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Abstract 49 

Genome-wide association studies have identified multiple genetic risk factors underlying 50 

susceptibility to substance use, however the functional genes and biological mechanisms 51 

remain poorly understood. The discovery and characterisation of risk genes can be facilitated 52 

by the integration of genome-wide association data and gene expression data across 53 

biologically relevant tissues and/or cell types to identify genes whose expression is altered by 54 

DNA sequence variation (expression quantitative trait loci; eQTLs). The integration of gene 55 

expression data can be extended to the study of genetic co-expression, under the biologically 56 

valid assumption that genes form co-expression networks to influence the manifestation of a 57 

disease or trait. Here, we integrate genome-wide association data with gene expression data 58 

from 13 brain tissues to identify candidate risk genes for 8 substance use phenotypes. We then 59 

test for the enrichment of candidate risk genes within tissue-specific gene co-expression 60 

networks to identify modules (or groups) of functionally related genes whose dysregulation is 61 

associated with variation in substance use. We identified six gene modules in brain that were 62 

enriched with gene-based association signals for substance use phenotypes. For example, a 63 

single module of 29 co-expressed genes was enriched with gene-based associations for 64 

smoking cessation and biological pathways involved in the immune response. Our study 65 

demonstrates the utility of eQTL and gene co-expression analysis to uncover novel biological 66 

mechanisms for substance use traits. 67 

 68 

 69 

  70 
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Introduction 73 

 74 

Substance use is linked to hundreds of diseases and adverse societal outcomes (1). A reduction 75 

in the prevalence of substance use will therefore not only reduce the global burden of disease 76 

but reduce costs to individual sufferers, their families, and society. Substance use encompasses 77 

a range of behaviours (e.g. alcohol consumption, tobacco smoking, and cannabis use), each of 78 

which is moderately heritable with a highly polygenic background, where hundreds to 79 

thousands of genetic variants contribute to disease risk. Genome-wide association studies 80 

(GWAS) have identified hundreds of genomic regions that contain genetic risk variants (or 81 

single nucleotide polymorphisms [SNPs]) robustly associated with substance use traits, 82 

including, for example, alcohol use  (2) and dependence (3) (SNP heritability [h2SNP]: 9-12%), 83 

tobacco smoking (4) (h2SNP: 1-4%, and cannabis use (h2SNP: 11%) (5). However, the functional 84 

interpretation of these regions remains largely unknown due in part to the complex local 85 

correlation structure of the genome (linkage disequilibrium) and complex interaction patterns 86 

between genes, known as the “co-localisation problem” (6), making causal gene identification 87 

challenging. Single Nucleotide Polymorphisms, or genetic variants, may affect the expression 88 

of one or more genes or a broader network of genes within a disease relevant tissue or cell type 89 

(7). We and others have linked genetic variants to changes in gene expression, known as 90 

expression quantitative trait loci (eQTL), to identify individual risk genes as well as groups of 91 

correlated genes (risk modules) for mental health (8) and substance use disorders (9). The 92 

advantage of this approach is co-expressed genes can be causal for a trait without being 93 

influenced by the same genetic variant, thereby increasing the genomic search space for higher-94 

order biological associations. In the present study, we will extend our earlier work (9) by 95 

generating gene co-expression modules characterized by correlated levels of gene expression. 96 

We will subsequently test for the enrichment of GWAS signals of 8 substance use traits within 97 

these co-expression modules.  98 

 99 

Different methods exist to integrate genetic and transcriptomic information with a primary 100 

distinction between studies that use single-variant approaches (i.e., evaluating the impact of a 101 

single variant on gene expression) (10) versus gene-based approaches that combine information 102 

across multiple SNPs (i.e., imputation of gene expression at a gene-based level) (11,12). 103 

Irrespective of the applied methodology, eQTL analyses are usually based on reference datasets 104 

in which genetic and transcriptomic information has been collected in disease-relevant tissues. 105 
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For example, Genotype-Tissue Expression (GTEx) project (version 7) contains genotype data 110 

linked to gene expression across 53 tissues from 714 donors, including 13 brain tissues from 111 

216 donors. GTEx and other tissue-specific eQTL datasets represents a valuable resource with 112 

which to study gene expression and its relationship with genetic variation (13). 113 

