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Abstract

It is well established that higher cognitive alilis associated with larger brain size.
However, individual variation in intelligence exdsdespite brain size and recent studies have
shown that a simple unifactorial view of the neuotdgy underpinning cognitive ability is
probably unrealistic. Educational attainment (EA)aften used as a proxy for cognitive
ability since it is easily measured, resultingange sample sizes and, consequently, sufficient
statistical power to detect small associationss Biuidy investigates the association between
three global (total surface area (TSA), intra-cahniolume (ICV) and average cortical
thickness) and 34 regional cortical measures wdlincational attainment using a polygenic
scoring (PGS) approach. Analyses were conductetivonindependent target samples of
young twin adults with neuroimaging data, from Aaba (N=1,097) and the USA (N=723),
and found that higher EA-PGS were significantlyoassted with larger global brain size
measures, ICV and TSA tR0.006 and 0.016 respectivelp<0.001) but not average
thickness. At the regional level, we identified eevcortical regionsin the frontal and
temporal lobesthat showed variation in surface area and averaggcal thickness over-
and-above the global effect. These regions haven Webustly implicated in language,
memory, visual recognition and cognitive processiAdditionally, we demonstrate that
these identified brain regions partly mediate tegoaiation between EA-PGS and cognitive
test performance. Altogether, these findings adeana understanding of the neurobiology
that underpins educational attainment and cognéahiéty, providing focus points for future

research.

Keywords: educational attainment, brain structpodygenic scores, intelligence, Broca’s
area
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Introduction

It's widely understood that significant differencescognitive ability exist between human
beings. However, the biological aetiology behing thariation remains somewhat elusive.
The advent of brain imaging has enabled the ingattin of neural substrates for human
cognitive abilityin vivo, leading to the identification of several anatorhi@ad functional
correlates of cognitive ability (Jansen et al.,2®nol et al., 2019; Schmitt et al., 2019).

Previous evidence has suggested that healthy thdils with higher intelligence tend to have
larger brains. The first published study examinintglligence and brain size reported a
correlation of 0.5 in a group of college studenddillerman, Schultz, Rutledge, & Bigler,
1991). However, these estimates lessened as sainptegrew and associated variables, such
as height and socio-economic status (SES) weradedl in analyses. Several recent studies
have estimated the correlation between intelligemcé intra-cranial volume (ICV) to be
between 0.2 and 0.4 (S. Cox, Ritchie, Fawns-RitcAiacker-Drob, & Deary, 2019;
MacLullich et al., 2002; McDaniel, 2005; PietschnRenke, Wicherts, Zeiler, & Voracek,
2015; Rushton & Ankney, 2009), with the two largestidies to date (N=13,600 and
N=8,000) reporting a correlation of 0.19 (Nave, glukarlsson Linnér, Kable, & Koellinger,
2019) and 0.24 (Pietschnig et al., 2015) respdgtivdthough these correlation estimates are
modest, the association between brain size antligetece appears to be almost entirely due
to genetics (Koenis et al., 2018; Posthuma e2@02).

Twin studies leverage the shared genes betweensilings to disentangle the genetic and
environmental influences behind phenotypic varighibnd have contributed substantially to
the current understanding of cognitive neurobiolofwyin analyses have found that general
cognitive ability positively correlated both pheyaitally and genetically with total surface
area (TSA) however, no correlation was observedh waverage cortical thickness
(Vuoksimaa et al.,, 2014; Walhovd et al., 2016). #ddally, the positive association
between cognitive ability and TSA remained sigmifitthroughout the lifespan (Walhovd et
al., 2016). Though reportedly uncorrelated at dagldevel, some studies have found regional
variability in the correlations between averagetical thickness and cognitive ability,
reporting both positive and negative correlatidPanizzon et al., 2009; Winkler et al., 2010).
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Several neuroimaging studies suggest that genaelligence, termedy’, is most strongly
associated with grey matter volume measures frapta-frontal cortex, language centres in
the fronto-parietal network and specific regionghe temporal and occipital lobes (Basten,
Hilger, & Fiebach, 2015; Glascher et al., 2010;gl8nHaier, 2007). The morphometry of
these regions is also highly heritable in bothdreih (Lenroot et al., 2009) and adults (Rimol
et al.,, 2010; Thompson et al., 2001). In additibmin studies have reported that a high-
expanded surface area (SA) in prefrontal, latexalporal and inferior parietal regions was
positively associated with general cognitive api(¥uoksimaa et al., 2016; Walhovd et al.,
2016) and that these regions exhibit cortical stieg, where increased SA is accompanied
by a thinner cortex. Other cerebral features, sagstructural and resting-state connectivity
(Dubois, Galdi, Paul, & Adolphs, 2018), white matieicrostructure (Chiang et al., 2009),
the magnitude of local coherence (synchronizedtfanal activity between regions) (Fjell et
al., 2015; Wang, Song, Jiang, Zhang, & Yu, 2011 aeural network efficiency (Neubauer
& Fink, 2009; Santarnecchi, Galli, Polizzotto, RpgsRossi, 2014; Van Den Heuvel, Stam,
Kahn, & Pol, 2009) have also been associated wehegnl intelligence, highlighting
potential functional mechanisms underlying indiatu variability in intelligence
(Santarnecchi & Rossi, 2016). To add further coxiplethe regional association of brain
structure with intelligence may change across ifiesgan (Fjell et al., 2015). For instance,
cortical surface area, the prefrontal cortex antkréor cingulate cortex are most strongly
associated with intelligence in children (Reiss,rakbs, Singer, Ross, & Denckla, 1996;
Schnack et al., 2014; Wilke, Sohn, Byars, & Hollag@03), while the orbitofrontal and
middle frontal cortices are most strongly assodiatéh intelligence in adolescents (Frangou,
Chitins, & Williams, 2004). For cortical thicknegbe association with intelligence changes
with age, with the strength of these associati@gmearing to peak around age 12 (Schmitt et
al., 2019; Shaw et al., 2006). These findings ptinspecific age-mediated structural and
functional anatomical events associated with cogniability (Fjell et al., 2015). Together
these findings indicate that a simple unifactonaw of the neurobiology underpinning
cognitive ability is unrealistic, and that the tedaship is far more dynamic and nuanced.

Intelligence is somewhat malleable through intetiegral strategies that include education,
improved diet and positive home environments (BrigcGalloway, 2012; Protzko, 2016).

These correlates may be important mediators oa¢lseciation between cognitive ability and
neurobiology. For example, children from lower imefamilies showed greater variation in

cortical surface area and thickness than those Figimer income families in the U.S. (Noble
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et al.,, 2015). These relationships were most prentinn regions supporting language,
reading, executive functions and spatial skillsviEothmental variables such as these, which
are themselves influenced by genetics (Lee et28l8; Lemery-Chalfant, Kao, Swann, &
Goldsmith, 2013; Liu, 2019), add to the complexafyunravelling observed relationships

between cognition and brain phenotypes.

