depths of the sulci (10, 

11). We analyzed two global measures, total SA and average TH, and SA and TH for the 34 

regions averaged across both hemispheres, yielding 70 distinct phenotypes (Fig. 1A; table S1). 

 40 

Within each cohort genome-wide association (GWAS) for each of the 70 phenotypes was 

conducted using an additive model. To identify genetic influences specific to each region, the 

primary GWAS of regional measures included the global measure of SA or TH as a covariate. 

To estimate the multiple testing burden associated with analyzing 70 phenotypes we used matrix 

spectral decomposition (12), which yielded 60 independent traits, and a multiple-testing 45 

significance threshold of P ≤ 8.3 x 10
-10

. 
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The principal meta-analysis comprised results from 33,992 participants of European ancestry 

(23,909 from 49 cohorts participating in ENIGMA and 10,083 from the UK Biobank). We 

sought replication for loci reaching genome-wide significance (P ≤ 5 x 10
-8

) in an additional 

ENIGMA cohort (777 participants) and with the CHARGE consortium (13) (13,952 5 

participants). In addition, we meta-analyzed eight cohorts of non-European ancestry (2,944 

participants) to examine the generalization of these effects across ancestries. High genetic 

correlations were observed between the meta-analyzed ENIGMA European cohorts and the UK 

Biobank cohort using LD-score regression (total SA rG = 1.00, Z-score PrG = 2.7 x 10
-27

, average 

TH rG = 0.91, Z-score PrG = 1.7 x 10
-19

, indicating consistent genetic architecture between the 49 10 

ENIGMA cohorts and data collected from a single scanner at the primary UK Biobank imaging 

site.  

 

Across the 70 cortical phenotypes we identified 306 loci that were genome-wide significant in 

the principal meta-analysis (P ≤ 5 x 10
-8

; Fig. 1B; table S5). Of these, 118 have not been 15 

previously associated with either intracranial volume or cortical SA, TH, or volume (13-18). 

Twenty of these were insertions or deletions (INDELs). Eleven INDELs had a proxy single 

nucleotide polymorphism (SNP) available in the European replication data; no proxies were 

available for six INDELs and one SNP. Of the 299 loci for which the SNP or a proxy was 

available, 255 (SA: 241, TH: 14) remained genome-wide significant when the replication data 20 

were included in the meta-analysis, with 199 passing multiple testing correction (P ≤ 8.3 x 10
-10

; 

SA: 187, TH: 12). Of the 255 loci, 244 were available in the meta-analysis of non-European 

cohorts. The 95% confidence intervals around the non-European meta-analysis effect sizes 

included those from the European meta-analysis for 241 of these loci. Of the 244 loci available 

in the non-European cohorts, 189 had effects in the same direction in both the European and non-25 

European meta-analyses, and 111 became more significant when the whole sample was meta-

analyzed (table S5; fig. S1). Variability in effects across ancestry may be due to differences in 

allele frequency; however, the power for these comparisons is limited and further comparisons 

with larger non-European cohorts will help clarify the generalizability of these effects (table S5). 

We examined gene-based effects (allowing for a 50 kb window around genes), and found 30 

significant associations for 253 genes across the 70 cortical phenotypes (table S6). The meta-

analytic results are summarized as Manhattan, QQ, Forest, and LocusZoom plots (figs. S2–S5). 

 

Genetics of total SA and average TH 

Common variants explained 34% (SE = 3%) of the variation in total SA and 26% (SE = 2%) in 35 

average TH. These estimates account for more than a third of the heritability estimated from the 

QTIM twin sample (91% for total SA and 64% for average TH; table S7), indicating that more 

genetic variants, including rare variants, are yet to be identified. To examine the extent to which 

our results could predict SA and TH, we derived polygenic scores (PRS) from the principal 

meta-analysis results. These scores significantly predicted SA and TH in an independent sample 40 

of 5,095 European participants, explaining between 2–3% of the trait variance (given a PRS 

threshold of P ≤ 0.01 R
2

SA = 0.029, linear regression coefficient t-test P = 6.54 x 10
-50

; R
2

TH = 

0.022, t-test P = 3.34 x 10
-33

; table S8).  