 114 

The integration of genetic variation and tissue-specific gene expression data has been used to 115 

prioritise functional gene candidates for substance use traits in disease-relevant tissues (i.e. 116 

brain tissue). For example, a secondary analysis of a nicotine dependence GWAS found an 117 

intronic SNP that regulates the expression of DNMT3B in brain (14), while a similar analysis 118 

of cannabis dependence found genetic variation associated with the expression of CHRNA2 in 119 

brain (15). In many instances, the functional gene candidate was not the gene most proximate 120 

to the associated risk variant; a GWAS of alcohol consumption, for example, identified risk 121 

variants within the gene KLB that affected the expression of two distantly located genes RCF1 122 

and RPL9 (16). Indeed, associations in which the nearest gene is not the functional candidate 123 

is widespread in substance use traits, where some 66% of trait associated eQTLs in GTEx 124 

targeted genes other than their most proximal gene (9).  125 

 126 

While single-eQTL approaches have improved the functional annotation of individual SNPs, 127 

more recent approaches combine eQTL information across multiple SNPs in close proximity 128 

to a gene. These methods either impute gene expression levels using a reference dataset (11,12) 129 

or incorporate eQTL information within a gene-based test (17). We recently developed a gene-130 

based test called eMAGMA, which performs gene-level testing by combining GWAS summary 131 

statistics, tissue-specific cis-eQTL information, and reference linkage disequilibrium data (8). 132 

eMAGMA and other gene-based approaches, such as S-PrediXcan which imputes genetically-133 

regulated gene expression levels using GWAS summary statistics, are more powerful than 134 

single-eQTL annotation (18) and may integrate tissue-specific gene expression information for 135 

the discovery of pathogenic and/or surrogate tissues. For example, a gene-based analysis of six 136 

substance use traits reported altered genetically regulated gene expression in case samples, with 137 

many candidate risk genes either unique to brain or whole blood (9). These results suggest 138 

many regulatory effects for substance use traits manifest in a subset of disease-relevant tissues 139 

such as brain, however some effects may be shared across tissues and detected in other tissues 140 

with larger eQTL reference set samples sizes, such as whole blood. By collapsing multiple 141 

SNPs to individual functionally relevant genes, these approaches also facilitate the 142 

identification of shared mechanisms underlying substance use traits; gene-based analyses of 143 
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lifetime cannabis use (5) and alcohol consumption (16) both identified CADM2 as a candidate 151 

risk gene, suggesting shared mechanisms underlying these traits.  152 

 153 

Genetic studies suggest substance use is highly polygenic; many genes are likely to interact 154 

with one-another in complex tissue- or cell-type specific networks influence substance use risk. 155 

Gene co-expression network analysis describes the relationship between genes in terms of their 156 

pairwise correlation, where highly correlated genes may share a functional relationship (i.e. 157 

highly correlated genes are likely to be involved in the same biological process). A genetic 158 

perturbation that affects the expression of a single gene within co-expression network may 159 

therefore alter the activity of a wider set of genes. We recently applied this heuristic in a gene 160 

co-expression network analysis of major depression, and identified novel gene candidates and 161 

gene modules both associated with major depression and disease-relevant biological pathways 162 

(8). 163 

 164 

In the present study, we aim to improve our understanding of the biological mechanisms 165 

underlying 8 substance use phenotypes by exploring associations with co-expression networks 166 

derived from human brain samples. First, to identify candidate causal genes, we will integrate 167 

GWAS summary statistics for each phenotype with eQTL information from brain tissues in 168 

GTEx using a novel gene-based method called eMAGMA (17). Second, we will explore the 169 

gene-based overlap of associations across substance use phenotypes. Finally, we will use a 170 

gene co-expression network analysis to identify modules of genes enriched with gene-based 171 

association signals, before using biological pathway analysis to characterise the substance use 172 

risk modules. 173 

 174 

Methods 175 

 176 

The Genotype-Tissue Expression (GTEx) project 177 

Fully processed, filtered and normalised gene expression data for 13 brain tissues 178 

(Supplementary Table 1) were downloaded from the Genotype-Tissue Expression project 179 

portal (version 7) (http://www.gtexportal.org). Only genes with ten or more donors were 180 

included. Other inclusion criteria for expressed genes were expression estimates > 0.1 Reads 181 