Due to the recent availability of large genome-wadsociation studies (GWAS) of cognitive-
related phenotypes, the relationship between ig&lte and its neurobiological correlates
can now be examined at the molecular level. Resenties have given weight to previous
twin research and found shared genetic factors d@ivwcognitive traits and brain imaging
phenotypes, such as total brain size and cortioclness (Elliott et al., 2018; Ge et al., 2018;
Schmitt et al., 2019). In fact, post-GWA studiesimtklligence and brain volume found a
genetic correlationrg) of 0.23, which mapped to 67 shared genes (Jagtseh, 2019), and
indicated that brain volume accounted for approxaiya2% of the variance observed in 1Q
and 1% in educational attainment (Nave et al., 20T8ese studies have predominantly
examined this relationship with global anatomicaasures yielding insights into the shared
genetic aetiology between neuroanatomy and cognétbility (Santarnecchi & Rossi, 2016).
Even so, the phenotypic and genetic correlationsvd®n regional cortical areas and
cognitive ability have not been thoroughly explo{&tasby et al., 2018). Thus, further fine-
scale analysis is required to ascertain the extemthich the genetics influencing cognitive

ability affects the structure of individual corticagions.

Educational attainment (EA), defined as the numdiefull-time years of education an
individual receives, is a useful proxy trait forgoative ability and is associated with
important health-related and life outcomes such oasupational success, social and
geographic mobility, mate choice and even the agedividual acquires reading and writing
skills  (Belsky et al., 2016; Plomin & von StummQ1B). EA is correlated both
phenotypically (0.50) and genetically (0.65) wittielligence (Plomin & von Stumm, 2018;
Rietveld et al., 2014) but is regarded as a contionaf both cognitive and non-cognitive
skills, and is influenced by both genes and thdarenment (Belsky et al., 2018; Krapohl &
Plomin, 2016). For instance, parents’ polygeniaasdor educational attainment (EA-P&S)
were shown to still predict their children’s EA evafter adjusting for the child’s own EA-

LA polygenic score (PGS) is an individual’s cumulative genetic score for a complex trait. PGS are derived from
aggregating the contributions of all known trait-associated genetic variants (Sugrue & Desikan, 2019).

5
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PGS, substantiating an effect of parental envirartroa children’s EA (Belsky et al., 2018).
Additionally, children with higher EA-PGS often dlay more social mobility and surpass
their parents’ occupational success (Belsky et 2018). As ‘years of education’ is a
commonly obtained demographic marker collected Imoat every population or clinical

GWAS study, a recent educational attainment metdyais (termed EA3) was able to
aggregate a sample size of 1.1 million people ngiwinparalleled statistical power (Cesarini
& Visscher, 2017; Lee et al., 2018).

While the current literature suggests that gengtiesroanatomic specificity, and age are all
critical to understanding the neural substratestelligence, few studies have addressed this
using large-scale genetic data. Studies of theedhgenetic aetiology between neuroanatomy
and intelligence have predominantly focused on @loheasures, perhaps due to the limited
statistical power of the GWAS of intelligence-relt phenotypes available at the time.
Although this is one of the first studies investigg the associations between the genes for
education and brain anatomy using a polygenic sgaapproach, a few recent studies have
used a similar approach of examining the associdteaween PGS for behavioural/cognitive
traits and neuroanatomy (Aydogan et al., 2019; Y@k al., 2017; French et al., 2015;
Matloff, Zhao, Ning, Conti, & Toga, 2019). This diuaimed to assess the association
between the genes related to education (as a goyxgeneral cognitive ability) and the
morphometry of specific cortical regions (3 glolald 34 regional). Secondly, we assessed
whether the established association between an G3-Bnd 1Q scores is mediated by

identified brain structures.
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Materials and M ethods

Participants

Two cohorts were examined in this study. The fidtort was th€@ueensland Twin Imaging
Study(QTIM) (Blokland et al., 2014) consisting of 118bistralian twins and siblings. As it
has previously been shown that the EA-PGS (caledl&tom European ancestry GWAS),
has poor predictive ability in non-European samfle® et al., 2018), the cohort was filtered
by genetic ancestry, determined using principal moment analysis, resulting in a final
sample of 1097 participants included in this stu@yincipal component analysis was
performed to identify ancestry outliéraising SmartPCA 1600 in EIGENSOFT 7.2.1
(https://www.hsph.harvard.edu/alkes-price/softwar@&his ensured that individuals in the

analysis were of European descent by excludingethdividuals who were more than 6 s.d.
from the principal component 1 and 2 centroid frin@ 1000 Genomes European population
(68 individuals excluded). Thus, the final sampieluded 176 MZ pairs, 228 DZ pairs, 212
unpaired twins and 77 siblings, with a mean ageaf3 years (s.d.=3.3, range 16-30).
Written informed consent was obtained from eachigpant and from a parent or legal
guardian for participants under the age of 18. éfilthese individuals had previously
participated in the Brisbane Twin Memory and Cagnitstudy at age 16 (Wright & Matrtin,
2004). Thus, additional information was available general cognitive ability (full-scale
intelligence quotient; FIQ), as well as Verbal &etformance 1Q (VIQ and PIQ). The mean
interval between cognitive testing and magnetiomasce imaging (MRI) scanning was 4.4
years (range 0-14 years). Gestational durationh bieight, and parental socioeconomic
status were also obtained from parental reportdivitiuals with significant medical,
psychiatric, or neurological conditions—includingada injuries, a current or past diagnosis
of substance abuse, or current use of medicat@incttuld affect cognition—were excluded
from participating in the study. Zygosity was detared using genome-wide single

nucleotide polymorphism (SNP) genotyping chipsu(ilina 610K).

The second cohort was from tHeman Connectomeroject(HCP) (Van Essen et al., 2013),
which consists of 1,113 ethnically-diverse adultsnarily from Missouri, USA (mean age

28.8, s.d.=3.7, range 22-37 years) with imaging datilable. Individuals of non-European

2 Systematic differences in genetic variant frequencies can occur in samples that contain individuals from
different ancestry populations, which can confound results of GWAS. Genetic principal component analysis
(PCA) can be used to identify individuals in different ancestry groups so they can be excluded from analyses.
For more information see: (Abegaz et al., 2019; Price et al., 2006; Price, Zaitlen, Reich, & Patterson, 2010)

7
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ancestry were filtered according to i) their selported race (white) and ethnicity (not
Hispanic/Latino) and ii) genetic ancestry deterrdinging principal components analysis (as
described for the QTIM cohort). Thus, the final HE&Mmple analysed in this study consisted
of 723 white, non-Hispanic/Latino individuals, meage 29.1 s.d.=3.5, range 22-36 years ,
consisting of 119 MZ and 64 DZ pairs, 96 singletoasd 261 siblings (390 individuals
excluded). All subjects were scanned on a custai®@ scanner at Washington University
in St Louis (WashU). Genotyping was performed oa Htumina Infinium HD beadchip.
Demographic and behavioural information, includihgd and crystallized IQ scores, was
also collected. Demographic information for bothIgTand HCP cohorts are shown in Table
1.