 

We observed a significant negative genetic correlation between total SA and average TH (rG = -45 

0.32, SE = 0.05, Z-score PrG = 6.5 x 10
-12

; Fig. 2A), which persisted after excluding the 
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chromosome 17 inversion region known to influence brain size (14) (rG = -0.31, SE = 0.05, Z-

score PrG = 3.3 x 10
-12

). Genetic correlations could indicate causal relationships between traits, 

pleiotropy, or a genetic mediator influencing both traits. Latent causal variable (LCV) analysis, 

which tests for causality using genome-wide data (19), showed no evidence of causation (LCV 

genetic causality proportion gcp = 0.06, t-test Pgcp=0 = 0.729). The negative correlation suggests 5 

that genetic influences have opposing effects on SA and TH, which may result from pleiotropic 

effects or genetic effects on a mediating trait that, for example, might constrain total cortical 

volume. The absence of causality and the small magnitude of this correlation is consistent with 

the radial unit hypothesis (3), whereby different developmental mechanisms promote SA 

expansion and increases in TH. 10 

 

As expected, total SA showed a positive genetic correlation with intracranial volume (ICV); this 

correlation remained after controlling for height demonstrating that this relationship is not solely 

driven by body size (Fig. 2A; table S8). The global cortical measures did not show significant 

genetic correlations with the volumes of major subcortical structures (Fig. 2A) except for total 15 

SA and the hippocampus, consistent with their shared telencephalic developmental origin.  

 

To identify if common variation associated with cortical structure relate to gene regulation 

within a given tissue type, developmental time period, or cell-type, we performed partitioned 

heritability analyses (20) using sets of gene regulatory annotations from adult and fetal brain 20 

tissues (21, 22). Total SA and average TH showed the strongest enrichment of heritability within 

genomic regions of active gene regulation (promoters and enhancers) in brain tissue and in vitro 

neural models derived from stem cell differentiation (Fig. 2B; fig. S6A). To examine temporally 

specific regulatory elements, we selected those active regulatory elements specifically present in 

either mid-fetal brain or adult cortex. Total SA showed significant enrichment of heritability only 25 

within mid-fetal specific active regulatory elements, whereas average TH showed significant 

enrichment only within adult specific active regulatory elements (Fig. 2C, fig S6B). Stronger 

enrichment was found in regions of the fetal cortex with more accessible chromatin in the neural 

progenitor-enriched germinal zone than in the neuron-enriched cortical plate (fig. S6C), similar 

to a previous analysis for intracranial volume (21). We then performed an additional partitioned 30 

heritability enrichment analysis using regulatory elements associated with cell-type specific gene 

expression derived from a large single-cell RNA-seq study of the human fetal brain (23). This 

analysis revealed significant enrichment of total SA heritability in all progenitor cell-types 

including those in active phases of mitosis as well as three different classes of progenitor cells 

including outer radial glia cells, a cell-type associated with expansion of cortical surface area in 35 

human evolution (2) (Fig 2D, fig S6D). We also identified significant enrichments in upper layer 

excitatory neurons, oligodendrocyte progenitor cells, and microglia. These findings suggest that 

total SA is influenced by common genetic variants that may alter gene regulatory activity in 

neural progenitor cells during fetal development, supporting the radial unit hypothesis (3). In 

contrast, the strongest evidence of enrichment for average TH was found in active regulatory 40 

elements in the adult brain samples, which may reflect processes occurring after mid-fetal 

development, such as myelination, branching, or pruning (24). 