Per Kilobase of transcript (RPKM) and an aligned read count of six or more within each tissue. 182 

Within each tissue, the distribution of RPKMs in each sample was quantile-transformed based 183 

Deleted: gene-based 

Deleted: gene-based 

Deleted: gene-based 

http://www.gtexportal.org/


on the average empirical distribution observed across all samples. Expression levels for each 187 

gene in each tissue were subsequently transformed to the quantiles of the standard normal 188 

distribution.  189 

 190 

Genome-wide association study of substance use traits 191 

We downloaded GWAS summary statistics for 8 substance use traits (smoking age of initiation, 192 

cigarettes per day, drinks per week, smoking cessation, smoking initiation, alcohol use 193 

disorder, alcohol dependence, and lifetime cannabis use) listed in Table 1. Detailed methods, 194 

including a description of population cohorts, quality control of raw SNP genotype data, and 195 

association analyses for substance use GWAS are provided in their respective publications (2–196 

5).  197 

 198 

eQTL-informed gene-level analysis of substance use GWAS signals 199 

We identified and prioritised risk genes for each substance use phenotype using eMAGMA 200 

(17) and S-PrediXcan, both of which integrate GWAS summary statistics with eQTL 201 

information from the GTEx project. eMAGMA assigns SNPs within or near target genes based 202 

on significant (FDR<0.05) SNP-gene associations in GTEx. Gene-based statistics were 203 

subsequently computed using the sum of the assigned SNP –log(10) P values while accounting 204 

for Linkage Disequilibrium. S-PrediXcan, on the other hand, imputes genetically-regulated 205 

gene expression from training models to estimate the phenotype-expression association, while 206 

also controlling for Linkage Disequilibrium. For both approaches, we used gene expression 207 

data for 13 brain tissues generated from GTEx (v7), and LD information from the 1000 208 

Genomes Project Phase 3 (19). For each tissue, we corrected for multiple testing using 209 

Bonferroni correction based on the number of genes per tissue (Supplementary Table 1). Due 210 

to correlated expression across tissues, no correction for the number of phenotypes studied 211 

(N=8) was performed.  212 

 213 

Fine-mapping of causal gene sets  214 

S-PrediXcan and other transcriptomic approaches may yield false-positive gene-trait 215 

associations due to correlation (LD) among SNPs used to generate the eQTL weights in the 216 

predication models (20). We used fine-mapping of causal gene sets (FOCUS) to appropriately 217 

model the impact of gene-trait correlations on the S-PrediXcan expression weights and assign 218 

a causal probability to each gene within substance use risk loci (20). We built a multi-tissue 219 
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eQTL database using GTEx v7 brain tissues (https://github.com/bogdanlab/focus/) to use as 227 

the eQTL weights database, and LD information from the 1000 Genomes Project Phase 3 (19) 228 

as reference genotypes.  229 

 230 

Identification of gene expression modules 231 

Gene co-expression modules were constructed for 13 individual brain tissues using the 232 

weighted gene co-expression network analysis (WGCNA) package in R (21). An unsigned 233 

pairwise correlation matrix – using Pearson’s product moment correlation coefficient – was 234 

calculated. An appropriate “soft-thresholding” value, which emphasizes strong gene-gene 235 

correlations at the expense of weak correlations, was selected for each tissue by plotting the 236 

strength of correlation against a series (range 2 to 20) of soft threshold powers. The correlation 237 

matrix was subsequently transformed into an adjacency matrix. Matrices are characterised by 238 

nodes (corresponding to genes) and edges (corresponding to the connection strength between 239 

genes). Each adjacency matrix was normalised using a topological overlap function. 240 

Hierarchical clustering was performed using average linkage, with one minus the topological 241 

overlap matrix as the distance measure. The hierarchical cluster tree was cut into gene modules 242 

using the dynamic tree cut algorithm (22), with a minimum module size of 30 genes. We 243 

amalgamated modules if the correlation between their eigengenes – defined as the first 244 

principal component of their genes’ expression values – was greater or equal to 0.8.  245 

