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Abstract

Immune checkpoint blockade (ICB) therapies such as anti-programmed death 1 (PD-1) and anti-CTLA-4 (cytotoxic T
lymphocyte-associated protein 4) have dramatically transformed treatment in solid tumor oncology. While
immunotherapeutic approaches such as stem cell transplantation and anti-cancer monoclonal antibodies have
made critical contributions to improve outcomes in hematological malignancies, clinical benefits of ICB are
observed in only limited tumor types that are particularly characterized by a high infiltration of immune cells.
Importantly, even patients that initially respond to ICB are unable to achieve long-term disease control using these
therapies. Indeed, primary and acquired resistance mechanisms are differentially orchestrated in hematological
malignancies depending on tumor types and/or genotypes, and thus, an in-depth understanding of the disease-
specific immune microenvironments will be essential in improving efficacy. In addition to PD-1 and CTLA-4, various
T cell immune checkpoint molecules have been characterized that regulate T cell responses in a non-redundant
manner. Several lines of evidence suggest that these T cell checkpoint molecules might play unique roles in
hematological malignancies, highlighting their potential as therapeutic targets. Targeting innate checkpoint
molecules on natural killer cells and/or macrophages has also emerged as a rational approach against tumors that
are resistant to T cell-mediated immunity. Given that various monoclonal antibodies against tumor surface proteins
have been clinically approved in hematological malignancies, innate checkpoint blockade might play a key role to
augment antibody-mediated cellular cytotoxicity and phagocytosis. In this review, we discuss recent advances and
emerging roles of immune checkpoint blockade in hematological malignancies.
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Background
Immunotherapy has emerged as a new pillar of cancer
treatment. Over the past decade, immune checkpoint
blockade (ICB) therapies such as monoclonal antibodies
(mAbs) that target cytotoxic T lymphocyte-associated
protein 4 (CTLA-4) or the programmed cell death
protein 1 (PD-1) pathway have dramatically changed
therapeutic strategies in certain types of advanced malig-
nancies. Humanized anti-CTLA-4 antibody, ipilimumab,
reportedly doubles 10-year survival rates for metastatic
melanoma compared to historical control data, and its

FDA approval marked a turning point for immunother-
apy [1, 2]. Blockade of PD-1 or its ligand, PD-1 ligand
(PD-L1), has displayed superior clinical responses with
fewer side effects in a broad range of cancers [3–9].
Historically, immunotherapy has been well-studied in

hematological malignancies as supported by the success
of stem cell transplantation (SCT) and various mAbs
against tumor surface proteins. While newly developed
ICB therapies are actively being tested, primary and ac-
quired resistance remain major barriers in utilizing them
against a broad range of hematological malignancies. To
this end, it is critically important to understand the
complex immune regulatory mechanisms mediated by
immune checkpoint molecules as well as the disease-
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specific immune milieu. In addition to therapeutic
blockade of PD-1 and CTLA-4, various immune check-
point molecules that regulate innate and/or adaptive im-
mune responses have emerged as potential therapeutic
targets. In this review, we will provide an overview of
the basic and clinical aspects of ICB therapy and discuss
their potential in harnessing anti-tumor immunity in
hematological malignancies.

Immune regulation by PD-1 and CTLA-4
Over the past decade, various ICB drugs have received
FDA approval including anti-CTLA-4 (ipilumumab),
anti-PD-1 (pembrolizumab, nivolumab, and cemipli-
mab), and anti-PD-L1 (atezolizumab, avelumab, and
durvalumab). It is appreciated that the interaction be-
tween CTLA-4 and its ligands CD80 (B7-1) and CD86
(B7-2) critically regulates T cell priming at the interface
between T cells and antigen-presenting cells (APCs),
whereas the interaction between PD-1/PD-L1 controls
T cell responses at the effector phase [10]. Immune-
related adverse events (irAEs) are commonly seen in
patients treated with either anti-CTLA-4 or anti-PD-1/
PD-L1, but the incidence of severe irAEs (grade 3 or 4)
is much more frequent in patients treated with CTLA-4
blockade [11]. It should be noted that even after clinical
approval of these therapies, a number of studies have
revealed new molecular mechanisms of immune regula-
tion by PD-1 and CTLA-4. Their immune regulatory
mechanisms are far more complicated; therefore, an in-
depth understanding of the complex interplay will
provide new insights into the mechanisms of ICB
therapies.

CTLA-4
CTLA-4 expression and function are intrinsically as-
sociated with T cell activation (Fig. 1, left). Upon T
cell receptor (TCR) engagement, CTLA-4 is upregu-
lated with peak expression occurring 2 to 3 days after
activation [12]. CTLA-4 accumulates at the immuno-
logical synapse between T cells and APCs, where
CTLA-4 is stabilized by CD80 ligand binding [13, 14].
Due to its higher avidity and affinity for CD80/CD86,
CTLA-4 competes with the costimulatory molecule
CD28 leading to the negative regulation of activated
T cells [15–17].
In addition to cell-intrinsic regulation, CTLA-4 also

regulates T cell activation in a cell-extrinsic manner that
is primarily mediated by regulatory T cells (Tregs) (Fig.
1, right) [18, 19]. Indeed, Treg-specific deletion of
CTLA-4 results in aberrant T cell activation and auto-
immunity highlighting CTLA-4 as a key functional
molecule for Treg-mediated immune tolerance [20, 21].
Of note, extrinsic regulation by CTLA-4 cannot be
simply explained by the competitive inhibition of the

interaction between CD28 and CD80/86 at the immuno-
logical synapse. For example, the interaction between
CTLA-4 and CD80/86 upregulates indoleamine 2,3-
dioxygenase (IDO) in DCs, a key enzyme for tryptophan
catabolism [22]. Thus, the interaction between Tregs
and DCs limits antigen-specific T cell responses by
IDO-mediated tryptophan depletion.
Another regulatory mechanism of CTLA-4 is its ability