Table 1: Demographic information for QTIM and HCP samples
QTIM Sample HCP Sample
Females Males Total Females Males Total
Full sample (N) 683 414 1097 384 339 723
Twins (N) 631 389 1020 234 228 462
MZ pairs (N) 106 70 176 62 57 119
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DZ pairs (N) 125 103 228 35 29 64
Age (s.d.) 22.2(3.3) 22.4 (3.4) 22.3(3.3) 29.9 (3.3) 28.1(3.5) 29.1(3.5)
FIQ/Fluid 111.8(12.1) 116.8(13.1) 113.6(12.7) 115.2(10.6) 117.1(11.3) 116.0(11)
Intelligence®
Height (cm) 166 (6.9) 180.7 (7.3)  171.5(10) 167 (6.6) 181.5(7.4)  173.7(10.1)
BMI (kg/mz) 22.8 (3.9) 23.9 (3.7) 23.2 (3.9) 25.6 (5.4) 27.0 (4.3) 26.8 (5.6)
Socio-Economic 53.3(20.9) 56.6(21.2) 54.6(21.1)  5.3(2.1) 5.5(1.9) 5.4 (2.0)
Status”
Total Surface Area 164049 184379 171229 165203 187667 175736
(mm?) (13046) (14713) (16759) (12741) (14511) (17622)
Average Thickness 2.5 (0.09) 2.5 (0.08) 2.5 (0.09) 2.7 (0.07) 2.7 (0.09) 2.7 (0.08)
(mm)

Parentheses indicate standard deviation

®Full-Scale Intelligence quotient (FIQ) measure®ifilM sample an average of 4 years prior to scanning
Fluid Intelligence measured in HCP sample at tifingcanning.

® Socioeconomic status (SES) is calculated on ther&lien Socioeconomic Index occupational statusesca
QTIM (scale 0-100) while SES in HCP was computddgig\come-to-poverty ratio based on self-reported
family income relative to poverty thresholds in theited States (scale 0-10).

Ethics Statement

The QTIM study was approved by the Human Reseatbic€£ Committees of the QIMR
Berghofer Medical Research Institute, the UnivgrsitQueensland, and Uniting Health Care
at Wesley Hospital. The HCP study was approved lgy internal review board of
Washington University (IRB # 201204036).

MRI acquisition and processing

QTIM cohort:

Imaging was conducted on a 4 Tesla Bruker Medspholavbody scanner (Bruker,
Germany) with a transverse electromagnetic (TEMadhe&oil in Brisbane, Australia.
Structural T1-weighted 3D images were acquired (I%0€ ms, TE=3.35 ms, TI=700 ms,
230 mm FOV, 0.9 mm slice thickness, 256 or 24@slidepending on acquisition orientation
(86% coronal [256 slices], 14% sagittal [240 sljzeSurface area and cortical thickness were
measured using FreeSurfer (v5.3; http://surfer.mgin.harvard.edu/) as previously described
(Fischl & Dale, 2000). Prior to FreeSurfer analydise raw T1-weighted images were
corrected for intensity inhomogeneity with SPM12 glome Trust Centre for
Neuroimaging, London, UK; http://www.fil.ion.ucl.atk/spm). Total surface area and
average cortical thickness were extracted for 3dors of interest (ROI) per hemisphere

from the Desikan-Killiany atlas (Desikan et al.,0B) contained within FreeSurfer. Three
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global measures, intra-cranial volume, total swefaea, average cortical thickness, were also
extracted. Cortical reconstructions and ROI lahgllivere checked using the standardised
procedures of the ENIGMA consortium (enigma.ini.ada) (Thompson et al., 2014), with
any incorrectly delineated cortical structures ddemg excluded from the analysis.

HCP Cohort:

Details of the specific processing procedures usedhe HCP dataset can be found in
previous articles (Glasser et al., 2013; Van Esteal., 2013). Briefly, for each subject in the
HCP a pair of T1-weighted scans and a pair of TRyated (T2w) scans were acquired, both
with a spatial resolution of 0.7 mm (isotropic vi®e All scans were quality-rated based on
visual inspection before processing, and only thofsexcellent quality in both categories
entered the processing pipeline. The HCP struchipsdlines used a specialized version of
FreeSurfer ‘FreeSurfer 5.3-HCP’ software. Regigirato atlas space included an initial
volumetric registration to MNI152 space using Fred&’s linear FLIRT tool, followed by
the nonlinear FNIRT algorithm to align subcortiséluctures. Cortical surfaces were aligned
further to population-average surfaces using FrdeBuo register each hemisphere to a
separate left and right hemisphere surfaces basddeamatching of cortical folding patterns
(Fischl et al., 1999) and landmark assisted reggistn using the Conte69 atlas (Van Essen et
al., 2012).

Left and right hemispheres were averaged for e&theo68 regions of the Desikan-Killiany
atlas (Desikan et al., 2006) in both cohorts rasylin a final 34 cortical ROI. This atlas was
chosen as it is a common output from Freesurferyalds larger regions based on common
cortical folding patterns resulting in regions theave clear boundaries and are largely
consistent between cohorts (Grasby et al., 2018graging the ROIs across hemispheres
was done primarily due to the high genetic corretabetween corresponding ROI in each
hemisphere (Strike et al.,, 2018; Wen et al., 20i6dlicating that variation between
corresponding ROI may be more environmental in neatind thus, not within the scope of
this study. Additionally, averaging across hemispbheeffectively halves the multiple testing
burden, an important consideration in genetic stwdvith relatively small associations -
especially in cohorts with smaller sample sizestlyaaveraging regions combats laterality
issues such as possible switching of left and rgRl scans and the need to account for

other confounding variables such as handedness.

10
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Computation of polygenic scoresfor educational attainment (EA-PGS)

Standard genotyping, imputation and quality conmalcedures for the QTIM sample have
been described previously (Colodro-Conde et all,820Briefly, quality-control, conducted
using PLINK 1.9 (Hwang et al., 2019), included resng minor allele frequency
(MAF<0.005), SNP call rate (>95%), ancestral ousliand Hardy-Weinberg equilibrium
deviation p<1x10° before imputation using the Haplotype Referenam®®rtium 1.1
reference panel. After imputation, prior to EA-P@8&culation, insertions and deletions,
ambiguous strands, and low-quality imputation vaga(R<0.6) were excluded. For the
HCP cohort, imputed genotypes in dosage format tteerHCP (dbgap: phg000988.v1) were
transformed to best guess using gtool

(https://www.well.ox.ac.uk/~cfreeman/software/gvegsol.html). QC procedures were

conducted as described for QTIM.

Summary statistics from the most recent EA GWAS IEA ee et al., 2018) were used to
calculate the EA-PGS for all individuals in the @T({N=1,097) and HCP (N=723) cohorts.
The EA3 GWAS comprised data from over a millionividuals (N=1,131,881) of European
ancestry from 71 independent cohorts across th&lwhas the QTIM cohort was included in

the EA GWAS, ‘leave-one-out’ summary statistics bk were required to avoid sample
overlap. Leave-one-out summary statistics were rgée@ by removing all individuals from

the Queensland Twin Registry (which includes thdMD€ohort) from the original dataset

and re-conducting the GWAS.