 246 

Gene-set analysis of gene co-expression modules 247 

To identify gene co-expression modules enriched with substance risk genes, we performed 248 

gene-set analysis of eMAGMA gene-level results in the derived tissue-specific gene co-249 

expression modules using the gene-set analysis function in MAGMA v1.06 (17,23). The 250 

competitive analysis tests whether the genes in a gene-set (i.e. gene co-expression module) are 251 

more highly associated with risk genes than other genes while accounting for gene size and 252 

gene density. We applied an adaptive permutation procedure (23) (N=10,000 permutations) to 253 

obtain P values corrected for multiple testing. The 1000 Genomes European reference panel 254 

(Phase 3) was used to account for Linkage Disequilibrium between SNPs. For each tissue and 255 

gene-based enrichment method, a quantile-quantile plot of observed versus expected P values 256 

was generated to assess inflation in the test statistic. 257 

 258 

Characterisation of gene expression modules 259 
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Gene expression modules enriched with substance use GWAS association signals were 262 

assessed for enrichment of biological pathways and processes using g:Profiler 263 

(https://biit.cs.ut.ee/gprofiler/) (24). Ensembl gene identifiers within substance use gene 264 

modules were used as input; we tested for the over-representation of module genes in Gene 265 

Ontology (GO) biological processes. We set the statistical domain scope (i.e. reference gene 266 

set) to “only annotated genes”. The g:Profiler algorithm uses a Fisher’s one-tailed test for gene 267 

pathway enrichment; the smaller the P value, the lower the probability a gene belongs to both 268 

a co-expression module and a biological term or pathway purely by chance. Multiple testing 269 

correction was done using g:SCS; this approach accounts for the correlated structure of GO 270 

terms and biological pathways, and corresponds for an experiment-wide threshold of α=0.05. 271 

 272 

Preservation of gene co-expression networks across tissues 273 

To examine the tissue-specificity of modular enrichments and biological pathways, we 274 

assessed the preservation (i.e. replication) of network modules across GTEx brain tissues using 275 

the “modulePreservation” R function implemented in WGCNA (25). Briefly, the module 276 

preservation approach takes as input “reference” and “test” network modules and calculates 277 

statistics for three preservation classes: i) density-based statistics, which assess the similarity 278 

of gene-gene connectivity patterns between a reference network module and a test network 279 

module; ii) separability-based statistics, which examine whether test network modules remain 280 

distinct in reference network modules; and iii) connectivity-based statistics, which are based 281 

on the similarity of connectivity patterns between genes in the reference and test networks. We 282 

report the “Zsummary” statistic as a measure of preservation. A Zsummary value greater than 283 

10 suggests there is strong evidence a module is preserved between the reference and test 284 

network modules, while a value between 2 and 10 indicates weak to moderate preservation and 285 

a value less than 2 indicates no preservation.  286 

 287 

Results 288 

 289 

Study cohorts 290 

The substance use phenotypes included in our study are presented in Table 1. The GSCAN 291 

(GWAS and Sequencing Consortium of Alcohol and Nicotine use) analysis of 5 substance use 292 

phenotypes in 1.2 million individuals contributed the largest number of significant loci (566 293 

variants in 406 loci) for our study. All of the included studies, with the exception of alcohol 294 
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dependence from the Psychiatric Genomics Consortium, used samples derived from the UK 295 

Biobank and/or 23andMe. Over half of the significant loci across the 8 phenotypes were related 296 

to smoking initiation, which contained the largest number of samples (N=1,232,091). 297 

 298 

Gene-based tests of association  299 

To identify genes whose expression is influenced by genetic variation underlying disease risk, 300 

we performed eMAGMA using GWAS summary statistics and gene expression information 301 

from 13 brain tissues in GTEx v7 (Table S2). We identified 272 unique gene-based associations 302 

across all brain tissues (after Bonferroni correction for the number of genes in each tissue) 303 

(Supplementary Table 2). The number of significant genes for each phenotype was a function 304 

of GWAS sample size; 118 genes in 13 brain tissues associated with smoking initiation (GWAS 305 

N samples=1,232,091), while a single significant gene was associated with alcohol dependence 306 

(GWAS N samples = 46,568).  307 

There was no overlap in significant eMAGMA associations across all phenotypes, and only 308 

modest overlap between phenotype pairs. For example, 27 genes were significantly associated 309 

with both alcohol use disorder and the number of drinks per week (Table 3). There was a high 310 

correlation between the number of samples for each tissue and significant gene-based 311 

associations (Pearson’s r = 0.87). Cerebellum accounted for the largest number of significant 312 

associations (N associations=183) and also contained the largest number of post-mortem brain 313 

samples (N samples=154). We compared the number of significant associations from the 314 

eMAGMA analysis with previous findings from conventional MAGMA and S-PrediXcan 315 