 

We conducted pathway analyses to determine if there was enrichment of association near genes 

in known biological pathways (25). We found 91 significant gene-sets for total SA and four for 45 

average TH (table S9). Gene-sets associated with total SA included chromatin binding, a process 
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guiding neurodevelopmental fate decisions (26) (table S9, fig. S7A). In addition, consistent with 

the partitioned heritability analyses implicating neural progenitor cells in total SA, gene ontology 

terms relevant to cell-cycle also showed significant enrichment in these analyses. 

 

Loci influencing total SA and average TH 5 

Seventeen of the 255 replicated loci were associated with total SA; 12 survived correction for 

multiple testing (Fig. 2E, table S5). Eight loci influencing total SA have been previously 

associated with ICV (14). These include rs79600142 (principal meta-analysis PMA = 2.3 x 10
-32

; 

replication Prep = 3.5 x 10
-43

; P-values reported from all meta-analytic results were for Z-scores 

from fixed-effect meta-analyses), in the highly pleiotropic chromosome 17q21.31 inversion 10 

region, which has been associated with Parkinson’s disease (27), educational attainment (28), 

and neuroticism (29). On 10q24.33, rs1628768 (Z-score PMA = 1.7 x 10
-13

; Prep = 1.0 x 10
-17

) was 

shown by our bioinformatic annotations (30) to be an expression quantitative trait locus (eQTL) 

influencing expression levels of the INA gene, and of the schizophrenia candidate genes (31) 

AS3MT, NT5C2 and WBP1L (linear regression coefficient t-test false discovery rate (FDR) 15 

corrected P-value for the association of rs1628768 with expression data from surrounding genes 

FDRCommonMind Consortium(CMC) < 1.0 x 10
-2

; tables S11–S12). This region has been associated with 

schizophrenia, however, rs1628768 is in low linkage disequilibrium (LD) with the 

schizophrenia-associated SNP rs11191419 (r
2 

= 0.15; (32)). The 6q21 locus influencing total SA 

is intronic to FOXO3 (which also showed a significant gene-based association with total SA, 20 

table S6). The major allele of the lead variant rs2802295 is associated with larger total SA (Z-

score PMA = 2.5 x 10
-10

; Prep = 2.5 x 10
-13

) and is in complete LD with rs2490272, a SNP 

previously associated with higher general cognitive function (33). 

 

One locus not previously associated with ICV was rs11171739 (Z-score PMA = 8.4 x 10
-10

; Prep = 25 

8.1 x 10
-11

) on 12q13.2. This SNP is in high LD with SNPs associated with educational 

attainment (28), and is an eQTL for RPS26 in fetal (34) and adult cortex (30)(t-test of Pearson’s r 

FDRFETAL = 2.0 x 10
-24

, empirical t-test of Pearson’s r FDRGenotype-Tissue Expression(GTEx) = 3.3 x 10
-40

; 

tables S11–S12). On 3p24.1, rs12630663 (Z-score PMA = 1.3 x 10
-8

; Prep = 1.4 x 10
-8

) is of 

interest due to its proximity (~200kb) to EOMES (also known as TBR2), which is expressed 30 

specifically in intermediate progenitor cells in the developing fetal cortex (35). rs12630663 is 

located in a chromosomal region with chromatin accessibility specific to the germinal zone in the 

human fetal cortex (21). Putatively causal SNPs in this region (table S13) show significant 

chromatin interactions with the EOMES promoter (36). The region also contains numerous 

regulatory elements that when excised via CRISPR/Cas9 in differentiating neural progenitor 35 

cells significantly reduced EOMES expression (21). A rare homozygous chromosomal 

translocation in the region separating the regulatory elements from EOMES (fig. S8) silences 

EOMES expression and causes microcephaly (37), demonstrating that rare and common non-

coding variation can have similar phenotypic consequences, but to different degrees. 