Using the leave-one-out summary statistics, EA-M@8& calculated using PLINK 1.9. SNPs
were clumped according to Purcetl al.2007 guidelines 0.1, kb=10000) to account for
linkage disequilibrium (Purcell et al., 2007). HidbA-PGSs were calculated using different
SNP p-value significance thresholdp<5x108, p<1x10°, p<0.001,p<0.01, p<0.05, p<0.1,
p<0.5, p<1. For each individual, at each threshold, EA-RGS calculated by multiplying
the dosage and effect size for each SNP, and te=me tvalues were summed across all loci.

For the number of SNPs included at epslalue threshold, see Supplementary Table 1.

Correlations between EA-PGS and examined phenotypes
Partial correlations between all EA-PGS threshadlds,three global brain measures, 1Q, and
educational attainment (available only in HCP ctharere assessed in SPSS 22.0 (SPSS

Inc., Chicago, IL, USA). One member from each fgmias selected to ensure individuals

11
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were unrelated to avoid dependency among residutign family. Significance values were
calculated using a two-tailed Studemttest (DF=979 in QTIM and DF=718 in HCP). All
correlations were corrected for sex and age amifsignce values were Bonferroni corrected

for multiple testing 1¢<0.05/ effective number of independent observajions

Polygenic score association analysis

The association between the genetic influencesdowational attainment and neuroimaging
phenotypes was assessed by estimating how mudieofariance in brain phenotypes was
accounted for by the EA-PGS in each cohort. Thigaimeuroimaging phenotypes of interest
were ICV, TSA and average cortical thickness. Mas done using a linear mixed model
regression with the EA-PGS as a predictor variatfile accounting for sex, age, age
sex*age, sex*ade the first ten genetic principal components (t@camt for residual
population stratification), and imputation run asefl effects; relatedness among individuals
was accounted for as a random effect with a genetatedness matrix, implemented in
GCTA 1.91.7 (Yang, Lee, Goddard, & Visscher, 20Yang, Zaitlen, Goddard, Visscher, &
Price, 2014). A partial Rwas used to estimate the variance explained bpdhgenic risk
score. Significance values were calculated usihgoatailed Student’s test. To correct for
multiple testing error, the effective number of epéndent observations (calculated from a
correlation matrix of 8 PGS thresholds x 3 ROIs)swastimated using Matrix Spectral

Decomposition (MatSpD) (Nyholt, 2004) before unaeng Bonferroni correction.

After assessing the association with global bragasures, EA-PGS were then tested for
association with surface area and average cotticainess for each of the 34 cortical regions
of interest. For these analyses, TSA or averagikribss were added as covariates to the
linear mixed model regression in GCTA to test wketihe EA-PGS predicted variance that
was specific to the cortical region. Resulting fuea were corrected for multiple testing
error as described above. The ROI analyses werducted separately from those of the
global measures as they included either TSA or ameerthickness as covariates. Thus,
multiple testing correction was conducted sepaydtal the global measure analysis and the

regional analyses.

We next tested the robustness of observed assow@atietween EA-PGS and cortical
measures when controlling for height, body massxn@MI) and socio-economic (SES). In

both cohorts, both height and body weight wereeotdld at the time of MRI scanning. The
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closest available approximation for family SES wadculated as a product of parental
income and occupation status at the time of IQingstan average of 4 years prior to
scanning) using the Australian Socioeconomic Ind886 (AUSEIO6) occupational status
scalefor the QTIM cohort as previously described (McHill Beavis, & Jones, 2009) (scale
0-100). For the HCP cohort, SES was computed usicgme-to-poverty ratio based on
self-reported family income relative to povertydsinolds in the United States and is adjusted
by family size (Diemer, Mistry, Wadsworth, Lopez, Reimers, 2013; Somerville et al.,
2018) (scale 0-10).

Testing the association between EA-PGS and cognitive ability

Similar to the analyses described above, the ptigpoof individual variance in general
cognitive ability that could be predicted by the-B&S was examined. Three measures of IQ
were used in the QTIM cohort: Full IQ, Performam@eand Verbal 1Q (FIQ, PIQ and VIQ)
(Jackson, 1998) and two in the HCP cohort (Cryigtdl and Fluid 1Q) (Weintraub et al.,
2014). The GCTA analysis was conducted using theeseovariates as above. Next, PGS-
based regressions were conducted to assess theciatisso between EA-PGS,
neuroanatomical correlates and IQ scofé%A and the identified cortical regions of interest
were used as covariates (both independently andltsineously) to ascertain the amount of
variance in the association between EA-PGS ancct@es that these regions account for. To
test the significance of each regional cortical soe@ as a covariate on the EA-PGS
association with FIQ score, the standardized figlect 3) and s.e. for each covariate were

used in a Wald test to calculate their associptedlue.

Mediation analysis

A mediation analysis was conducted to test if tegianal cortical ROlsmediatedthe
relationship between EA-PGS and FIQ (using the E¥SRalculated gt<1 threshold). FIQ
was chosen as the best representative of genegaitive ability (as it is calculated as a
function of both PIQ and VIQ) (Jackson, 1998). Aiee of linear mixed models were fitted
in GCTA using sex, age, height, 10 PCs as covariatel the genetic relationship matrix as a
random effect. First, EA-PGS was used as a pradafté-1Q (path C). Secondly, EA-PGS
was used as a predictor of the mediator variable (glevant ROI) (path A). Thirdly, both
EA-PGS (path C’) and the moderator ROI (path B)enecluded as predictors of FIQe¢
Figure 1). Ideally a bias-corrected bootstrap Cl would Beduto assess the significance of

the indirect path (Hayes & Scharkow, 2013); howgevteis was not a computation option
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using GCTA. A Sobel test was conducted to tessiprificance of the indirect path (AB) so
as to establish whether mediation was occurrindp€5dl982). Although the Sobel test is
considered conservative, given that our samplewe® > 500 this ought not to impede the
decision accuracy in these data (Hayes & ScharkR643). In addition to testing the regional
ROIls independently, all ROIs, as well as a modé¢hwil ROIs and TSA were included in
multiple mediation models. The effective numbemaofependent observations was calculated
between all ROI and TSA using MatSpD as describegifevious analysis. All comparisons
were corrected for multiple testing using the Bordei multiple testing correction as

described.

ROI

€’ (With mediator)
EA-PGS FIQ

EA-PGS FIQ

Figure 1. Schematic of mediation model (based on Hayes 2(dyes, 2017) where EA-PGS
represents the independent variable, FIQ the dependriable and ROI the mediator.