to rapidly capture CD80/CD86 from APCs by a process
of trans-endocytosis [23]. Although both effector
lymphocytes and Tregs are known to have the ability to
mediate CTLA-4-dependent deprivation of CD80/CD86
from APCs [24], Ovcinnikovs et al. recently demon-
strated that Tregs, rather than activated conventional T
cells, are predominantly responsible for the trans-
endocytosis of CD80/CD86 in vivo [25]. They also
showed that migratory DCs, rather than tissue resident
DCs in lymph nodes, are the major target for CTLA-4-
dependent deprivation of CD80/CD86, providing an im-
portant mechanistic insight into anti-CTLA-4 therapy
[25]. While the CTLA-4-dependent trans-endocytosis of
CD80/86 and subsequent degradation of these ligands
contribute to immune tolerance, CTLA-4 itself is consti-
tutively internalized in a ligand-independent manner,
undergoing both recycling and degradation in activated
T cells [26]. Recently, Lo et al. provided evidence that
optimal recycling of CTLA-4 is critical for maintaining
immune tolerance [27]. It is reported that patients with
loss-of-function of the LRBA gene (encoding the
lipopolysaccharide-responsive and beige-like anchor pro-
tein) develop early-onset autoimmunity and lymphopro-
liferative disease, a similar syndrome seen in patients
with IPEX (immunodysregulation polyendocrinopathy
enteropathy X-linked) syndrome caused by FOXP3 mu-
tations [28]. Lo et al. showed that LRBA co-localizes
with CTLA-4 in recycling endosomes and that LRBA
deficiency accelerates CTLA-4 turnover leading to
degradation in lysosomes [27]. The balance between
CTLA-4 recycling and degradation provides an import-
ant implication for therapeutic strategies targeting
CTLA-4. Indeed, immune-related adverse events (irAEs)
remain as a major barrier in the therapeutic targeting of
CTLA-4, occurring in 60–65% of patients treated with
ipilimumab [29]. Zhang et al. showed that irAE-prone
anti-CTLA-4 mAbs (including ipilimumab) rapidly
direct surface CTLA-4 for lysosomal degradation by
preventing binding of CTLA-4 to LRBA. In contrast,
engineered anti-CTLA-4 mAbs that dissociate from
CTLA-4 in response to low pH in endosomal vesicles
allow CTLA-4 to be recycled in an LRBA-dependent
manner. Strikingly, these novel pH-sensitive anti-CTLA-
4 mAbs prevent irAEs with an enhanced preclinical anti-
tumor efficacy [30]. Thus, CTLA-4 recycling should be
an important consideration for CTLA-4 blockade.
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PD-1
Like CTLA-4, PD-1 also plays a critical role for regulat-
ing T cell activation and maintenance of peripheral tol-
erance [31–33]. Upon engagement of its ligands PD-L1
or PD-L2 during antigen stimulation, PD-1 becomes
clustered with the TCR and subsequently recruits the
tyrosine phosphatase SHP2 to its cytoplasmic domain
[34]. By analyzing the direct targets of PD-1-bound
phosphatase(s), Hui et al. recently showed that CD28
signaling is the most sensitive target for PD-1-SHP2-me-
diated dephosphorylation, while only a part of the TCR
signaling components undergo dephosphorylation [35].
Another independent group also demonstrated that
CD28 co-simulation is indispensable for optimal CD8 T
cell responses against tumors and viral infections by PD-
1 blockade [36]. These findings highlight CD28 signaling
as a key target of PD-1-mediated immune regulation. Of
note, PD-1 also transcriptionally regulates T cell activa-
tion by suppressing genes induced by TCR activation
[37]. Specifically, genes induced by a strong TCR signal
(including genes encoding cytokines and effector mole-
cules) are highly sensitive to PD-1-mediated repression
whereas genes that are efficiently induced by TCR
stimulation (e.g., genes related to cell survival and cell

signaling) show resistance [37]. Thus, in addition to the
PD-1/SHP2-mediated dephosphorylation of CD28, PD-1
is implicated in transcriptional regulation of TCR-
induced effector molecules, highlighting a broad impact
of PD-1 on T cell activation.
In addition to the interaction between PD-1 and PD-

L1 on T cells and APCs (namely, the PD-1/PD-L1 trans-
interaction), respectively, PD-L1 interactions in cis with
PD-1 or CD80 have emerged as important factors for
immune modulation. Zhao et al. initially showed that a
subset of tumor-infiltrating APCs co-express PD-1 and
PD-L1 and that PD-L1/PD-1 cis interaction can prevent
PD-L1 binding to T cell intrinsic PD-1 in trans [38].
However, given that only a small subset of DCs co-
express PD-L1 and PD-1, the significance of this inter-
action for ICB therapies remains unclear. More recently,
several lines of evidence demonstrate that the cis
interaction between PD-L1 and CD80 is predominantly
implicated in immune modulation on APCs [39–41]
(Fig. 2). Indeed, Sugiura et al. showed that the CD80/
PD-L1 cis interaction on dendritic cells (DCs) can im-
pede the PD-L1/PD-1 trans binding between DCs and T
cells in a competitive manner [40]. Strikingly, gene-
modified mice that cannot form the PD-L1/CD80 cis-

Fig. 1 CTLA-4-mediated immune regulation. Schematic illustrating T cell-intrinsic (left) and extrinsic regulation by CTLA-4 (right). Left: CTLA-4 is
upregulated on activated T cells and competes with the CD28 co-stimulatory receptor due to its higher affinity for CD80/CD86. Right: CTLA-4
plays a critical role in Treg-mediated immune regulation. The CTLA-4/CD80 interaction between Treg/APCs induces indoleamine 2,3-dioxygenase
(IDO), a key enzyme that suppresses T cells by tryptophan deprivation. Additionally, Tregs down-modulate CD80/86 expression on APCs
by transendocytosis
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heterodimer ameliorate anti-tumor T cell responses as
well as autoimmunity, suggesting that the PD-1/PD-L1
inhibitory pathway is enhanced in the absence of the
PD-L1/CD80 cis-heterodimer [40]. These findings high-
light that CD80 on APCs augments T cell activity not
only by CD28-mediated co-stimulatory signals but by
also restricting PD-L1 (Fig. 2).
Not surprisingly, the PD-L1/CD80 cis-heterodimer

also affects CTLA-4-mediated immune regulation. Re-
cently, Zhao et al. showed that the PD-L1/CD80 cis-het-
erodimer prevents the interaction between CTLA-4 and
CD80 as well as the subsequent trans-endocytosis of
CD80 while allowing the CD80 and CD28 interaction to
remain intact [41]. Notably, inhibiting the formation of
the PD-L1/CD80 cis-heterodimer by anti-PD-L1 mAb
led to the loss of CD80 from APCs, whereas anti-PD-L1
mAb in combination with anti-CTLA-4 maintained
CD80 expression on APCs [41]. These results suggest
that selective blockade of the PD-1/PD-L1 trans-inter-
action, but not the PD-L1/CD80 cis-heterodimer forma-
tion, may be an important therapeutic approach.
Moreover, soluble forms of PD-L1 and/or exosomal PD-

L1 have emerged as immunosuppressive mediators [42,
43]. Yet, it remains to be elucidated how membrane-
bound form of PD-L1 and soluble PD-L1 differentially
regulate T cell responses.
The complex interplay between the B7 family of li-

gands (CD80, CD86, and PD-L1) and the CD28 receptor
superfamily (CD28, CTLA-4, and PD-1) is implicated in
fine-tuning immune responses at the T cell APC inter-
face. Indeed, Lin et al. provided preclinical evidence that
PD-L1 expression on APCs is indispensable for tumor
control by PD-1/PD-L1 blockade, whereas neither
knockout nor overexpression of PD-L1 in tumor cells af-
fects efficacy [44]. Notably however, overexpression of
tumor PD-L1 is associated with the clinical efficacy of
PD-1/PD-L1 blockade in various hematological malig-
nancies, as discussed in the next section. Moreover, the
expression of CD80/CD86, in contrast to solid malignan-
cies, is frequently observed in tumor cells from
hematological malignancies (such as B cell lymphoma)
[45] raising the possibility that the crosstalk between the
B7 ligand family and the CD28 receptor superfamily
may be further complicated in hematological

Fig. 2 PD-1-mediated immune regulation. Under low expression levels of PD-L1, CD80 restricts PD-L1 function by forming the PD-L1/CD80 cis-
heterodimer. The PD-L1/CD80 cis-heterodimer prevents the PD-1/PD-L1 trans-interaction, whereas the ability to bind to the CD28 co-stimulatory
receptor is retained (left). Upregulation of PD-L1 on APCs allows the PDL-1/PD-1 trans-interaction, leading to SHP2-dependent negative regulation
of the CD28 signaling pathway as well as transcriptional repression of TCR-induced effector genes (right)
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malignancies. Altogether, the extent to which individual
mechanisms prevail and effect clinical response to ICB
may depend on the immune landscape that can be influ-
enced by several factors in the various hematological
malignancies.