 40 

The two replicated loci associated with average TH, neither of which have been previously 

identified, survived correction for multiple testing (Fig. 2E; table S5). On 3p22.1, rs533577 (Z-

score PMA = 8.4 x 10
-11

; Prep = 3.7 x 10
-12

) is a fetal cortex eQTL (t-test FDRFETAL= 1.8 x 10
-4

) for 

RPSA, encoding a 40S ribosomal protein with a potential role as a laminin receptor (38). 

Laminins are major constituents of extracellular matrix, and have critical roles in neurogenesis, 45 

neuronal differentiation and migration (39). On 2q11.2, rs11692435 (Z-score PMA = 3.2 x 10
-10

; 
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Prep = 4.5 x 10
-10

) encodes a missense variant (p.A143V) predicted to impact ACTR1B protein 

function (40), and is an ACTR1B eQTL in fetal cortex (t-test FDRFETAL = 3.9 x 10
-2

) (tables S11–

S12). ACTR1B is a subunit of the dynactin complex involved in microtubule remodeling, which 

is important for neuronal migration (41).  

 5 

Genetics of regional SA and TH 

The amount of phenotypic variance explained by common variants was higher for SA (8–31%) 

than TH (1–13%) for each of the specific cortical regions (Fig. 3A–B; table S7). To focus on 

region specific influences we controlled for global measures in the regional GWAS, which 

reduced the covariance between the regional measures (tables S14–S15). Similar to the genetic 10 

correlation between global SA and TH, when significant, genetic correlations between regional 

SA and TH within the same region were moderate and negative (tables S14–S15). This suggests 

that genetic variants contributing to the expansion of SA in a specific region tend to also 

contribute to thinner TH in that region.  

 15 

Genetic correlations between regions were calculated separately for SA and TH. Most genetic 

correlations between regions did not survive multiple testing correction. For SA significant 

positive genetic correlations were generally found between physically adjacent regions and 

negative correlations between more distal regions (Fig. 3A). This pattern mirrored the 

phenotypic correlations between regions and was also observed for TH (Fig. 3A–B). Consistent 20 

with this, hierarchical clustering of the genetic correlations resulted in a general grouping by 

physical proximity (fig. S9). These positive genetic correlations were strongest between SA of 

regions surrounding the major, early forming sulci (e.g., pericalcarine, lingual, cuneus, and 

lateral occipital regions surrounding the calcarine sulcus), which may potentially reflect genetic 

effects acting on the development of the sulci (11). 25 

 

To further investigate biological pathways influencing areal (regional) identity, we aggregated 

association statistics using multivariate GWAS analyses (42) separately for regional SA and TH. 

These analyses identify variants shared across regions and those within specific regions while 

accounting for the phenotypic correlations between regions. Pathway analyses of the multivariate 30 

SA results showed significant enrichment for 903 gene sets (table S10), many of which are 

involved in Wnt signaling, with the canonical Wnt signaling pathway showing the strongest 

enrichment (Z-score, P = 8.8 x 10
-11

). Wnt proteins regulate neural progenitor fate decisions (43, 

44) and are expressed in spatially specific manners influencing areal identity (45). Pathway 

analyses of the multivariate TH results did not yield any findings that survived multiple testing 35 

correction. 

 

Loci influencing regional SA and TH 

A total of 224 loci were nominally associated with regional SA and 12 with regional TH; of 

these 175 SA and 10 TH loci survived multiple testing correction (table S5). As shown in Fig. 40 

1B, most loci were associated with a single cortical region. Of the loci influencing regional 

measures, few were also associated with global measures. Those that were showed effects in the 

same direction, implying that the significant regional loci were not due to collider bias (46) (fig. 

S10). 

 45 
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The strongest regional association was observed on chromosome 15q14 with the precentral SA 

(rs1080066, Z-score PMA = 1.8 x 10
-137

; Prep = 4.6 x 10
-189

; variance explained = 1.03%; Fig. 4A). 