Results

Correlation between EA-PGS, I Q and brain measures

All EA-PGS thresholds had a significant, positiverelation with TSA in both samples after
correcting for the effects of age and s8ge(Figure 2). ICV was also significantly correlated
with EA-PGSs at mogt-value thresholds in QTIM; however, the associati@hnot survive
multiple testing correction in the HCP sample. Age cortical thickness was negatively
correlated with TSA in both samples. Full-Scale a@d Fluid IQ showed significantly
positive correlations with TSA, ICV and all EA-PG&esholds in both the QTIM and HCP
cohorts respectively. Similarly, educational attagmt was significantly correlated with all
measures except average thickness in the HCP c&rtlata not collected in QTIM»sée
Figure 2). Notably, given the age range in the HCP cohbis, possible that individuals are

still studying and that this measure of EA may mafect their final education level. Further,

14
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the EA-PGS explains a maximum of 1.6% of variamc&$A in the QTIM cohort and 1.2%
of the variance in the HCP cohop(.005) Figure 3, Supplementary Figure 1). Similarly,

EA-PGS explains up to 0.5% of the variance in I@\both cohortsg<0.005). The amount
of variance explained in cortical thickness by tBA-PGS did not reach statistical

significance at any EA-PGS threshold in either ¢dho
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Figure 2. Partial correlations between global cortical nuees, 1Q, educational attainment and EA-

PGSp-value thresholds in both the QTIM and HCP coha@tsrrelations control for sex and age
using only unrelated individuals. Correlations abtive diagonal are for the QTIM cohort and below
the diagonal are for the HCP cohort. Magnitude arfreations are colour coded as indicated by
colour bar. White squares indicate correlationg thd not meet significance after correction for
multiple testing (p<0.05). Educational attainmergdrs of Edu) was only available for HCP cohort.
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0.5 W HCP

% variance explained (AR2) by EA-PGS
—_

TSA ICV Av. Thickness
Global Measure

Figure 3. EA-PGS [<1) predicts a maximum of 1.6% of variance in tataiface area and 0.5% of variance
in ICV but does not predict average cortical thiggs in both cohorts of young adults. Results ptedgesre
from p<1 EA-PGS threshold as it generally representedythatest amount of variance explained in global
brain measures. Error bars represent 95% confidienervals, Significance is indicated by *; cakeld ap

< 0.(5 (after Bonferroni correction for mulle testing)

Secondary analysis controlling for height, BMI and SES

Further examinations were made to assess wheth@stociations between EA-PGS and the
three global measures were influenced by height] BMI SES; all of which have been
associated with differences in both EA and braiucstire. The only variable with a
significant effect on all three global measuresbath samples was heightée¢ Table 2),

which was negatively associated with average tl@sknthough the association was small.

Socio-economic status had a small but nominallpiBaant (<0.05) effect on TSA (stf:
0.04 [0.00 -0.08]) and ICV (st 0.05 [0.01-0.09]) but not average thickness & HCP
cohort. The effect of SES was not significant fdrtaree variables in the QTIM cohort.
Adjusting for all three covariates produced venmyikr results in the variance explained of
global measures and had no significant effect gioral analysis. Nonetheless, height was

included as a covariate in all subsequent analyisissimportant to note that height, BMI and

16



SES all share a substantial genetic correlatioh A (see Leet. al.2019) so adding these

as covariates may diminish legitimate effects poadiufrom pleiotropic genes.

Table 2: Standardized effect sizes, 95% Confidence Intervals (Cl) and p-values of height, BMI
and SES on the association between EA-PGS (p<1 threshold) and global brain measur es.

QTIM HCP
Stdp 95% Cl Pval | Stg 95% Cl Pval

TSA BMI 0.021

ICV BMI 0.003

Av. BMI -0.003
Thickness ses 9.60E-05

EA-PGS 0.231 0.13-0.33 1.08E-05  0.393 0.191-0.582 4 grp 04

Height ~ 0.120 0077-0163  ,05E.08  0.308 e R T
0.008-0.049 (e 0.017 0.031-0.064 40

-0.005 - 0.070 0.875 0.044 0.003 — 0.086 0.035

0.074-0203  706e-06 0203 0074 0321 344p.06
0.051 = 0129 558e.06 0167  0084-0249 4 59k10

-0.024 - 0.030 0.883 0.060 0.012-0.108 0.015
—0.017 — 0.047 0.349 0.051 0.006 — 0.095 0.026
-1.23E-03- 0.001 0.614 0.024 -0.094 —0.042 0.50

-0.007 — -0.001 8.20E-04 -0.072 - =
Height -0.004 -0.060 0.048 1.83E-14
-0.004 - -0.001 0.799 0.034 -0.038 — 0.105 0.348

-0.002- 0.002 g0, ool4  -0082-0054 oo

SES 0.033
EA-PGS 0.143
Height ~ 0.090

SES 0.015
EA-PGS 1.34E-03

Note: Standardized betas for EA-PGS (p<1) are for the association with the three global measures after accounting for the
effects of height, BMI and SES (as well as other standard covariates).

Cortical surface area ROI analysis

Further analysis of the association between regieuaface area and EA-PGS was
conducted. Cortical regions were divided into 5ugp® based on their anatomical location
(frontal, parietal, temporal and occipital lobesdatihe cingulate) and averaged across
hemispheres. The regions that comprise each aneadesignated according to the Desikan-
Killiany atlas (Desikan et al., 2006). In the QTIM sample, the EA-PGS explained soméef
variance in seven cortical regions, three in thep@ral lobes and four in the frontal lobes
over and above the effect of TSA — an effect tlehained significant after Bonferroni
multiple testing correctiorHjgur e 3). EA-PGS significantly predicted up to 0.6% of iaaice

in the surface area of these cortical structuresaatp-value thresholds. These regions were
the fusiform gyrusentorhinal cortexbanks of the superior temporal sulomnksstsin the
temporal lobes, all three parts of the inferiomtad gyrus pars orbitalis, pars opercularis
andpars triangularig and themedial orbitalfrontal gyrugFigure 4). In the HCP replication
sample, five of the same regions (up to 0.6% ofavae explained) were also significantly
predicted by the EA-PGS, with the exceptionbahksstsand medial orbital frontal gyrus
(that did not survive multiple testing correctioffjigure 4). Most regions were positively
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associated with EA-PGS, indicating that higher Eehefic scores were correlated with larger
SA, except for themedial orbital frontal gyrusthat was in the opposite direction (higher
genetic scores associated with smaller SA). Nooreggivere significantly predicted in either
cohort in any of the remaining lobes or the cingulafter multiple testing correction

(Supplementary Figure 2). Supplementary table 2at0s the standardized effect sizes of all
34 examined ROI SA and EA-PGS associations.