Clinical response and resistance to immune
checkpoint blockade in hematological
malignancies
With a growing understanding of cancer biology, as well
as the tumor microenvironment (TME), it is becoming
increasingly clear that resistance as well as response to
ICB can be strongly influenced by disease-specific fac-
tors including the immune landscape of the disease. A
number of studies have reported encouraging results in
various hematologic malignancies. Some of the basic and
clinical aspects (Table 1) of those findings will be the
focus of our discussion here.

Hodgkin lymphoma
Among various hematological malignancies, therapeutic
benefits of PD-1 blockade have been best demonstrated
in patients with Hodgkin lymphoma (HL). In an early
clinical trial of 23 relapsed or refractory HL patients,
nivolumab showed an objective response rate (ORR) of
87%, with a complete response (CR) of 17% [46]. Clinical
efficacy and safety profile of nivolumab monotherapy
was further demonstrated in the CheckMate 205 trial of
80 HL patients who failed autologous stem-cell trans-
plantation and brentuximab vedotin (an antibody-drug
conjugate comprising anti-CD30 mAb conjugated to an
anti-microtubule agent) [47, 48, 61]. Another PD-1
mAb, pembrolizumab, also showed similar efficacy
against HL in clinical trials such as KEYNOTE-013 [49]
and KEYNOTE-087 [50]. These results led to the FDA
approval of nivolumab (in 2016) and pembrolizumab (in
2017) for relapsed or refractory HL patients who had
failed multiple lines of therapy.
Clinical responsiveness to PD-1 blockade in HL has

been explained by multiple unique tumor intrinsic and
extrinsic factors. In solid malignancies, high TMB (high
TMB; ≥ 20 coding mutations per megabase) has been
recognized as an independent predictor for clinical re-
sponses to ICB therapies [62]. However, in HL, it is re-
ported that TMB does not correlate with responsiveness
[63]. Indeed, Liang et al. investigated TMB in 34 HL pa-
tients and found that only 15% of the patients had high
TMB [64]. Despite this fact, amplification of 9p24.1
(locus-containing JAK2/PDL1/PDL2), a frequently ob-
served cytogenetic abnormality in classical HL patients,
induces aberrant overexpression of PD-L1 on tumor
cells [65], suggesting that tumor PD-L1 might dampen
anti-tumor immunity. Indeed, Epstein-Barr virus (EBV)
infection can also contribute to PD-L1 upregulation

[66]. While similar frequencies of 9p24.1 amplification
in EBV-related or EBV-unrelated cases have been re-
ported in cHL, EBV-positive cHL cases have been shown
to be more likely to have higher PD-L1 expression levels
[67]. Additionally, through viral oncoprotein latent
membrane protein 1 (LMP1), EBV may also sustain an
immune suppressive microenvironment [68]. Thus, it is
possible that the presence of these immune suppressive
features in EBV-related cHL may allow patients with this
particular sub-type to be more susceptible to ICB.
In addition to the tumor-intrinsic overexpression of

PD-L1, the immune microenvironment of HL is critic-
ally responsible for responsiveness to PD-1 blockade.
The TME of classical HL consists of rare (0.1–1%) ma-
lignant cells called Hodgkin Reed-Sternberg (HRS) cells
and an abundant immune cell infiltrate which is mark-
edly distinct from the TME observed in non-Hodgkin’s
lymphoma (NHL) [69]. Thus, the unique immunologic-
ally “hot” (or inflamed) TME critically contributes to re-
sponsiveness to PD-1 blockade [70]. To understand the
immune landscape, Cader et al. recently performed mass
cytometry of 7 newly diagnosed classical HL patients
[71]. Notably, they found that CD4+ T cells especially
Th1-polaralized effector cells and Tregs were major T
cell subsets in the TME and that MHC-I expression was
frequently lost in tumor cells [71]. This result raises the
possibility that CD4+ T cells, rather than CD8+ T cells,
may be key players in anti-tumor immunity against HL.
Indeed, Roemer et al. also reported that β2-
microglobulin (β2M) and MHC-I were not expressed on
tumor cells in more than 60% of HL patients and that
the expression level of MHC-II and PD-L1 predicts
therapeutic response to nivolumab in HL patients [72].
More recently, Patel et al. investigated checkpoint mole-
cules by multiplexed immunofluorescence imaging and
observed the expansion of CTLA-4+ PD-1− CD4 T cells
in close proximity to CD86+ tumor cells or tumor-
associated macrophages (TAMs) [73]. This suggests that
the interaction between CTLA-4 and CD86 might also
act as a key negative regulator in HL.
Overall, these results highlight the importance of char-

acterizing the disease-specific TME and T cell pheno-
types in order to determine optimal therapeutic targets.
Despite the clinical benefits of PD-1 blockade, some HL
patients experience recurrence after PD-1 blockade
therapy. Currently, the randomized phase 2 study of
brentuximab vedotin and nivolumab with or without
ipilimumab is ongoing (NCT01896999) to assess the effi-
cacy of dual CTLA-4 and PD-1 blockade. LAG-3 might
be a potential target considering the recent single-cell
RNA sequence (scRNA-seq) analysis which showed that
a subset of HL-associated T cells expressed high levels
of this checkpoint molecule [74]. Alternatively, given
that loss of MHC-II confers therapeutic resistance to
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Table 1 Notable clinical trials targeting immune checkpoints in hematological malignancies

Clinical trial Phase Patient characteristics Intervention Response Reference

NCT01592370 I Relapsed or refractory HL Nivolumab ORR 87% [46]

CheckMate
205
(NCT02181738)

II cHLCohort A: brentuximab vedotin naïve
Cohort B: brentuximab vedotin after auto-
HCT
Cohort C: brentuximab vedotin before and/
or after auto-HCT
Cohort D: nivolumab monotherapy
followed by nivolumab plus doxorubicin,
vinblastine, and dacarbazine for newly
diagnosed HL

Nivolumab ORR:
Cohort A 65%
Cohort B 68%
Cohort C 73%
Cohort D 84%

[47, 48]

KEYNOTE-013
(NCT01953692)

I cHL after brentuximab vedotin failure Pembrolizumab ORR 65% [49]

KEYNOTE-087
(NCT02453594)

II Relapsed or refractory cHL,
Cohort 1: after ASCT/brentuximab vedotin
Cohort 2: ineligible for ASCT and
experienced treatment failure with
brentuximab vedotin
Cohort 3: No brentuximab vedotin after
ASCT

Pembrolizumab ORR:
Cohort 1 73.9%
Cohort 2 64.2%
Cohort 3 70%

[50]

NCT02038933 II Relapsed or refractory DLBCL
Cohort 1: auto-HCT-failed
Cohort 2: auto-HCT-ineligible

Nivolumab ORR:
Cohort 1 10%
Cohort 2 3%

[51]

NCT02446457 II Relapsed FL Pembrolizumab
Rituximab

Pre-planned interim analysis: ORR 80% [52]

NCT03245021 II Previously untreated FL Single-agent
nivolumab followed
by combined
nivolumab and
rituximab

Pre-planned interim analysis: ORR 84% [53]

NCT03278782 I/II Relapsed or refractory peripheral T cell
lymphoma (PTCL)

Pembrolizumab
Romidepsin

ORR 44% [54]