(Supplementary Table 3). The total number of eMAGMA associations is smaller than the 316 

number of significant conventional MAGMA associations, but larger than the number of S-317 

PrediXcan associations. Genes found by eMAGMA but not conventional MAGMA or S-318 

PrediXcan by phenotype are shown in Supplementary Table 4.  319 

The gene CADM2, which has been linked to behavioural undercontrol, was associated with 4 320 

substance use phenotypes (drinks per week, alcohol use, smoking initiation, and cannabis use). 321 

Furthermore, the effect direction of CADM2 was consistent across phenotypes (Supplementary 322 

Table 5). Another four genes (AMT, CHRNA2, GPX1, KANSL1) were significant across three 323 

phenotypes (cigarettes per day, age of smoking initiation, and smoking cessation (Table 4). 324 

Overall, we found moderate correlation of eMAGMA Z-scores between phenotype pairs 325 

(Supplementary Table 6 and Supplementary Figure 1), with the strongest correlations between 326 
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(AUDIT) and drinks per week (Pearson’s r = 0.263, P < 2.22 × 10-16) and smoking initiation 357 

and drinks per week (r = 0.220, P = 3.95 × 10-14). 358 

 359 

Fine-mapping further prioritises genes within GWAS risk loci 360 

We applied the fine-mapping of causal gene sets (FOCUS) algorithm to prioritise genes within 361 

GWAS risk loci. All of the phenotypes, with the exception of alcohol dependence, contained 362 

“credible” genes (that is, genes most likely to be causal for a given phenotype). We identified 363 

a total of 269 unique credible genes across 77 distinct loci for 7 substance use phenotypes. 364 

Smoking initiation had the largest number of loci with credible genes (N=42 loci containing 365 

117 credible genes), followed by cigarettes per day (N=19 loci containing 46 credible genes). 366 

Candidate casual genes with the highest posterior inclusion probability (PIP) included FPGT 367 

(S-PrediXcan Z score -6.33; PIP: 1) for smoking initiation; ZNF780B (S-PrediXcan Z score 368 

5.37; PIP 1) for smoking cessation; RFC1 (S-PrediXcan Z score –9.41; PIP: 1) for drinks per 369 

week; SNRPA (S-PrediXcan Z score -9.44; PIP: 1) for cigarettes per day; CADM2 (S-370 

PrediXcan Z score 4.38; PIP: 0.624) for lifetime cannabis use; GRK4 (S-PrediXcan Z score -371 

4.7; PIP: 0.542) for age of smoking initiation; and FAM180B for alcohol use disorder (S-372 

PrediXcan Z score -5.74; PIP: 0.749) . A full list of credible genes for each phenotype is 373 

provided in Supplementary Table 7. We assessed the overlap in credible genes across 374 

phenotypes. A total of 43 credible genes were prioritised in more than one phenotype 375 

(Supplementary Table 8). Interestingly, the genes SNRPA and ZNF780B had posterior 376 

probabilities close to or equal to 1 for both smoking cessation and cigarettes per day, while the 377 

S-PrediXcan Z scores for these genes had opposite effect directions. This is consistent with the 378 

inverse relationship between the phenotypes, and provides strong evidence of their 379 

involvement in substance use risk. 380 

 381 

Network-based enrichment of substance use risk genes 382 

We tested for the enrichment of gene-based association signals in brain tissue-dependent gene 383 

co-expression networks. Age of initiation of smoking (AOI), drinks per week (DPW), and 384 

smoking cessation (SMC) each showed enrichment of gene-based association signals within 385 

two modules. The module DPW-1 had the largest number of gene-based associations with a 386 

nominal P value < 0.05 (N=9 genes; 22.5%), followed by the module DPW-2 (N=27; 16.5%) 387 

(Supplementary Table 9). The module DPW-2 also harboured two genes—TUFM (nucleus 388 

Deleted: alcohol use  
Formatted: Superscript

Deleted:   
Formatted: Font: 12 pt, Bold

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Justified, Line spacing:  1.5 lines
Deleted: a  
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt,
Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted ...
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted ...
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted ...
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted ...
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted ...
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted ...
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Not Highlight