Across 11 traits we observed 41 independent significant associations from 18 LD blocks (r
2
 

threshold ≤ 0.02; see Fig. 4B, table S5). As we observed strong association with the SA of both 

pre- and post-central gyri (Fig. 4C), we localized the association within the central sulcus in 5 

5,993 unrelated individuals from the UK Biobank. The most significant association between 

rs1080066 and sulcal depth was observed around the pli de passage fronto-pariétal moyen 

(linear regression coefficient t-test P = 7.9 x 10
-21

), a region associated with hand fine-motor 

function in humans (47), which shows distinct depth patterns across different species of primates 

(48) (Fig. 4D). rs1080066 is a fetal cortex eQTL for a downstream gene EIF2AK4 (t-test 10 

FDRFETAL = 4.8 x 10
-2

) encoding the GCN2 protein, which is a negative regulator of synaptic 

plasticity, memory and neuritogenesis (49). The functional data also highlight THBS1 via 

chromatin interaction between the rs1080066 region and the promoter in neural progenitor cells 

and an eQTL effect in whole blood (Z-score FDRBIOSgenelevel = 6.1 x 10
-6

). THBS1 has roles in 

synaptogenesis and the maintenance of synaptic integrity (50). 15 

 

Consistent with enrichment in the pathway analyses, a number of other loci were located in 

regions with functional links to genes involved in Wnt signaling (fig. S7B), including 1p13.2, 

where rs2999158 (lingual SA, Z-score PMA = 1.9 x 10
-11

, Prep = 3.0 x 10
-11

; pericalcarine SA, Z-

score PMA = 1.9 x 10
-11

; Prep = 9.9 x 10
-16

) is an eQTL for ST7L and WNT2B (t-test FDRCMC < 1.0 20 

x 10
-2

) in adult cortex (tables S11–S12). On 14q23.1, we observed 20 significant loci (table S5) 

from four LD blocks. Our strongest association here was for the precuneus SA (rs73313052: Z-

score PMA = 1.1 x 10
-24

; Prep = 2.2 x 10
-35

). These loci are located near DACT1 and DAAM1, both 

involved in synapse formation and critical members of the Wnt signaling cascade (51, 52). 

rs73313052 and high LD proxies are eQTLs for DAAM1 (t-test FDRCMC < 1.0 x 10
-2

) in adult 25 

cortex (tables S11–S12). 

 

Several of our regional associations occur near genes with known roles in brain development. 

For example, on chromosome 1p22.2, rs1413536 (associated with the inferior parietal SA: Z-

score PMA = 1.6 x 10
-10

; Prep = 3.1 x 10
-14

) is an eQTL in adult cortex for LMO4 (t-test FDRCMC < 30 

1.0 x 10
-2

), with chromatin interactions between the region housing both this SNP and 

rs59373415 (which is associated with the precuneus SA: Z-score PMA = 1.6 x 10
-10

, Prep = 5.3 x 

10
-12

) and the LMO4 promoter in neural progenitor cells (table S11–S12). Lmo4 is one of the few 

genes already known to be involved in areal identity specification in the mammalian brain (53). 

 35 

Genetic relationships with other traits 

To examine shared genetic effects between cortical structure and other traits, we performed 

genetic correlation analyses with GWAS summary statistics from 23 selected traits. We observed 

significant positive genetic correlations between total SA and general cognitive function (54), 

educational attainment (28), and Parkinson’s disease (27), indicating that allelic influences 40 

resulting in larger total SA are in part shared with those influencing greater cognitive capabilities 

as well as an increased risk for Parkinson’s disease. For total SA, significant negative genetic 

correlations were detected with insomnia (55), attention deficit hyperactivity disorder (ADHD; 