NCT02243579 II Recurrent mycosis fungoides and Sezary
syndrome

Pembrolizumab ORR 38% [55]

KEYNOTE-023
(NCT02036502)

I Relapsed or refractory MM Pembrolizumab
combined with
lenalidomide and low-
dose dexamethasone

ORR 44% [56]

KEYNOTE-183
(NCT02576977)

III Relapsed or refractory MM Pembrolizumab plus
pomalidomide and
dexamethasone

Pembrolizumab plus pomalidomide and
dexamethasone group:
Median PFS: 5.6 months (95% CI 3.7–7.5);
Pomalidomide and dexamethasone group:
8.4 months (5.9–not reached)

[57]

KEYNOTE-185
(NCT02579863)

III Treatment-naive MM Pembrolizumab plus
lenalidomide and
dexamethasone

Progression-free survival estimates at 6-
months were 82.0% (95% CI 73.2–88.1) ver-
sus 85.0% (76.8–90.5; hazard ratio [HR] 1.22;
95% CI 0.67–2.22; p = 0.75)

[58]

NCT01822509 I Patients with relapse after allogeneic
transplantation:
AML (in 12 patients, including 3 with
leukemia cutis and 1 with a myeloid
sarcoma), HL (in 7), NHL (in 4), and
myelodysplastic syndrome (in 2). One
patient each had MM, myeloproliferative
neoplasm, and acute lymphoblastic
leukemia

Ipilimumab Patients that received a dose of 10 mg/kg:
CR (23%)

[59]

NCT02397720 II Relapsed or refractory AML Azacitidine and
nivolumab

ORR 33% [60]

cHL classic Hodgkin lymphoma, NHL non-Hodgkin’s lymphoma, PTCL peripheral T cell lymphoma, MM multiple myeloma, AML acute myeloid leukemia, ASCT
allogeneic stem cell transplantation, HCT hematopoietic cell transplantation, ORR objective response rate, CR complete response, HR hazard ratio, PFS progression-
free survival, FL follicular lymphoma, DLBCL diffuse large B cell lymphoma
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HL, harnessing innate immunity might be a key ap-
proach. The PD-1 and PD-L1 interaction is implicated
in negative regulation of NK cells and monocytes/mac-
rophages [75]. As discussed later, several innate immune
checkpoint inhibitors are being developed. The combin-
ation of innate checkpoint inhibitors may improve
clinical responses against HL with acquired resistance to
T cell-mediated anti-tumor immunity.

Non-Hodgkin lymphoma
In contrast to HL patients, PD-1 blockade has not
shown remarkable clinical responses in patients with
NHL such as diffuse large B cell lymphoma (DLBCL)
and follicular lymphoma (FL). In a phase 2 clinical trial
of nivolumab in relapsed or refractory DLBCL, ORR of
monotherapy was 3% and 10% in transplant-ineligible
patients and relapsed patients after autologous SCT, re-
spectively [51]. The efficacy of nivolumab and ibrutinib
(a Bruton’s tyrosine kinase inhibitor) combination has
been evaluated in relapsed or refractory NHL (DLBCL
and FL) and chronic lymphocytic leukemia patients.
However, overall response of the combination was com-
parable to that of ibrutinib monotherapy [76], suggesting
that PD-1 blockade had limited contribution to disease
control. Indeed, PD-1 blockade in combination with
rituximab has been shown to be effective in rituximab
refractory FL [52]. However, ICB can also be utilized to
prime the immune system prior to such tumor-targeted
therapies. In fact, this concept was trialed in a phase 2
study in treatment of naïve FL patients using a combin-
ation of nivolumab and rituximab [53]. Interim analyses
indicate an ORR of 84% with 47% achieving CR, suggest-
ing a favorable toxicity profile along with high overall
and complete response rates [53].
Differential responsiveness to PD-1 blockade between

DLBCL patients and HL patients can be primarily ex-
plained by their different levels of immune infiltration.
Indeed, the transcriptional and histological comparison
of the immune microenvironment between HL and
DLBCL showed an immunologically “cold” (or “non-in-
flamed”) TME in DLBCL in contrast to the “hot” (or “in-
flamed”) TME in HL [77]. Of note, in DLBCL patients
treated with rituximab-based standard chemo-
immunotherapy (R-CHOP), high infiltration of T cells
predicts better prognosis, whereas the presence of PD-
1high T cells predicts poor prognosis [78, 79] indicating
that anti-lymphoma immunity still plays an indispens-
able role for disease control against immunologically
cold DLBCL.
The immunologically “cold” TME is created by tumor-

intrinsic factors such as high proliferation rate of lymph-
oma cells and oncogene-driven immune exclusion [70].
Various factors are reported to be associated with im-
munologically “cold” TME such as double rearrangements

ofMYC and BCL2 and/or BCL6 [80], deletion or mutation
of PTEN [81], and Epstein-Barr virus-related subtypes
[82]. Above all, several lines of evidence suggest that
EZH2 mutations critically contribute to immune exclusion
phenotypes. It is reported that MHC-I and MHC-II are
lost in 40–60% and 20–40% of DLBCL patients, respect-
ively, and EZH2 mutations are highly enriched in MHC-
deficient subsets of patients [83]. The EZH2-mediated si-
lencing of genes related to MHC-I expression is impli-
cated in immune evasion in a wide range of other
malignancies, as Burr et al. also demonstrated this im-
mune evasion mechanism by a whole genome CRISPR/
Cas9 screen [84]. Thus, inhibition of EZH2 activity by a
small molecule inhibitor might be a potential approach to
sensitize tumor cells to T cell-mediated anti-tumor
immunity.
As seen in HL, EBV has also been linked to a number of

malignant NHLs [85]. In a recent study, Kim et al. re-
ported that more patients with EBV-positive NHL
responded to pembrolizumab than EBV-negative subtypes
[86]. Moreover, high PD-L1 expression was reported in
EBV-positive NHL as compared to EBV-negative NHL
[86]. In agreement with this, Kataoka et al. recently
reported a high frequency of PD-L1/PD-L2 containing
somatic aberrations in various EBV-positive lymphoma
subtypes [87]. In addition, a distinct pattern of somatic
alterations in EBV-positive DLBCL was reported where
the genetic profile was found to be distinct from EBV-
negative DLBCL [87]. While ICB in treating virus-
associated cancers appears promising, more clinical trials
are needed to verify if viral infections such as EBV can
effectively predict ICB efficacy.
Another important tumor-intrinsic factor is gene alter-

ations (amplifications or translocations) of PD-L1 that are
observed in ~ 25% of DLBCL patients (especially the non-
germinal center type) [88]. This DLBCL subset with
aberrantly overexpressed PD-L1 is characterized by high
infiltration of clonal T cells and low expression of tumor
MHC-I. While patients with this type of DLBCL show in-
ferior progression-free survival following front-line
chemo-immunotherapy, they show, strikingly, good re-
sponsiveness to PD-1 blockade [88]. Thus, PD-L1
alterations may be a useful biomarker in predicting re-
sponsiveness to PD-1 blockade in DLBCL patients. Still, it
remains unknown how we can overcome therapeutic re-
sistance in patients with the immunologically “cold”
DLBCL (low T cell infiltration and low MHC expression
on tumor cells). Blockade of innate checkpoint molecules
in combination with rituximab might be a possible ap-
proach to augment NK cell-mediated antibody-dependent
cellular cytotoxicity (ADCC) and macrophage-mediated
antibody-dependent cellular phagocytosis (ADCP).
NK/T cell lymphomas have a distinct immunopheno-