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted ...
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted ...
Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: 12 pt

Deleted: gene-based 
Deleted: each  
Deleted: gene-based 
Deleted:  (Table 5) 
Formatted: Font: Italic

Formatted: Font: 12 pt, Font color: Auto



accumbens basal ganglia: P=1.07 × 10-10) and RPL9 (nucleus accumbens basal ganglia: P=2.08 396 

× 10-7)—with significant (Bonferroni-corrected) eMAGMA associations, highlighting their 397 

potentially coordinated association with drinks per week. Furthermore, the genes RPS26 and 398 

SNF8 had nominally significant eMAGMA P values in the modules DPW-2 (RPS26, P= 399 

0.0316; SNF8, P=0.0006) and AOI-2 (RPS26, P=5.55 × 10-5; SNF8, P=0.0007), suggesting 400 

some shared modular activity across substance use phenotypes (Supplementary Table 9). A 401 

biological category association analysis of the enriched modules identified processes related to 402 

RNA processing (module AOI-2; P=5.12 × 10-8); GABA synthesis, release, reuptake and 403 

degradation (module DPW-1; P=1.39 × 10-6) and the immune response (module SMC-1; 404 

P=1.64 × 10-67) (Table 5 and Supplementary Table 10). We extracted eMAGMA associations 405 

for genes that intersect both the enriched module and significant biological pathways 406 

(Supplementary Table 11). Several biological pathways had a relatively large proportion of 407 

nominally significant eMAGMA associations. For example, 4 out of 8 overlapping module 408 

genes for the AOI-2 pathway “metabolism of RNA” contained eMAGMA P values < 0.05 409 

(Supplementary Table 12). These data support the involvement of the gene co-expression 410 

modules in substance use, although the overlap between eMAGMA associations and biological 411 

pathways is modest for several phenotype modules (e.g. DPW-1 “neurotransmitter transport” 412 

contains 2 genes with eMAGMA associations, one of which has a nominal P value < 0.05). 413 

There was strong preservation (Z score > 10) of gene connectivity structure within significant 414 

modules across brain tissues (Figure 1), however DPW-2 (anterior cingulate cortex enriched 415 

with developmental and neurotransmitter pathways) had slightly lower preservation compared 416 

to other tissue modules. These data suggest modules and pathway enrichments may be 417 

generalised across tissue types for substance use traits and provide further support to maximise 418 

tissue sample size for a single brain tissue/region rather than maximising brain region coverage. 419 

Discussion 420 

Genetic risk factors for substance use alter the expression of target genes, which may in turn 421 

influence the activity of highly co-expressed (but not necessarily co-regulated) genes in a 422 

tissue-specific manner. We used expression quantitative trait loci from 13 brain tissues in a 423 

novel gene-based test (eMAGMA) to identify candidate risk genes for 8 substance abuse traits. 424 

The risk genes were subsequently tested for enrichment in tissue-specific gene co-expression 425 

networks to identify groups of highly correlated genes associated with substance abuse and 426 

improve the biological interpretation of gene-based associations. We identified 272 gene-based 427 
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associations across 8 substance use traits, many of which were associated with multiple traits. 442 

Candidate risk genes for 3 substance use traits (age of initiation, drinks per week, and smoking 443 

cessation) were enriched in at least one co-expression module, which contained genes involved 444 

in gene expression and cellular metabolism. These results demonstrate the utility of integrating 445 

genetic, gene expression, and gene co-expression data for the biological interpretation of 446 

complex traits such as substance use. 447 

Our gene-level (eMAGMA) approach annotates target genes by assigning genetic variants to 448 

genes based on tissue-specific eQTL information before testing for the enrichment of GWAS 449 

signals in target genes. The number of significant gene-level associations across the 8 substance 450 

use traits ranged from 1 (alcohol dependence) to 118 (smoking initiation). The number of 451 

associations was a function of GWAS sample size, highlighting the importance of sample size 452 

in genetic studies of complex traits. In a comparison of eMAGMA and other gene-based 453 

methods, eMAGMA performed similarly to S-PrediXcan in terms of number of significant 454 

associations, while it shows a 1.2 to 7-fold reduction compared to MAGMA gene-based test 455 

results (17) (Table S6). The latter finding is not unexpected since the total number of tested 456 

genes in eMAGMA (i.e., genes of which gene expression is controlled by at least one eQTL) 457 

is substantially lower than the total number of protein-coding genes (e.g. the number of tested 458 

genes in amygdala using eMAGMA is 1301 versus 18,128 tested genes using conventional 459 