Lateral View Medial View

-4 -32-24-16-08 0 08 16 24 32 4
Z-score

Frontal Temporal
p<5x10-8
p<1x10-5 * 0 6
p<0.001 x = "
p<0.01 *
6 p<0.05 * * 0.5,0\
T p<0.1 * ok Q\/
<0.5 * ok
p . 04,8"”
<1 * >k o
’ €2
p<5x10-8 03my
p<1x10-5 e | Q'D-
*
p<0.001 = - * % -0.2 8
= p<0.01 2 i T ©
—
[ p<0.05 Hok ok Rk Rk kK _01>
o p<0.1 ok Aok *k kKK Rk
p<0.5 *% kXK *k *k KK KK _OO
p<1 *k *x n kK kK
< o« o«
555 & 85 55 5 58 5 8 8 5 883 8 3 3
T m®m L L Y T B YL T T ® ®mT P ¥ ® E ®W L& & T T
BEgsfIEEEEIE OEIETEREEYLE
S o = £ 5 6 o35 $ o ¢ 5 &2 ©® 2 F £ £ £ g 2
g Es 8 3£ 83 8 & 8§ 5 8 E 8 5 5 § 5
S 5 € 5 £ o @ 2 § £ % 6 & § 8 ¢ © o g g
2 2 5 o0 ¢ 5 5 8 & 2 = g @ g £ 5] t 3
T 89 £ v § 353 st o §F o 2 2 e =
o ‘o— E * - 4 J(;; 8 B = o 3 a—, a—) o
s &8 EEEE 53 83 ° ¢ -
5 a2 = & a & 8 c = a
3 £ 3 g 5
E w o © -
¢ B =

Figure 4: Surface area: PGS for educational attainment (EA3) predict finantal cortical surface areas (left) and
threetemporal (right) in both the QTIM (lower) and HCP (uppephorts. Brain plots show the location, as well as
direction of association (z-scores), for identifiedjions with blue regions depicting negative asdimns and red
scores depicting positive associations. Vkexes of the heatmaps representphalue cut-off thresholds for EA-
associated SNPs used to calculate the PGS. Thexdyea@blour shading represents the amount of vagiarplained

by the PGS. The double asterisk represents signifisredictions after Bonferroni correction for tiple testing. **
p<0.0001, * indicates associations that did not isenmultiple testing correction. Only the mediabibofrontal
gyrus showed a negative association with EA-PGS
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Cortical thickness ROI analysis

Based on the findings of SA ROIls that covary with-EGS over-and-above the effect of
TSA, and the knowledge that cortical thickness esasubstantially between brain regions
(Jha et al., 2018; Schmitt et al., 2019; Shaw et2806), the associations between EA-PGS
and the average thickness of all 34 cortical RGdsevexamined, despite the lack of a global
association. Thickness ROIs showed substantiallerddferentiation between cohorts than
was observed in SA ROI&igure 5, Supplementary Figure 3). Most of the identified ROIs
from the SA analysis were also significantly asated with EA-PGS (explaining up to 1.5%
of variance), with the exception banksstsThepars triangularisassociation did not survive
multiple testing correction in the HCP cohoRidure 5). Several novel ROIs were also
identified. These included theuneus, supramarginal, post centrahd inferior parietal
thickness. Most of these associations did not sarmultiple testing correction or were only
observed in one cohort with the exceptionimferior parietal thickness which remained
significant in both cohorts (Supplementary FiguyeNost thickness associations with EA-
PGS were negative, indicating that individuals witgher EA-PGS have thinner cortices in
these regions. Supplementary Table 3 containstdmelardized effect sizes of all examined
ROI thickness and EA-PGS associations.
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Figure 5: Thickness: PGS for educational attainment (EA3) significardisociate with the cortical thickness
in four frontal regions (left) in at least one cohort and t@mporal (right). Brain plots show the location, as
well as direction of association (z-scores), foenitified regions with blue regions depicting negati
associations and red scores depicting positivecagsms. They-axes of the heat maps representghalue
cut-off thresholds for EA-associated SNPs usedtoutate the PGS. The heatmap colour shading repiethe
amount of variance explained by the PGS. The dowaserisk represents significant predictions after
Bonferroni correction for multiple testing. *5<0.0001, * indicates associations that did not isermultiple
testing correction. All regions showed a negatissoaiation with EA-PGS

Estimating the effects of cortical surface area on cognitive ability

EA-PGS (atp<1 threshold) was significantly positively corrgdtwith 1Q scores (r=0.23,

p<0.001) and TSA (r=0.13<0.001) Figure 6) in the QTIM cohort. This threshold for the
EA-PGS was chosen as it generally accounted fontbst variance explained in previous
global brain measures and it predicted the largasbunt of variance in the original EA3
GWAS (Lee et al., 2018). Additionally, EA-PGS expkd approximately ~5.7% percent of
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variance (st$=0.2,p<0.001) in FIQ scores in the QTIM cohoRidgure 7). When examining
IQ sub-types, EA-PGS accounted for significantlegajer variance in VIQ (~7.2%, std
=0.23, p<0.001) than PIQ (~3.6%, s{#F0.15, p<0.001) (differencep=0.006, two-tailed
Studentg-test, DF=979). In the HCP cohort, EA-PGS predictpdo 2.5% of the variance in
crystallized 1Q (std p=0.10, p<0.001) but did not significantly predict fluid 1Q
(Supplementary Figure 4).
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Figure 6: EA-PGS p<1 threshold) is positively correlated with FIQu®] r=0.23) and TSA
(green; r=0.13) in QTIM. Thex-axis represents the deciles of EA-PGS scoyesxis
represents the mean + standard deviation of TSARQdy decile.
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When accounting for the effect of TSA, the EA-PG®lained ~4.5% of variance in FIQ
scores (a 25% reduction) and a maximum of 5.8%2a8% in VIQ and PIQ respectively (a
20% reductionp=0.25,p=0.28 andp=0.6 respectivelyFigure 7). The reduction in variance
explained is attributable to the effect of TSA be tssociation between EA-PGS and the 1Q
measures. Next, we tested both the individual amibined effect of the ROI identified from
the EA-PGS prediction in the QTIM cohort by addihgm as covariates (without TSA) to
the analysis. The significance of adding each calrtiegion as a covariate (over and above
the effect of TSA) was tested using a two-taileddgnt'st-test. All ROIs in the QTIM
sample had a significant effect on the associatowept for the entorhinal region that was
only nominally so. Additionally, th&usiformandpars orbitalishad the greatest effect on the
association with FIQSupplementary Table 4). When examining the effect of all ROI as a
group, the percentage of variance in FIQ explaimethe PGS scores dropped even further to
~3.8% 0=0.12;Figure 7). A similar decrease in variance explained for \dQ PIQ (~4.8%
and 2.5%;p=0.06 andp=0.8) was observed. When assessing the six ROIls TSW
simultaneously as covariates, the variance explaiwas significantly different from the
original analysis, indicating that these regiongtaee a significant amount of the variance in
IQ measures that is explained by the EA-PGRUre 7). Similar results were seen in the
crystallized 1Q measures from the HCP coh8upplementary Figure5).

p=0.032

1

% Variance explained (AR2) by EA-PGS

No cortical cov TSA ROI ROI+TSA

Cortical covariates included

Figure 7. EA-PGS predicts up to 7.5% of variance in VIQ,%.&IQ and 3.6% in PIQ scores in the QTIM
cohort. This decreases to approximately 5.8%, 4abith2.9% when TSA is added as an additional caearia
for VIQ, FIQ and PIQ respectively. A further redioct (approximately 15%) is observed in all threesi€@res
when all ROIs are added as covariates simultang¢d8%, 3.8% and 2.5% respectively). Only the R&d
TSA analysis was significantly different from theiginal analysis. Error bars represent 95% confiden
intervals
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Mediation Analysis
As established, FIQ is significantly predicted b&-EGS ¢ [95% CI] =0.25 [0.192-0.310],

p<0.001) (path C). All paths and indirect paths eveignificant for all ROl associations
remained significant after Bonferroni multiple tagt correction ¢=0.013). The Sobel test
established partial but significant mediation by ROI, with fusiform having the largest
mediation effect (percentage mediation) and thedial oribtofrontal gyrushaving the
smallest mediatory effe¢Bee Table 3). As a group, all ROIs were still significant mattirs
as well as when all ROIs and TSA were added simetiasly as multilevel mediators. The
combination of all ROI as multiple mediators haeé tArgest mediatory effect (3.2%ge¢
Table 3).