type, and PD-1 blockade has shown some efficacy in
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relapsed or refractory NK/T cell lymphomas [89]. In a
recent retrospective study of seven patients with relapsed
or refractory NK/T cell lymphomas treated with pem-
brolizumab at diagnosis, the ORR was reported to be
57.1% with a complete response occurring in 2 patients
[90]. Large scale trials are warranted to further assess
long-term clinical responses. Notably, modest responses
to single agent PD-1 blockade have been observed in
peripheral T cell lymphomas (PTCL) [91]. Indeed, muta-
tions in epigenetic modifier genes are often observed in
PTCL, and such mutations may promote immune es-
cape. To this end, a recent phase I/II trial combined
pembrolizumab and a histone deacetylase inhibitor in re-
lapsed or refractory PTCL patients [54]. From the 15
evaluable patients, 3 were complete responders that
remained in remission for at least 10 months [54]. These
early findings are encouraging, and therefore, further ef-
fort in this direction should be pursued. Furthermore,
some responses to ICB have also been reported in pa-
tients with common subtypes of cutaneous T cell lymph-
omas. PD-1 blockade led to an ORR of 38% in patients
with mycosis fungoides or Sézary syndrome in a phase 2
trial demonstrating a favorable safety profile and modest
anti-tumor activity [55]. Notably, some flare reactions
such as worsening of erythema were reported in patients
with Sézary syndrome, and such skin flare reactions were
found to be associated with high PD-1 expression on cir-
culating Sezary cells before therapy [55]. Although high
PD-1 expression may be an effective predictor of this re-
action, further validation is warranted. On the contrary,
PD-1 blockade led to rapid progression in patients with
adult T cell leukemia/lymphoma (ATLL) in a recent
study [92]. Rapid clonal expansion of malignant T cells
was observed in patients treated with PD-1 blockade,
suggesting a tumor-intrinsic regulatory role of PD-1 in
ATLL [93]. This is in line with a previous report from a
T cell lymphoma mouse model where PD-1 activity en-
hanced PTEN levels, and PD-1 deletion after an onco-
genic insult resulted in aggressive lymphomas in vivo
[94]. These data highlight the growing need to mechan-
istically understand the underlying mechanisms of ICB
as we attempt to extend their promise to an ever-
increasing list of malignancies.

Multiple myeloma
Multiple myeloma (MM) remains an incurable malig-
nancy, and new immunotherapeutic approaches are ac-
tively being tested. In relapsed and refractory MM
patients, an early clinical trial supported good efficacy
(ORR 44%) with an acceptable safety profile of pembroli-
zumab, lenalidomide (an immunomodulatory imide drug:
IMiD), and low dose dexamethasone [56]. However, the
combination of pembrolizumab and IMiD showed un-
favorable benefit-risk profile in following phase III trials in

relapsed and refractory MM (KEYNOTE-183) and newly
diagnosed MM (KEYNOTE-185) [57, 58].
It remains poorly understood why PD-1 blockade

failed to show clinical benefits in MM patients. As MM
predominantly grows in the bone marrow (BM), the
unique TME in the MM BM might be implicated in
therapeutic resistance [95]. One of the key factors is an
altered T cell phenotype in the MM BM. In general, T
cell subsets with a senescent phenotype represent dys-
functional T cells in the TME and often result in hypo-
responsiveness to ICB therapy [96]. A recent scRNA-seq
analysis of the MM immune microenvironment showed
that a senescent T cell subset emerges in a premalignant
state (i.e., smoldering MM) [97], indicating that symp-
tomatic MM patients already have dysfunctional T cells
at diagnosis. Moreover, dysfunctional T cells are in-
creased in patients who experience relapse after autolo-
gous SCT [98] indicating that there is difficulty in
reinvigorating T cells in relapsed and refractory MM pa-
tients. Another key barrier for anti-tumor immunity is
immunosuppressive subsets in the TME. As myeloid
cells and their progenitors abundantly exist in the BM,
MM progression triggers conversion of these cells into
myeloid-derived suppressor cells (MDSCs). Indeed, the
transcriptional landscape in MM patients revealed an in-
verse correlation between MDSC-related genes and cyto-
toxic lymphocyte-related genes suggesting that MDSCs
might contribute to T cell exclusion in the MM BM
[99]. MM-associated Tregs are important targetable
immunosuppressive cells since CD38+ Tregs can be
depleted by daratumumab (anti-CD38 mAb) [100].
However, a phase 1 clinical trial of daratumumab in
combination with anti-PD-1 mAb (JNJ-63723283) in re-
lapsed and refractory MM (MMY2036, NCT03357952)
was terminated due to limited clinical responses with in-
creased adverse events in the combination group
compared to daratumumab monotherapy.
While PD-1 blockade has not demonstrated clinical

benefits in MM patients, it is noteworthy that some pa-
tients achieved long-term remissions after stopping
pembrolizumab in clinical trials [101]. Thus, further in-
vestigations are necessary to predict responder patients.
Alternatively, T cell immunoreceptor with Ig and ITIM
domains (TIGIT) has emerged as an important immune
checkpoint on MM T cells [102]. The inhibitory mecha-
nisms of this new immune checkpoint will be discussed
later in this review.

Myeloid malignancies
Early phase 1 trials showed lack of efficacy of anti-PD-1
mAb as monotherapy in patients with acute myeloid
leukemia (AML) [103] or high-risk myelodysplastic syn-
drome (MDS) [104]. Similarly, CTLA-4 blockade using
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ipilimumab failed to show clinical benefits in high-risk
MDS patients [105].
Although these early trial results are disappointing, ipili-

mumab treatment after allogeneic-hematopoietic stem cell
transplantation (HSCT) showed good responses in 22 pa-
tients with various hematological malignancies including
12 AML patients (CR 23% in 4 patients with extramedul-
lary AML and 1 with MDS developing into AML) [59],
suggesting that ipilimumab can augment graft-versus-
leukemia (GvL) effects. Of course, the key concern
remains to be immune-related adverse events (irAEs), es-
pecially graft-versus-host disease (GVHD). However,
among 22 patients, 3 patients in total developed GVHD (1
patient with grade II acute GVHD of the gut and 2 pa-
tients with chronic GVHD of the liver) which was able to
be controlled by glucocorticoids [59]. PD-1 blockade after
allogeneic HSCT is also being tested, but so far, it has
shown modest clinical benefits [106].
Another potential approach to improve ICB efficacy is

using a hypomethylating agent (HMA) such as azacyti-
dine. Azacytidine is clinically approved for MDS and
AML and has shown immunomodulatory effects includ-
ing upregulation of MHC-I. In a recent trial, the com-
bination of nivolumab and azacytidine showed an ORR
of 33% and CR rate of 22% in 70 patients with relapse/
refractory AML [60]. Intriguingly, while high infiltration
of effector T cells before therapy predicted good respon-
siveness to the combination therapy, an increase in
CTLA-4+ effector lymphocytes after treatment predicted
non-responder patients [60]. The combination of HMAs
and PD-1 blockade are currently being tested in several
trials [106], but co-blockade of PD-1 and CTLA-4 may
potentially overcome therapeutic resistance.
Immune dysregulation in AML remains incompletely