MAGMA). However, while eMAGMA identifies fewer genes than its conventional MAGMA 460 

counterpart, the gene candidates are directly linked to the regulation of gene expression in a 461 

particular tissue and thereby offer a biologically meaningful substrate for follow-up analyses.   462 

Our approach enables the study of tissue-specific gene expression changes underlying 463 

substance abuse traits. The majority of the significant associations were detected in cerebellum, 464 

a region that has been implicated in addiction (26). While a robust functional mechanism 465 

specific to cerebellum has not been established, a recent study in mice showed that the 466 

cerebellum controls the reward circuitry and social behaviour through direct projections from 467 

the deep cerebellar nuclei to the brain’s reward center (i.e., the ventral tegmental area) (27). 468 

This suggests changes in gene expression in cerebellum precipitate behavioural changes related 469 

to substance use. It should be noted, however, that cerebellar gene-based associations may be 470 

proxy associations for a causal tissue or cell type, given cerebellum has the largest number of 471 

brain tissue samples in GTEx thereby increasing statistical power to identify gene associations. 472 
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Previous studies showed moderate to large correlations of additive genetic effects across 486 

substance use traits (28,29). We aimed to investigate whether the genetic correlations would 487 

be recapitulated in terms of gene-level associations. Indeed, we observed substantial overlap 488 

for some trait combinations with high genetic correlations. For example, 82% of the genes that 489 

were significantly associated with alcohol use disorder were also linked to the number of drinks 490 

per week. This is higher than the genetic correlation (rg) between the two phenotypes (rg=?), 491 

which may be the result of eMAGMA assigning different genetic variants underlying each 492 

phenotype to the same gene, increasing the overlap between phenotypes. However, it is 493 

difficult to compare the level of overlap in gene-level associations, which relate to specific loci, 494 

and genetic correlations, which measures genome-wide significant correlations. Interestingly, 495 

gene-level associations for lifetime cannabis use showed substantial overlap with drinks per 496 

week (32% overlap) and smoking initiation (27% overlap). One of the genes contributing to 497 

the genetic overlap is CADM2, which was found to be associated with 4 out of 8 traits (i.e., 498 

alcohol consumption, alcohol use disorder, smoking initiation, and cannabis use). CADM2 was 499 

previously found to be associated with a broad profile of risk-taking behaviour and behavioural 500 

under-control (30). Furthermore, CADM2-knockout mice have increased locomotor activity 501 

and reduced body weight, suggesting an important role in behavioural regulation and energy 502 

homeostasis (31). The robust association between CADM2 expression and multiple substance 503 

use traits highlights the need for future functional studies to further explore the functional gene 504 

mechanisms.  505 

We also detected the susceptibility locus at a chromosome 3p21.31 gene cluster for smoking-506 

related phenotypes: smoking initiation, cigarettes per day, and smoking cessation. The cluster 507 

covers 7 genes with eMAGMA associations (AMT, GPX1, NCKIPSD, P4HTM, WDR6, 508 

DALRD3, and CCDC71), several of which have been related to intelligence and cognitive 509 

functional measurement (32). None of the predicted expression models in our fine-mapping 510 

(FOCUS) analysis explained the observed S-PrediXcan associations for these genes, meaning 511 

a putative causal gene could not be prioritised in the locus. This is most likely due to high 512 

linkage disequilibrium at the locus. Nonetheless, these associations are consistent with the 513 

highly negative genetic correlation of smoking-related phenotypes with years of education (4). 514 

Other overlapping gene-based associations included MAPT and CRHR1 for AUDIT (alcohol 515 

use disorder) and drinks per week. These genes are located within a common inversion 516 

polymorphism at chromosome 17q21.31, which is related to alterations in tissue-specific gene 517 

expression (33) and neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s 518 
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disease (34,35). However, a causative role of individual genes within this locus in substance 529 

use has not been established and cannot be inferred from the present data. 530 

Our network-based approach identified gene co-expression networks enriched with GWAS 531 

signals of age of smoking initiation, alcohol consumption, and smoking cessation. The 532 

implicated modules were enriched in biological pathways related to cellular metabolism 533 

