Alzheimer's Research & Therapy

An Analysis of Genetically Regulated Gene Expression across Multiple Tissues
Implicates Novel Gene Candidates in Alzheimer’s Disease

Manuscript Number:

Full Title:

Article Type:
Funding Information:

Abstract:

Corresponding Author:

Corresponding Author E-Mail:

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author:

First Author Secondary Information:

Order of Authors:

Order of Authors Secondary Information:

--Manuscript Draft--

AZRT-D-19-00239R1

An Analysis of Genetically Regulated Gene Expression across Multiple Tissues
Implicates Novel Gene Candidates in Alzheimer’s Disease

Research

Introduction: Genome-wide association studies (GWAS) have successfully identified
multiple independent genetic loci that harbour variants associated with Alzheimer’s
disease, but the exact causal genes and biological pathways are largely unknown.
Methods: To prioritise likely causal genes associated with Alzheimer’s disease, we
used S-PrediXcan to integrate expression quantitative trait loci (eQTL) from the
Genotype-Tissue Expression (GTEx) study and CommonMind Consortium (CMC) with
Alzheimer’s disease GWAS summary statistics. We meta-analysed the GTEXx results
using S-MultiXcan, prioritised disease-implicated loci using a computational fine-
mapping approach, and performed a biological pathway analysis on the gene-based
results.

Results: We identified 126 tissue-specific gene-based associations across 48 GTEx
tissues, targeting 50 unique genes. Meta-analysis of the tissue-specific associations
identified 73 genes whose expression was associated with Alzheimer’s disease.
Additional analyses in dorsolateral prefrontal cortex from the CMC identified 12
significant associations, 8 of which also had a significant association in GTEx tissues.
Fine-mapping of causal gene sets prioritised gene candidates in 10 Alzheimer’s
disease loci with strong evidence for causality. Biological pathway analyses of the
meta-analysed GTEx data and CMC data identified a significant enrichment of
Alzheimer’s disease association signals in plasma lipoprotein clearance, in addition to
multiple immune-related pathways.

Conclusions: The integration of GWAS and gene expression data across multiple
tissues improves power to identify and prioritise candidate genes and biological
pathways for Alzheimer’s disease, and may identify accessible surrogate tissue for
follow-up functional genetic studies.
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Response to Reviewers:

Response to reviewers’ comments
Reviewer #1:

1.From the work presented here, there is not compelling evidence that the results can
address the concerns previously expressed on performing TWAS in tissues that differ
from the known tissue type of interest. In this proposed work, the authors state that
they find 126 significant associations for 50 distinct genes across 48 tissues after
multiple testing correction, 22 of which (for 12 distinct genes) remain after excluding
the APOE locus. The authors argue that the best tissue overlap is found with the skin,
which not coincidentally has the highest number of samples. Wainberg et al (Nature
Genetics doi: 10.1038/s41588-019-0385-z) specifically warn against performing TWAS
in tissues without clear relevance to the trait, showing how known causal genes drop
out while new genes appear, without any evidence for a causal association. Wainberg
et al go on to demonstrate how using reference gene expression panels from tissues
that are less related to the trait introduces bias in TWAS.

We have included a scatter plot of GTEx tissue sample against the number of
associations (Supplementary Figure 1). There is certainly a positive correlation
between tissue sample size and the number of significant associations with
Alzheimer’s disease, however the relatively large number of associations found in skin
is an outlier. Furthermore, genes with a significant association in both skin and
(biologically relevant) brain tissues had concordant effect directions. We accept these
observations do not imply causality but rather reflect potential shared regulatory
mechanisms that may provide useful surrogate information for less accessible brain
tissues. We have further addressed the concerns raised by the reviewer and Wainberg
et al. in response 2 and response 3 below, where we performed fine mapping of causal
gene sets (FOCUS) and transcriptomic imputation analyses with a large brain
expression dataset.

2.There is also considerable concern about identifying multiple causal genes at the
same locus. For these results to be reasonably considered, | recommend that the
authors perform additional fine mapping or conditional analysis that will help to
prioritize genes for each identified locus. An example of such an approach is here:
FOCUS fine-mapping methods (http://github.com/bogdanlab/focus).

We applied FOCUS to fine-map each Alzheimer’s disease risk locus. We used as input
the IGAP GWAS summary statistics and expression weights from 48 GTEXx (version 7)
tissues, METSIM (adipose tissue), NTR (whole blood), YFS (whole blood), and CMC
(dorsolateral prefrontal cortex). We excluded chromosome 19 as the APOE region
cannot be disentangled with current computational fine-mapping approaches. FOCUS
prioritised candidate causal genes in 10 loci, including several candidates not yet
implicated in Alzheimer’s pathophysiology (methods: lines x-y; results: lines 247-258).