understood as it might be differentially organized and
depends on multiple factors such as tumor subtypes,
presence or absence of the MDS state, patients’ age, and
treatment history. Kong et al. originally showed high
TIGIT expression on CD8+ T cells in AML patients, and
that siRNA mediated TIGIT knockdown can reinvigor-
ate cytokine production suggesting that TIGIT is
expressed on dysfunctional T cells [107]. Another inde-
pendent group also showed that PD-1+ TIGIT+ CD8+ T
cells with low expression levels of DNAM-1 (DNAX
accessory molecule 1 or CD226) represent dysfunctional
T cells [108], further providing evidence that TIGIT rep-
resents a key checkpoint molecule in AML. In terms of
mechanisms of immune escape after HSCT, Christopher
et al. recently performed exome sequencing on paired
samples obtained at diagnosis and at post-HSCT relapse
demonstrating that downregulation of MHC II-related
genes is a key feature of relapsed AML [109]. This result
suggests that CD4+ T cells might play a critical role for
controlling relapse. Thus, it might be possible to

augment CD4-mediated GvL effects by blockade of
LAG-3-MHC-II interaction. Another immune check-
point TIM-3 is also expressed on AML T cells [110], but
tumor TIM-3 has a unique tumor-intrinsic role, as
discussed later. Thus, TIGIT, LAG-3, and TIM-3 are
differentially implicated in AML immune-regulation and
are rational therapeutic targets in combination with PD-
1 blockade and/or CTLA-4 blockade.
Compared to MDS and AML, therapeutic benefits of

ICB may be better achieved in myeloproliferative
neoplasms (MPNs), a heterogeneous group of diseases
characterized by clonal expansion of myeloid cells.
Significant advances have been made to control disease
progression by targeting JAK2, one of the key driver mu-
tations in MPNs. However, it is still challenging to treat
high-risk patients who are refractory to JAK1/JAK2 in-
hibitors [111]. Prestipino et al. showed that JAK2 muta-
tions can trigger the overexpression of PD-L1 on
myeloid cells, leading to metabolic and functional im-
pairment of T cells [112]. Importantly, PD-1 blockade
improved survival in human MPN xenograft and pri-
mary murine MPN models [112] suggesting potential
roles for immunotherapy in MPNs. Another notable as-
pect is immunogenicity of MPNs. The JAK2V617F mu-
tation is seen in > 50% of patients with MPNs, and this
mutation-associated neoantigen can elicit tumor-specific
CD8+ T cell responses [113]. Somatic frameshift muta-
tion of the calreticulin gene (CALR) is another MPN-
restricted key driver mutation found in 67% and 88% of
patients with essential thrombocythemia and primary
myelofibrosis respectively [114]. These CALR mutations
induce a shared MPN-specific neoantigen leading to the
generation of mutant calreticulin–specific T cell re-
sponses [115, 116]. Thus, due to the unique immuno-
genicity and induction of neoantigen-specific T cell
responses, ICB might play an important role for disease
control in MPNs. However, further clinical investiga-
tions are warranted.

Beyond PD-1 and CTLA-4 blockade
Therapeutic blockade of PD-1/PD-L1 or CTLA-4 has
shown clinical benefits in only certain types of
hematological malignancies such as HL. Obviously, inhi-
biting different immune checkpoint molecules on T cells
(such as LAG-3, TIM-3, and TIGIT) can be a potential
approach since these molecules inhibit T cell responses
in a non-redundant manner (Fig. 3).

LAG-3
Lymphocyte-activation gene 3 (LAG-3, CD223) is a
transmembrane protein reported to be primarily
expressed on tumor-infiltrating T cells. It consists of
four extracellular immunoglobulin (Ig)-like domains
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(D1–D4) with high homology to CD4 [117], and it binds
to complexes of peptides and MHC-II [118].
Although the impacts of LAG-3-MHC-II interaction

on CD4+ T cell immunity have been well studied, it was
poorly understood as to how LAG-3 negatively regulates
CD8+ T cell-mediated anti-tumor immunity [119, 120].
Recently, Wang et al. identified fibrinogen-like protein 1
(FGL1) as a high affinity soluble ligand for LAG-3 and
reported that FGL1-LAG3 interaction critically impedes
CD8+ T cell-mediated anti-tumor immunity [121].
While FGL-1 is upregulated in solid tumor tissues such
as lung, prostate, and breast cancer [121], it remains
unknown whether hematological malignancies also pro-
duce abundant FGL-1. It should be noted that unlike
solid tumor cells, hematological tumor cells frequently
express MHC-II, and thus, the LAG-3-MHC-II inter-
action still plays a key inhibitory role in CD4+ T cell-
mediated control. As LAG-3 is frequently co-expressed
with PD-1 in tumor infiltrating lymphocytes, combined
efficacy of PD-1 and LAG-3 blockade (NCT03005782
and NCT02061761) or a bispecific antibody against PD-
1 and LAG-3 (NCT03219268) are actively being investi-
gated in various types of malignancies including blood
cancers. More recently, Keane et al. investigated LAG-3
expression in DLBCL patients. Indeed, LAG-3 was co-
expressed with PD-1 on Tregs and CD8+ T cells;

however, strikingly, LAG-3 expression was also observed
on tumor-associated macrophages and a proportion of
malignant B cells [122]. In addition to the clinical
efficacy of dual PD-1 and LAG-3 blockade, functional
impacts of myeloid LAG-3 and tumor-intrinsic LAG-3
will require further investigation.

Tim-3
TIM-3 (T cell immunoglobulin and mucin domain 3) is
often co-expressed with PD-1 on tumor infiltrating T
cells and has been recognized as a potential target for
combination blockade with PD-1 [123–125]. TIM-3 sig-
naling can induce tolerance in T cells upon recognition
of its major ligand (galectin-9) [126] that is widely
expressed in various types of malignancies including
blood cancers. While TIM-3 acts as one of the T cell im-
mune checkpoint molecules, TIM-3 on non-lymphoid
cells is also implicated in immune-regulation. In preclin-
ical breast cancer models treated with paclitaxel and
anti-TIM-3 mAb, TIM-3+ intra-tumor CD103+ dendritic
cells (DCs) are a key target subset that can mobilize
CD8+ T cells via CXCL9 production in response to the
combination therapy [127]. Additionally, by analyzing
tumor tissues from NHL patients, Huang et al. showed
that TIM-3 is highly expressed on endothelial cells (ECs)
in the lymphoma microenvironment. Importantly, TIM-

Fig. 3 Negative regulators of T cell immunity other than PD-1 and CTLA-4. Schematic illustrating receptors and their ligands regulating T cell
immunity. Multiple immune checkpoint molecules are differentially implicated in the regulation of activated T cells including LAG-3, TIM-3, and
TIGIT. Plus and minus signs denote stimulatory and inhibitory signaling respectively. Single-headed and double-headed arrows denote uni-
directional and bi-directional signaling respectively. APC, antigen-presenting cell; TCR, T cell receptor; LAG-3, lymphocyte-activation gene 3;
CD112R, CD112 receptor; MHC, major histocompatibility complex; FGL1, fibrinogen-like protein 1; DNAM-1, DNAX accessory molecule 1; TIGIT, T
cell immunoreceptor with Ig and ITIM domains; TIM-3, T cell immunoglobulin mucin-3
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3 on ECs inhibits CD4+ T cell-mediated immunity, and
thus, high expression levels of TIM-3 on the endothe-
lium are associated with advanced stage and higher
international prognosis index scores [128]. Another not-
able role of TIM-3 is its tumor-intrinsic function in
AML. TIM-3 is one of the markers highly expressed on
leukemia stem cells [129], and tumor-derived galectin-9
promotes self-renewal in an autocrine manner [130].
Since TIM-3 is highly expressed on T cells in AML pa-
tients [110, 131], TIM-3 blockade might have multiple
therapeutic benefits in AML. In a phase 1 clinical trial of
anti-TIM-3 mAb with or without anti-PD-L1 mAb in
patients with advanced cancers, both monotherapy and
combination therapy showed a good safety profile [132].
Given the broad expression of TIM-3 on innate and
adaptive immune cells, endothelial cells, and certain
types of tumor cells, it is possible that TIM-3 blockade
might have pleiotropic effects. Further studies are war-
ranted to understand the expression and function of
TIM-3 in disease-specific tumor microenvironments.