56), depressive symptoms (57), major depressive disorder (58), and neuroticism (29) (Fig. 5A; 

table S16), again indicating that allelic influences resulting in smaller total SA are in part shared 45 

with those influencing an increased risk for these disorders and traits. To map the magnitude of 
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these effects across the brain, we calculated the genetic correlations across the cortical regions 

without correction for the global measures (Fig. 5B). Genetic correlations with average TH did 

not survive multiple testing correction, perhaps due to the weaker genetic associations detected 

in the TH analyses. At the regional level, significant genetic correlations were observed between 

precentral thickness and general cognitive function (rG = 0.27, Z-score PrG = 2.5 x 10
-5

) and 5 

educational attainment (rG = 0.25, Z-score PrG = 4.0 x 10
-4

) as well as between the inferior 

parietal thickness and educational attainment (rG = -0.19, Z-score PrG = 5.0 x 10
-4

). To confirm 

these correlations were not driven by the presence of cases within the meta-analysis, genetic 

correlations were recalculated from a meta-analysis of GWAS from population-based cohorts 

and GWAS of controls from the case-control cohorts (N = 28,503). All genetic correlations 10 

remained significant with the exception of the genetic correlation between total SA and 

depressive symptoms (table S17).  

 

We performed bidirectional Mendelian randomization (MR; 59) and LCV (19) analyses to 

investigate potential causal relationships underlying the observed genetic correlations with total 15 

SA. Both methods provided evidence of a causal effect of total SA on general cognitive function 

(inverse variance weighted MR bMR-IVW = 0.15, SE = 0.01, Z-score P = 4.6 x 10
-8

; LCV gcp = 

0.40, 95% CIs [0.23–0.57], t-test Pgcp=0 = 1.4 x 10
-9

) and educational attainment (bMR-IVW = 0.12, 

SE = 0.01, Z-score P = 2.1 x 10
-21

; gcp = 0.49, 95% CIs [0.26–0.72], t-test Pgcp=0 = 8.0 x 10
-9

) 

(table S18–S19). The MR analyses also indicated association in the reverse direction for both 20 

general cognitive function and education years (table S18); however, this was not supported by 

the LCV analyses (table S19). There was limited to no support for a causal relationship in either 

direction between total SA and the six other traits that showed significant genetic correlations 

(table S18–S19). Taken together these findings suggest that the previously reported phenotypic 

relationships between cortical surface area and general cognitive function (60, 61) may in part 25 

reflect underlying causal processes.  

 

Discussion 

Here we present a large-scale collaborative investigation of the effects of common genetic 

variation on human cortical structure using data from 51,665 individuals from 60 cohorts. 30 

Current knowledge of genes impacting cortical structure has been derived largely from creating 

mutations in model systems, such as the mouse, and observing impacts on brain structure (8). 

Given the differences between mouse and human cortical structures (62), this study provides an 

important genome-wide insight into human variation and genes impacting a characteristically 

human phenotype. Previous studies have identified rare variants that have large effects on 35 

cortical structure in humans (8), and this study adds to the catalog of the type of variation that 

impacts human cortical structure.  

 

We show that the genetic architecture of the cortex is highly polygenic and that variants often 

have a specific effect on individual cortical regions. This suggests that there are distinct genes 40 

involved in the development of specific cortical areas and raises the possibility of developmental 

and regional specificity in eQTL effects. We also find that rare variants and common variants in 

similar locations in the genome can lead to similar effects on brain structure, though to different 

degrees. For example, a balanced chromosomal translocation near EOMES leads to microcephaly 

in a region abutting a common variant signal associated with small changes in cortical surface 45 

area (fig. S8). 
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We provide evidence that genetic variation impacting gene regulation in progenitor cell-types, 

present in fetal development, impacts adult cortical surface area. This is consistent with the radial 

unit hypothesis, which states that an increase in proliferative divisions of neural progenitor cells 

leads to an expansion of the pool of progenitors resulting in increases in neuronal production and 5 

cortical surface area (3, 62). Notably, we see an enrichment of heritability in cortical surface area 

within regulatory elements that influence outer radial glia cells, this cell-type is considerably 

more prevalent in gyrencephalic species such as humans and has been hypothesized to account 

for the increased progenitor pool size in humans (2). 