3.To address if these results provide reasonable targets that are relevant in the brain,
these results should be validated in either an independent dataset for the relevant
tissue, or using a targeted approach with just the brain samples from GTEx. One
possibility would be to validate their findings using the newly available CommonMind
Consortium which has the requisite expression and WGS sequencing data available.
We performed S-PrediXcan using expression weights generated using gene
expression and SNP genotype data from the CommonMind Consortium (CMC)
(methods: lines 141-154, results lines 231-244). There was substantial overlap with the
meta-analysed GTEX results, as well as some novel gene candidates.

Reviewer #2

Gerring et al., present an analysis of publicly available genome-wide genotyping using
publicly available models of tissue expression data. They then used the results of the
imputed transcriptome-wide association study to perform gene set enrichment
analysis. The authors acknowledge that sample size is likely guiding much of their
findings in peripheral versus brain tissue, but it is interesting that variants in and around
APOE are associated with different expression in skin. However, there is not a clear
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Additional Information:
Question

<b>l|s this study a clinical
trial?</b><hr><i>A clinical trial is defined

picture of how to use these new findings since the organ of interest in Alzheimer’s
disease is generally thought to be the brain so expression differences in the skin (or
other organ) seem likely due to pleiotropy. Still there is nothing that seems technically
wrong with the analysis and it seems like it ought to be published.

The authors are upfront that other people have published similar analyses (with one
using the same GTEXx data); however, there are some differences in approach.

Minor points:
1.Line 98: there were 88-173 samples from 15 brain regions per table s1
Thank you, we have amended the text to reflect the number of regions in Table S1.

2.Figure 1 initially confused me since the location of zero is not in the center of the z-
score scale is there a bias to positive z-scores overall?

Thank you. We have centred the z-score scale in Figure 1. There was a slight bias
towards positive z-scores; we have noted this bias in the results (lines 182-183).

3.Does the lipid pathway remain significant if APOE and the locus around it (APOC1,
etc.) are removed?

We ran the pathway analyses with and without the APOE locus, using both the GTEx
and CMC data. In GTEX, the lipid pathway is no longer significant (P=0.5216) after the
APOE region was removed. In the CMC analyses, plasma lipoprotein clearance
pathway remained significant (P=5.88 x 10-56) with the removal of APOE, along with
immune system pathways (Supplementary Table 9 and Supplementary Table 10).

4 Lines 263-267: the link between the accumulation of those neuropathologic changes
and lipid clearance is not as settled in the Alzheimer’s disease field as the authors
seem to suggest - | would suggest presenting this as an observed association.

We have changed the text to emphasise the observed (rather than casual) association
between plasma lipoprotein clearance and genetically-regulated gene expression in
Alzheimer’s disease. We also emphasise the potential biological consequences of this
association have yet to be causally linked with Alzheimer’s disease.

5.The last paragraph seems out of step with the results. For instance, the major
pathway identified was lipid transport, which was also seen in the UTMOST paper;
therefore, it is unclear why the findings in microglia are relevant here. Also, there are
really few large-scale attempts to identify Alzheimer’s disease eQTLs given the rarity of
brain material for sequencing.

We have updated the final paragraph to more broadly discuss the potential utility of
studying immune-specific effects of susceptibility variants in Alzheimer’s disease, given
we found strong enrichment of immune-related pathways in dorsolateral prefrontal
cortex from the CMC. We suggest immune dysfunction may arise from microglial cells,
the chief immune cells of the central nervous system, in line with a recent Alzheimer’s
disease GWAS (10.1038/s41588-018-0311-9).

Thank you for your helpful comments on our manuscript.
Sincerely,
Zachary Gerring, PhD

Postdoctoral Research Fellow, Translational Neurogenomics
QIMR Berghofer Medical Research Institute