TIGIT
An activating receptor DNAM-1 (CD226) on cytotoxic
lymphocytes plays a critical role for recognition and
elimination of tumor cells by recognition of its ligand
CD155 and CD112. Its inhibitory counterparts, TIGIT
and CD96, also share CD155 as a ligand, and thus, these
inhibitory receptors negatively regulate DNAM-1-
dependent functions [133]. CD112, on the other hand,
can also bind to the co-inhibitory CD112 receptor
expressed on T cells where it can compete with CD226
binding to CD112 [134]. Among these receptors, TIGIT
has the highest binding affinity to CD155. Of note, TIGI
T-mediated inhibitory functions are explained by mul-
tiple mechanisms beyond competition with DNAM-1 for
CD155 binding. At the interface between T cells and
APCs, the TIGIT-CD155 interaction can bi-directionally
inhibit T cells and APCs [135]. Moreover, TIGIT+ Tregs
potently suppress anti-tumor immunity [136]. Although
crucial inhibitory mechanisms remain unknown, grow-
ing evidence suggests that TIGIT is a key T cell immune
checkpoint in hematological malignancies. As described
earlier, DNAM-1lowPD-1+TIGIT+ subset represents
dysfunctional T cells in AML patients, and an increased
frequency of this subset predicts poor prognosis in AML
patients [108]. In MM, TIGIT is the most frequently up-
regulated checkpoint molecule among PD-1, CTLA-4,
LAG-3, and TIM-3, and TIGIT+ T cells represent a
dysfunctional T cell subset [102]. In a mouse Vk*MYC
MM model, DNAM-1lowPD-1+TIGIT+ dysfunctional T
cells are increased at post-transplant relapse [137]
suggesting that the emergence of dysfunctional T cells
might be tightly associated with immune escape.
Additionally, TIGIT also negatively regulates NK cell-

dependent control of tumors [138]. Since CD155 is
expressed in a broad range of malignancies including
blood cancers, therapeutic blockade of TIGIT might
have broad implications for immunotherapy against
hematological malignancies.

Innate checkpoints
ICB therapies such as anti-PD-1 and anti-CTLA-4
predominantly depend on T cells for their therapeutic
efficacy. However, multiple factors are implicated in
primary and acquired resistance including (1) low TMB
and neoantigen load, (2) low infiltration of tumor-
specific T cells, and (3) loss of β2M/MHC-I. In this light,
harnessing innate anti-tumor immunity by NK cells
[139] or macrophages [140] may be a potential approach
(Fig. 4).

NK cell inhibitory checkpoints
The activation of NK cells is regulated by a balance be-
tween activation receptor signaling and inhibitory receptor
signaling. While activation receptors such as NKG2D
(natural-killer group 2, member D) and DNAM-1
recognize ligands upregulated on malignantly transformed
cells, inhibitory receptors such as NKG2A (NK group 2
member A) and KIRs (killer cell immunoglobulin-like re-
ceptors) recognize non-classical MHC-I (HLA-E) and
classical MHC-I, respectively. Thus, NK cells can elimin-
ate transformed cells that express self-induced danger li-
gands “induced-self recognition” or abnormal cells that
lose MHC-I expression “missing-self recognition” [141].
NKG2A is expressed on both NK cells and T cells,

and its ligand HLA-E is frequently overexpressed in vari-
ous malignancies including DLBCL, MM, and AML
[142, 143] which allows tumor cells to evade from cyto-
toxicity. Indeed, an early clinical study demonstrated
that anti-NKG2A mAb (monalizumab) in combination
with cetuximab (anti-EGFR mAb) augments therapeutic
efficacy by enhancing ADCC in head and neck cancer
patients [144]. The therapeutic potential of NKG2A
blockade in combination with various mAbs with ADCC
activity requires further investigation in hematological
malignancies.
IPH2101 (1-7F9) is an anti-KIR mAb that inhibits the

interaction between KIRs (KIR2DL-1, KIR2DL-2, and
KIR2DL-3) and their HLA-C ligands. It showed a good
safety profile in phase I clinical trials [145, 146]; how-
ever, a subsequent phase II trial in smoldering MM pa-
tients showed limited clinical benefits as monotherapy
[147]. The combination of IPH2101 and lenalidomide
showed some responses in relapsed and refractory MM
[148]. Currently, the recombinant version with a stabi-
lized hinge, lirilumab (IPH2102/BMS-986015), is being
tested in various malignancies. Recently, a combination
of lirilimumab and nivolumab was trialed in a small
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number of patients with relapsed or refractory lymphoid
malignancies. The combination was unable to improve
on the already strong therapeutic efficacy of nivolumab
in cHL, and no therapeutic benefits of the combination
were recorded in an unselected cohort of NHL or MM
patients [149].

Macrophage phagocytosis checkpoints
Tumor-associated macrophages (TAMs) are educated to
promote tumor growth and immunosuppression, and
their abundance is often correlated with poor prognosis
in various types of malignancies including blood cancers
[140]. However, TAMs critically contribute to the

Fig. 4 Negative regulators of innate anti-tumor immunity. Schematic illustrating receptors and their ligands regulating anti-tumor immunity by
NK cells (top) and macrophages (bottom). In NK cells, inhibitory receptors that recognize MHC class 1 molecules are recognized as a potential
target to enhance NK cell-mediated cytotoxicity against tumors. Targeting macrophage phagocytosis checkpoints has also emerged as a
potential approach in combination with various cancer mAb therapies due to its potential in enhancing the elimination of antibody-coated
tumor cells. An immunosuppressive metabolite, adenosine, also potently inhibits innate and adaptive anti-tumor immunity. ADCP, antibody-
dependent cellular phagocytosis; ADCC, antibody-dependent cellular cytotoxicity; DNAM-1, DNAX accessory molecule 1; TIGIT, T cell
immunoreceptor with Ig and ITIM domains; NKG2A, NK group 2 member A; KIRs, killer-cell immunoglobulin-like receptors; HLA, human leukocyte
antigen; MHC, major histocompatibility complex; LILRB1, leukocyte immunoglobulin-like receptor B1; SIRPα, signal regulatory protein α, Siglec-10,
Sialic acid-binding Ig-like lectin 10
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therapeutic efficacy of cancer mAb-based therapies by
their Fc receptor-dependent ADCP activity. In this con-
text, several negative regulators of ADCP have been
identified, and blockade of “don’t eat me signals” has
emerged as a new approach to augment engulfment and
clearance of tumor cells by monocytes/macrophages
[150].
The interaction between signal regulatory protein α