Table 3: Mediation model testing the significance of identified ROIs SA as mediators of the EA-
PGS and FIQ association.

ROI Model Std B 95% Cl P-value % Mediation sobel P sobel

C 0.251 0.192 -0.310 <2e-16
A 0.113 0.050 —0.176 5.54E-04

Fusiform B 0.197 0.140 —0.254 9.29E-12
c' 0.225 0.168 —0.282 3.29E-14 2.6% 3.100 0.002
A 0.121 0.056 —0.186 2.15E-04

Bankssts B 0.151 0.098 —0.204 5.49E-08
c' 0.228 0.169 —0.287 2.86E-14 2.3% 3.089 0.002
A 0.113 0.048 —0.178 5.87E-04

Entorhinal B 0.100 0.047 —0.153 2.28E-04
C' 0.240 0.181 —0.299 2.12E-15 1.1% 2423 0.015
A 0.126 0.061 —0.191 1.49E-04

Pars Opercularis B 0.156 0.101 —-0.211 3.97E-08
c' 0.230 0.171 —0.289 1.60E-14 2.1% 3.276 0.001
A 0.080 0.017 —0.143 1.23E-02

Pars Orbitalis B 0.130 0.077 —0.183 1.88E-06
C' 0.236 0.177 —0.295 3.49E-15 1.3% 2.360 0.018
A 0.088 0.023 —0.153 8.06E-03

Pars Triangularis B 0.165 0.112 -0.218 1.00E-09
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c' 0.238 0.181 —0.295 1.04E-15 1.3% 2.432 0.015
A 0.068 -0.016 —0.152 1.06E-03
Medial Orbitofrontal B 0.123 0.072 —0.174 1.00E-09

c' 0.243 0.200 —0.286 1.04E-15 0.8% 3.240 0.012
A 0.110 0.049 -0.171 4.58E-04
TSA B 0.257 0.198 -0.316 <2e-16
c' 0.226 0.169 —0.283 1.66E-14 2.5% 3.252 0.001
All ROI c' 0.217 0.160 —0.274 3.26E-13 3.4%
All ROI + TSA c' 0.219 0.162 -0.276 1.90E-13 3.2%

* Mediation models including sex, age, height, 10 PCs and a genetic relationship matrix as covariates.
Note: B= Beta, Cl = Confidence Intervals, %= percentage

Discussion

In this study, the association between the geneticgences on educational attainment and
cortical morphology was examined. Using two langatcohorts, robust, positive association
was established between EA-PGS, total surfaceaar@antra-cranial volume but not average
cortical thickness — lending weight to similar ésdrom previous twin studies (Brouwer et
al., 2014; Vuoksimaa et al., 2014; Vuoksimaa et2016). These results also suggest that
cortical surface area and average thickness shaneall correlation (r=0.08) at both global
and regional levels, despite both phenotypes bsigmjficantly heritable {?=0.8 and above;
narrow sense) (Panizzon et al., 2009; Reiss el @06; Schnack et al., 2014; Wilke et al.,
2003; Winkler et al., 2010)These results also support recent studies utjitange-cohort
GWAS. For example, a strong (~0.8), positive genetrrelation (y)) between TSA and ICV,
while a negativery between TSA and average cortical thickness was seea recent,
exceptionally large (35k individuals), neurocimagimgta-analysis (Grasby et al., 2018), as
well as smaller studies (Strike et al., 2018). Biggnt, positivery between TSA and EA
(~0.2) and general cognitive ability (~0.2) haodieen reported in the ENGIMA consortium
study (Grasby et al., 2018). Similarly, a GWAS adib volume (N=54,407) reporteargof
0.23 between brain volume and intelligence (Jardes., 2019). The authors were able to
identify 67 overlapping genes, which are predomtilyamvolved in cell growth pathways
(Jansen et al.,, 2019). This is in line with othardges that suggest that the phenotypic
relationship between brain size and intelligence o driven by TSA rather than cortical
thickness (Brouwer et al., 2014; S. Cox et al.,2®. R. Cox et al., 2018; Nave et al., 2019;
Panizzon et al., 2009; Vuoksimaa et al., 2014; \éiroka et al., 2016). Additionally, a study
by Coxet. al.(2019) found that global measures account for dothe variation in general
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cognitive ability in older adults compared to mieldiged adults (S. Cox et al., 2019),

suggesting that age may moderate this relationship.

This study found a significant effect of height@ur associations, but not of BMI (Pietschnig
et al.,, 2015; Vuoksimaa et al., 2018). However, associations still held even when
correcting for all three covariates, as was alsmse other studies (Pietschnig et al., 2015;
Rushton & Ankney, 2009). SES was a nominally sigaift covariate only in the HCP
cohort, possibly due to the active recruitmentnofividuals from diverse social backgrounds
in this study. Studies have shown that both genedseavironment play substantial roles in
the EA phenotype. In fact, individuals with higheh-PGS have been shown to be born in to
homes of higher socio-economic standing and be botmlly and geographically mobile
(Belsky et al., 2018; Belsky et al., 2016; Walhetdal., 2016). Additionally, the association
between EA-PGS and educational attainment has BBewn to be mediated through
personality traits such as self-control and neaist (Belsky et al.,, 2016). It is thus
understandable that both cognitive and non-cognitdomains may play a role in the
association between EA and brain morphology. Degpise associations, it is important to
note that EA shares substantial genetic correlatitm all three examined variables and thus,
by adding them as covariates, it may diminish legite associations that are driven by

pleiotropic genes (Vuoksimaa et al., 2018).