(“cellular metabolic process”, nucleus accumbens basal ganglia, P=0.0443) and gene 534 

expression (“RNA processing”, spinal cord cervical C-1, P=6 × 10-4), among others. The terms 535 

“gene expression” and “RNA processing” are difficult to interpret because they involve every 536 

processes in which a stretch of DNA is converted into a mature gene product. “Cellular 537 

metabolism”, while similarly broad in biological pathways, encompasses all chemical reactions 538 

involving the breakdown of drug compounds and alcohols and would therefore be expected to 539 

be associated with substance use. Interestingly, a module enriched with risk genes associated 540 

with drinks per week (DPW-1) was associated with the biological process “GABA synthesis, 541 

release, reuptake and degradation”. Alcohol directly binds to gamma-aminobutyric acid 542 

(GABA) receptors, causing the release of the inhibitory neurotransmitter GABA and inducing 543 

the sedative effects associated with alcohol use (36). Our findings represent some of the first 544 

evidence that alternations in genetically regulated expression in anterior cingulate cortex may 545 

influence alcohol consumption behaviour through changes in the brain’s reward circuitry and 546 

warrant follow-up validation studies. 547 

The findings of this study should be interpreted in view of the following limitations. First, 548 

although GTEx is one of the most comprehensive genetic expression databases available to 549 

date, the statistical power for eQTL discovery is still modest (37). We observed a strong 550 

correlation (Pearson’s r = 0.87) between the post-mortem sample size and the number of gene 551 

discoveries suggesting that molecular studies of substance use phenotypes should maximise 552 

brain tissue sample. It should be noted, however, as the sample size of GTEx continues to 553 

increase the number of genes with significant eQTLs (eGenes) will plateau and further 554 

increases in sample size will have little impact on biological conclusions. Second, our analyses 555 

focus on the role of eQTLs in brain tissues while recent studies have shown that eQTL effects 556 

may differ between cell types within a specific tissue (38). Cerebellum, for example, contains 557 

the largest number of neurons in the human brain (39), potentially increasing the likelihood of 558 

identifying neuronal-specific pathways compared to other brain regions. Third, the identified 559 

genes should be seen as ‘candidates’ as correlated levels of gene expression in high LD 560 
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genomic regions makes it challenging to identify the true causal genes (40). Finally, our gene 563 

co-expression analyses rely on the stability (i.e. robustness) of gene networks both within and 564 

between tissues (8).   565 

In summary, we assessed gene targets and biological pathways underlying 8 substance use 566 

traits. Our gene-based approach, eMAGMA, identified 272 candidate risk genes for substance 567 

use whose expression is altered in at least one of 13 brain tissues. We confirmed substantial 568 

gene-based overlap between substance use traits, with the highest overlap between drinks per 569 

well and alcohol use. The gene CADM2, recently associated with lifetime cannabis use, risk-570 

taking behaviour, and a behavioural undercontrol, was associated with half of the substance 571 

based traits. We used gene co-expression networks in brain to identify broader, functionally 572 

related modules (groups) of genes potentially implicated in substance use. Six gene modules 573 

across 3 traits were enriched with gene-based associations. One of the associated co-expression 574 

modules, in anterior cingulate cortex, was enriched with biologically meaningful pathways 575 

related to GABA release and degradation, highlighting the utility of our approach in describing 576 

the molecular characteristics of substance use traits. The integration of summary statistics from 577 

larger GWAS of substance use traits with gene expression data from brain tissues, provided by 578 

GTEx (41) and other consortia (42), will facilitate the translation of statistical associations to 579 

the discovery of causal genes and molecular mechanisms. 580 
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Figure 1: Preservation of gene connectivity across co-expression modules enriched with gene-597 
based association signals for substance use traits. Notes: A Z-summary value greater than 10 598 
suggests there is strong evidence a module is preserved between the reference and test network 599 
modules, while a value between 2 and 10 indicates weak to moderate preservation and a value 600 
less than 2 indicates no preservation. Grey boxes indicate the tissue in which the significant 601 
association was found. AOI, age of smoking initiation; DPW, drinks per week; SMC, smoking 602 
cessation. 603 
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