(SIRPα) and its ligand CD47 is one of the best character-
ized “don’t eat me” signals. The SIRPα receptor contains
an immunoreceptor tyrosine-based inhibitory motif
(ITIM), and upon CD47 recognition, this receptor trans-
mits negative signals that attenuate phagocytic activity
[151]. While its ligand, CD47, is expressed on various
normal cell types, it is often found to be overexpressed
in malignant tumor cells. Indeed, growing preclinical
evidence supports that CD47 blockade augments lymph-
oma cell clearance either as monotherapy [152] or in
combination with rituximab [153]. Of note, CD47 block-
ade can also induce adaptive immunity by enhancing
DC-mediated cross-priming [152] suggesting that the
combination of CD47 blockade with ICB might also be a
rational approach. In a recent clinical trial, anti-CD47
mAb (Hu5F9-G4) in combination with rituximab has
shown good clinical responses in relapsed and refractory
NHL with a CR of 43% (in FL patients) and 33% (in
DLBCL patients) [154]. Given that these patients were
heavily pretreated, the efficacy of the combination is
promising. Importantly, on-target adverse events such as
anemia (due to phagocytosis of erythrocytes) were man-
ageable and transient which support its safety profile
[154]. Currently, several CD47 blocking agents are ac-
tively being tested in clinical trials in various types of
hematological malignancies. More recently, other media-
tors for “don’t eat me signals” have been identified such
as the interaction of LILRB1-MHC-I [155], Siglec-10-
CD24 [156], and immunosuppressive adenosine signal-
ing [157]. While their redundant and non-redundant
roles require further investigation, these phagocytosis
regulators are promising targets for enhancing ADCP
against hematological malignancies.

ICB and CAR T cell therapy
Chimeric antigen receptor (CAR) T cells are synthetic-
ally engineered T cells expressing a CAR that has the
target specificity to bind an antigen in an MHC-
independent manner [158]. Encouraging results from re-
cent trials with anti-CD19 CAR T cell therapies lead to
their FDA approval for treatment of relapsed or refrac-
tory B cell acute lymphoblastic leukemia (ALL) and
adult large B cell lymphoma [159–165].
Despite encouraging outcomes of anti-CD19 CAR T

cell therapies, poor T cell persistence remains to be a
major reason for relapse or a lack of response after CAR

T cell therapy. Indeed, only 29% of the CLL patients had
a CR to anti-CD19 CAR T cell therapy [166] in contrast
to the 90% CR rate reported in ALL patients [167].
Notably, non-responder CLL patients showed transcrip-
tional upregulation of genes related to apoptosis and
exhaustion while responder patients had lower propor-
tions of PD-1-expressing CAR T cells [168]. Moreover,
co-expression of PD-1 with LAG-3 or TIM-3 on CAR T
cells were associated with poor responses [168],
highlighting the critical role of T cell immune check-
point molecules for limiting CAR T cell activity. Still,
clinical benefits of combining PD-1/PD-L1 inhibitors
with CD19 CAR T cell therapy are yet to be determined
though this combination is thus far reported to have an
acceptable safety profile [169, 170]. Another recent trial
of CD19 CAR T cell therapy in combination with PD-1
blockade in 14 children with heavily pre-treated B-ALL
provided further evidence of the safety profile of this
combination therapy. In fact, 3 of 6 patients that
received CAR T cell therapy with a PD-1 inhibitor re-
established B cell aplasia, suggesting that PD-1 blockade
may prolong CAR T cell activity [171].
Alternatively, genetic modification of CAR T cells is

another potential approach to augment the efficacy of
CAR T cell therapy. Various “Armoured” CAR T cells
have been generated to express immuno-stimulatory
ligands and cytokines such as CD40 ligand [172], Fms-
like tyrosine kinase 3 ligand (Flt3L) [173], IL-12 [174,
175], and IL-18 [176]. To inhibit CAR T cell-intrinsic
PD-1, shRNA or engineering PD-1 dominant negative
receptors have been developed [177]. Additionally,
genome editing techniques such as CRISPR/Cas9 [178]
as well as TALEN [179] have also been used to delete
PD-1, and PD-1-deficient CAR T cells have shown
improved cytotoxicity in vivo [178]. However, off-target
cleavage and guide-RNA associated genotoxicity should
be thoroughly interrogated prior to clinical applications.
More recently, Rafiq et al. developed modified CAR T
cells that secrete PD-1-blocking single-chain variable
fragments (scFv). Notably, this approach has demon-
strated improved anti-tumor responses in addition to
mobilizing the bystander tumor-specific T cells in solid
and hematological malignancies [180]. It is possible that
the smaller size of scFvs locally released in the TME
may help reduce the risk of irAEs compared to systemic
ICB therapies.
Possibly, combination with inhibitory molecules such

as TIM-3 and LAG-3, in addition to PD-1 blockade, may
further improve CAR T cell function though much re-
mains to be studied to support the proof-of-concept.
Given the high incidence of cytokine release syndrome
associated with CAR T cell therapies [181], safety
concerns remain a major barrier to simultaneously target
multiple immune checkpoint molecules in combination.
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Nonetheless, safety strategies that can limit exacerbation
of toxicities should be considered such as the suicide
gene “safety switch” systems, including iCaspase-9,
already employed in clinical trials [182]. Efficient manu-
facturing of CAR T cell products remains another major
issue in patients with highly proliferative circulating
leukemic blasts with relatively fewer T cells available
[183]. To this end, off-the-shelf, allogeneic CAR T cells
or induced pluripotent stem cell (iPSC)–derived CAR T
products hold great potential to overcome problems
associated with CAR T cell production. Overall,
advances in genome editing as well as manufacturing
processes may lead to potentially curative therapies for
patients with hematological malignancies.

Concluding remarks
Although ICB therapies, particularly PD-1/PD-L1 block-
ade, are being actively tested in a number of hematological
malignancies, it remains to be fully understood why block-
ade of PD-1/PD-L1 shows efficacy in only limited tumor
types. The immunologically “cold” TME might act as a
major barrier for therapeutic blockade of T cell check-
points, and combining ICB with chimeric antigen receptor
(CAR) T cell therapy or bispecific T cell engagers is an ac-
tive area of investigation [184, 185]. Indeed, irAEs are a
major concern since cytokine-release syndrome is
frequently observed in patients treated with T cell-based
approaches. In addition to primary resistance, acquired re-
sistance mechanisms of ICB remain to be elucidated. Even
in patients with HL, most eventually experience disease
progression during anti-PD1 therapy [186]. Targeting
other T cell checkpoint molecules may be a potential ap-
proach to overcome acquired resistance. However, an in-
depth characterization of T cell function and checkpoint
molecules will be highly warranted to determine the opti-
mal therapeutic approach. Harnessing innate anti-tumor
immunity by NK cells and macrophages could be another
rational approach against tumors with downregulated
MHC-I expression. Again, a comprehensive understand-
ing of the immune microenvironment will provide a clue
for identifying biomarkers that can predict responsiveness
to ICB. Alternatively, a personalized approach may be ne-
cessary given that the disease-specific immune micro-
environment can be sculpted by multiple factors including
tumor genotypes, treatment history, and comorbidities in
patients. Therefore, a mechanistic understanding of the
role of tumor intrinsic and extrinsic modulators of thera-
peutic response will hopefully inform avenues for durable
disease control from ICB with minimal immune-related
toxicities.
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