Significant regional heterogeneity and individualriation exist in the associations among
cortical ROl and cognitive phenotypes (Panizzonalet 2009; Vuoksimaa et al., 2016;
Winkler et al., 2010). This study identified sevgpecific cortical regions associated with
EA-PGS over-and-above the effect of global surfaea, four in the frontal lobe and three in
the temporal lobe, which showed replicable assiociavith EA-PGS in both independent
samples. These regions were thedial orbitofrontal gyrugpart of the prefrontal cortex,
responsible for cognitive process and decision-nggkand all three parts of thaferior
frontal gyrus(Broca’s area). Broca'’s area is responsible feesp production (Flinker et al.,
2015), perception (Imada et al.,, 2006; Watkins &uda 2004) and language
comprehension(Musso et al., 2003) and has beerdink semantic processing (Belyk,
Brown, Lim, & Kotz, 2017; Sabb, Bilder, Chou, & Bkiteimer, 2007) and working memory
(Sabb et al., 2007). The surface area of threemsgn the temporal lobe were significantly
predicted by EA-PGS, including the fusiform gyrusplicated in semantic processing
(Balsamo, Xu, & Gaillard, 2006), reading (McCanglisCohen, & Dehaene, 2003), face
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perception (Kanwisher & Yovel, 2006) and the leaghof languages (Mei et al., 2015; Tan
et al., 2011); the entorhinal cortex involved inmwy, navigation, and perception, and the
banks of the superior temporal sulcudich has been linked to multisensory processing
(Hein & Knight, 2008). EA-PGS also showed a sigrafit negative association with the
thickness of several of these regions, which aligitk previous twin studies that identified
cortical stretching in regions associated with ¢tigm ability (Vuoksimaa et al., 2016). In
addition, EA-PGS was negatively associated withtliekness of theuneusand thenferior
parietal cortex. Our findings substantiate previous studmeg show an expanded SA (and
cortical thinning) in prefrontal, lateral tempoiwahd inferior parietal regions was positively
associated with general cognitive ability (Nave att, 2019; Vuoksimaa et al., 2014;
Vuoksimaa et al., 2016).

We hence examined if the surface area of the iethtregions mediated the relationship
between EA-PGS and IQ scores. EA-PGS explainedgaifisantly greater amount of

variance in VIQ than in QTIM. Verbal 1Q is a measwf acquired knowledge and verbal
reasoning (Kaufman, 1976), while PIQ assesses edwml/ cognitive ability such as

perceptual organization and processing speed. ®rewtudies have found a phenotypic
correlation of 0.16 with Fluid IQ (Ritchie et a2018) while another study reported a similar
correlation of 0.19 with VIQ on a large sample @€p13,000 individuals (Nave et al., 2019).
The increased prediction of EA-PGS into VIQ indesathat the variants captured by the EA-
PGS probably relate more strongly to verbal cogaifrocessing, which also supports the
finding that the EA-PGS were associated with cexelegions important for memory and
language. In addition, using a Sobel test we alsad significant evidence that all identified

ROls partially mediate the relationship between BE@S and FIQ.

Although the results of this study provide evidené¢he association between EA-PGS and
cortical brain regions, there is debate behind rtieaning of cognitive neuroanatomical
correlations and how well results would generadizeoss populations or individuals at either
end of the cognitive ability spectrum. For exampletschniget. al.(2015) and Richiet. al.
(2018) discuss whether brain size is a proxy fanroe number and what compensatory
mechanisms may be responsible for individual déffiees in intellectual ability (S. Cox et al.,
2019; Deary, Irwing, Der, & Bates, 2007). The idiecation of regional heterogeneity
associated with EA in this study adds weight toltlipothesis of compensatory mechanisms

accounting for individual variation in intellectuability over-and-above the effect of total
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brain size. Another consideration regarding theegaizability of our findings is the
demographics represented in our cohorts. The celothis study were filtered to represent
homogenous European populations due to the podictikee power of current PGSs in non-
European populations. These samples were alsorepegsentative of people of higher SES
and educational attainment and therefore our esulay not extend to individuals of
different ethnic backgrounds, as well as in popoatwvith increased rates of inequality.
Lastly, as discussed by Naee al.(2019), the positive relationship between braire @and
intelligence becomes substantially weaker when @xag individuals at either end of the
cognitive ability spectrum. Thus, the results foundthis study reflect associations for
individuals within the normal range of cognitiveilap and may not generalize to individuals
with cognitive impairment or neurodegenerative dé&ss or those of extremely high-

functioning cognitive ability.

Together, these findings expand on several previairs and genomic studies that have
identified a significant association between gehneomnitive ability and increased TSA.
Additionally, these findings robustly replicate thesitive association between EA-PGS and
increased surface area, and a negative assocwitioraverage thickness, in cortical regions
related to memory and language in two independambrts. However, some limitations must
be acknowledged. First, these results do not giwe iadication of the causality of the
relationship. Individuals with a genetic predispiasi for higher cognitive ability may have
larger cortical regions; however, the causal dioectmay operate in reverse—whereby the
(genetically influenced) larger brain regions majova individuals to achieve higher
educational attainment. Secondly, the use of twogghically diverse cohorts provides
confidence in the robustness of the observed assmts, but also resulted in some measures
being either quantified or temporally assessecehfitly between cohorts. For instance, in
the QTIM cohort, the 1Q and SES scores were obthiftem an earlier wave of data
collection that was conducted 0-14 (mean 4.4) ypaos to MRI scanning. Although 1Q is a
relatively stable measure from the age of 16 onsjagdszing the growth trajectories during
this age period, it is possible that these meason@g not be entirely representative of an
individual's current cognitive ability at the tined MRI. Additionally, the measures of SES
between cohorts were calculated according to @iffeindices that may also contribute to
additional variation between cohorts. Thirdly, imst study regions were averaged across
hemispheres using the Desikan-Killiany atlas forl R@lineation because it results in large

regions with consistent borders between studieas T¥e are unable to test for differences in
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laterality between hemispheres (specifically in ldrgguage regions). It would be interesting
to conduct similar analyses using vertex-wide messuor genetically informative
parcellations examining differences in lateralitythwlarger cohorts that can handle the
increase in testing burden. Another important fat¢to be cognisant of is that EA has a
correlation of 0.6 with IQ, and that as a proxy sga this indicates a portion of variance in
this phenotype that is also distinct from intelige. Given the small effect sizes of genetic
variants known to influence IQ (Savage et al., 300& need much larger sample sizes to be
have comparable power to the EA results in ordexotzduct a reliable comparison between
EA-PRS and IQ-PRS. Future studies would benefinftbe comparison of the prediction
between EA- and 1Q- PGS as sample sizes grow. \, dstither statistical, molecular and
functional studies are needed to uncover the speggines and pathways that underlie both
these traits and dissect the observed geneticapeerl

Conclusions

In this study, a significant, positive associatioras identified between the genetic
influences on educational attainment and total icalrtsurface area. Additionally, this
study is the first to extend the focus beyond ttaldished proxy of global brain volume to
regional-specific associations with the genetics ganeral cognitive ability. Several
identified regions showed a positive associatiotwben EA-PGS and SA, while average
thickness was negatively associated in these afdsese regions, which include Broca’s
area, have been implicated in language, memoryyalvigecognition and cognitive
processing. We also provide evidence that thesm begions may partially mediate the
association between the genetic predispositiondiacaional attainment and 1Q scores.
However, much research is still required to un@erdtthe combined relationship between
structure and function. This study provides focamis for future research to examine causal

links between brain characteristics and cognitedgrmance.
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