 10 

We also find that Wnt signaling genes influence areal expansion in humans, as previously 

reported in model organisms such as mice (45). Cortical thickness was associated with loci near 

genes implicated in cell differentiation, migration, adhesion, and myelination. Consequently, 

molecular studies in the appropriate tissues, such as neural progenitor cells and their 

differentiated neurons, will be critical to map the involvement of specific genes.  15 

 

We demonstrate that genetic variation associated with brain structure also impacts general 

cognitive function, Parkinson’s disease, depression, neuroticism, ADHD, and insomnia. This 

implies that genetic variants impacting brain structure also impact brain function. While most of 

the structural differences in the cortex observed in these disorders have been reported for 20 

thickness, our results show significant genetic correlations in surface area. This might suggest 

the phenotypic differences observed in cortical thickness (table S1) partially reflect 

environmental influences, effects of illness or of treatment. We find evidence that brain structure 

is an important phenotype along the causal pathway leading from genetic variation to differences 

in general cognitive function and educational attainment. 25 

 

In summary, this work identifies genome-wide significant loci associated with cortical surface 

area and thickness and provides a deeper understanding of the genetic architecture of the human 

cerebral cortex and its patterning. 

 30 

Materials and Methods Summary: 

Participants 

Participants were genotyped individuals with cortical MRI data, from 60 cohorts. Participants in 

all cohorts in this study gave written informed consent and each site obtained approval from 

local research ethics committees or Institutional Review Boards. Ethics approval for the meta-35 

analysis was granted by the QIMR Berghofer Medical Research Institute Human Research Ethics 

Committee (approval: P2204). 

 

Imaging 

Measures of cortical SA and TH were derived from in vivo whole brain T1-weighted MRI scans 40 

using FreeSurfer MRI processing software (1). SA and TH were quantified for each subject 

across the whole cortex and within 34 distinct gyral-defined regions according to the Desikan-

Killiany atlas averaged across both hemispheres (10). 
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Genetic association analyses 

Within each cohort, GWAS were conducted on each of the 70 imaging phenotypes. After quality 

control, these data were meta-analyzed using METAL (63). Initially the GWAS from European 

cohorts were meta-analyzed together, yielding the principal results that were used in all 

subsequent analyses. We sought replication of the genome-wide significant loci with data from 5 

the CHARGE consortium. To examine generalization of effects, the GWAS from the non-

European cohorts were meta-analyzed together, and finally we meta-analyzed the European with 

the non-European results. Polygenic scores were derived from the principal meta-analysis and 

used to predict the amount of variance explained by the association of common genetic variants 

with the cortical SA and TH in an independent sample. 10 

 

SNP heritability and tests for genetic correlations and causation 

Heritability explained by common genetic variants (SNP heritability) was estimated using LD 

score regression (64). Genetic correlations between cortical regions were estimated using cross-

trait LD score regression (65). To examine genetic relationships with other traits, we estimated 15 

genetic correlations using cross-trait LD score regression; to determine if these correlations were 

causal we used Mendelian randomization (59) and latent causal variable analyses (19). 

 

Partitioned heritability 

Partitioned heritability analysis was used to estimate the percentage of heritability explained by 20 

annotated regions of the genome (66). Heritability enrichment was first estimated in active 

regulatory elements across tissues and cell types (21, 22). Secondly, heritability enrichment was 

estimated in mid-fetal specific active regulatory elements and adult cortext specific active 

regulatory elements. Thirdly, heritability enrichment was estimated in regulatory elements of 

cell-type specific genes in fetal brain (23). 25 

 

Functional follow-up 

The principal meta-analytic results were followed up with gene-based association analysis using 

MAGMA (67). A multivariate analysis of the regional association results was conducted using 

TATES (42). Pathway analyses were conducted on the global measures and the results from the 30 

multivariate analyses using DEPICT to identify enrichment of association in known genetic 

functional pathways (25). To identify putatively causal variants we performed fine-mapping with 

CAVIAR (68). Potential functional impact was investigated using FUMA (30), which annotates 

the SNP location, nearby enhancers or promoters, chromatin state, associated eQTLs, and the 

potential for functional effects through predicted effects. 35 
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Fig. 1. Regions of the human cortex and associated genetic loci. (A) The 34 cortical regions 

defined by the Desikan-Killiany atlas. (B) Ideogram of loci influencing cortical SA and TH. 

Fig. 2. Genetics of Global Measures. (A) Genetic correlations between global measures and 

selected traits (red indicates significant correlation, FDR < 0.05). (B) Partioned heritability 

enrichment in active regulatory elements across tissues and cell types. (C) Partioned heritability 35 

enrichment in temporally specific active regulatory elements. (D) Partioned heritability 

enrichment in regulatory elements of cell-type specific genes in fetal brain. (E) Manhattan plot 

of loci associated with total SA (top) and TH (bottom), green diamonds indicate lead SNP in the 

principal meta-analysis, black diamonds indicate change in P-value after replication, dashed 
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horizontal line is genome-wide significance, solid horizontal line is multiple-testing correction 

threshold. 

Fig 3. Genetic and Phenotypic Correlations Between Cortical Regions. (A) Surface Area. (B) 

Thickness. The regions are numbered according to the legend of Fig. 1A. The proportion of 

variance accounted for by common genetic variants is shown in the first column (h
2

SNP). 5 

Phenotypic correlations from the UK Biobank are in the upper triangle. Genetic correlations 

from the principal meta-analysis are in the lower triangle. Only significant correlations are 

shown. 

Fig 4. Genetics of Regional Measures. (A) Regional plot for rs1080066, including additional 

lead SNPs within the LD block and surrounding genes, chromatin interactions in neural 10 

progenitor cells, chromatin state in RoadMap brain tissues*, and BRAINSPAN candidate gene 

expression in brain tissue**. (B) Ideogram of 15q14, detailing the significant independent loci 

and cortical regions. (C) rs1080066 (G allele) association with SA of regions. (D) rs1080066 

association with central sulcus depth and depth of several primate species *TssA:Active 

Transcription Start Site (TSS); TssAFlnk:Flanking Active TSS; TxFlnk:Transcription at gene 5' 15 

and 3'; Tx:Strong transcription; TxWk:Weak transcription; EnhG:Genic enhancers; 

Enh:Enhancers; Het:Heterochromatin; TssBiv:Bivalent/Poised TSS; BivFlnk:Flanking Bivalent 

TSS/Enhancer; EnhBiv:Bivalent Enhancer; ReprPC:Repressed; PolyComb; ReprPCWk:Weak 

Repressed PolyComb; Quies:Quiescent/Low. **DFC:dorsolateral prefrontal cortex; 

VFC:ventrolateral prefrontal cortex; MFC:anterior cingulate cortex; OFC:orbital frontal cortex; 20 

M1C:primary motor cortex; M1C-S1C:primary motor-sensory cortex; PCx:parietal neocortex; 

S1C:primary somatosensory cortex; IPC:posteroventral parietal cortex; A1C:primary auditory 

cortex; TCx:temporal neocortex; STC:posterior superior temporal cortex; ITC:inferolateral 

temporal cortex; Ocx:occipital neocortex; V1C:primary visual cortex. 

Fig 5. Genetic correlations with neuropsychiatric and psychological traits. (A) Genetic 25 

correlations with total SA and average TH positive correlations are shown in red, while negative 

correlations are shown in blue. (B) Regional variation in the strength of genetic correlations 

between regional surface area (without correction for total surface area) and traits showing 

significant genetic correlations with total surface area. 
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