Response

No
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by the World Health Organisation as 'any
research study that prospectively assigns
human participants or groups of humans
to one or more health-related
interventions to evaluate the effects on
health outcomes'.</i>
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targeting 50 unique genes. Meta-analysis of the tissue-specific associations identified 73 genes

whose expression was associated with Alzheimer’s disease. Additional analyses in dorsolateral

prefrontal cortex from the CMC identified 12 significant associations, 8 of which also had a

significant association in GTEX tissues. S-Predixean-identified-126-sighificant-associations

sighificant-after-removal-of-the-APOEregion—Fine-mapping of causal gene sets prioritised

gene candidates in 10 Alzheimer’s disease loci with strong evidence for causality. Biological

pathway analyses of the meta-analysed GTEx data and CMC data identified a significant
enrichment of Alzheimer’s disease association signals in Meta-analysis-of S-PredixXeanresults
identified73-genes-that- were-significanthy-enriched-in-plasma lipoprotein clearance, in addition

to multiple immune-related pathways. - [Formatted: Font:
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1. BACKGROUND
An estimated 5.5 million Americans are-were living with Alzheimer’s disease {AB}-in 2017,
with a prevalence of 10% for people over the age of 65 years [1]. In the absence of a significant

medical breakthrough the number of people living with AB-Alzheimer’s disease is estimated

to reach 13.8 million in the US alone by 2050 [1]. AB-Alzheimer’s disease is officialy-the

sixth leading cause of death in the US, but this is likely to be underestimation as complications
of the disease, such as pneumonia, are often recorded as the primary cause of death.

Alzheimer’s diseaseAB is characterised by neuronal death and key neuropathological changes,

including the deposition of B-amyloid and hyperphosphorylated tau tangles. Genome wide
association studies (GWAS) fer-AB-have been-suecesstun-identifdngied genetic risk factors

for AB-Alzheimer’s disease and providing-provided novel insights into disease aetiology. A

GWAS meta-analysis of 74,046 individuals (25580 cases and 48466 controls) identified 19
genetic risk loci [2], which has since increased to some 24 loci with largertheadditional

samples-easeslarger sample sizes [3]. Biological pathway analyses of these data implicate the

immune system and lipid metabolism as well as tau binding and amyloid precursor protein

metabolism [2], although a disease mechanism of action -has yet to be established.

In GWAS, -significant associations are reported for an index-single nucleotide polymorphism
(SNP) with the lowest P value, but the signal could be ted-explained by ary-one (or more)

variant within the linkage disequilibrium block where that SNP resides. Furthermore, GWAS

loci may contain multiple genes or regions that affecting the expression of alternative-other
genes. Additional aralysis-analyses is-are required to elucidate the biological mechanisms that
underlie statistical associations between genetic variants and disease risk. One method is to
identify the-genomicregionsloci where SNP variation is associated with differences in gene

expression, called expression quantitative trait loci (eQTLs). Genome-wide gene expression
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data has been successfully integrated with SNP genotype data to prioritise risk genes and reveal
possible mechanisms underlying susceptibility to a range of psychiatric disorders [4-7]. This
approach may be performed in cases and controls for whom both gene expression and SNP
genotype data are available. However, these data sets are likely to have limited sample size and
suffer from confounding from reverse causality as variation in gene expression may be

influenced by disease status or drug treatment.

An alternative method is to integrate GWAS findings with independent gene expression data
provided by large international consortia, such as the multi-tissue Genotype-Tissue Expression

(GTEX) project [8].and the CommonMind Consortium (CMC). GTEXx (version 7) contains SNP

genotype data linked to gene expression across 53 tissues from 714 donors, including 13 brain

tissues—regionsfrem—216—doners, and the CMC contains gene expression data from the

dorsolateral prefrontal cortex of 986646 donors. Fhis-These data represents a valuable resource

with which to quantify the association between genetically regulated expression in multiple
tissues and the phenotype of interest. Association testing can be carried out using a gene-based
approach implemented by transeriptome-wide—association—study—(FWAS)transcriptomic
imputation approaches-[5,9,10] which reduce the high level of multiple testing from single-
variant tests, and increase power to identify trait associated loci from both a strong functional
SNP signal, or from a combination of modest signals. The application of PALAS-transcriptomic
imputation appreaches-using GWAS summary statistics without the need for individual level

data allows this-these methods to be applied to large scale GWAS meta-analyses results. Here,

we apply a PAWAS-transcriptomic imputation approach called S-PrediXcan to Alzheimer’s
disease GWAS summary statistics in order to explore the genetic component of gene

expression associated with the disorder.; We then use these data in a fine-mapping approach to

identify-prioritise candidate causal genes with disease implicated loci, and prieritise-identify
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biologically informative surrogate tissues that might be used to identify—characterise

Alzheimer’s disease pathways and processes.

2. MATERIALS AND METHODS
2.1. Alzheimer’s disease GWAS summary statistics

Detailed methods, including a description of population cohorts, quality control of raw SNP
genotype data, and association analyses for the Alzheimer’s disease GWAS is described in
detail elsewhere—[2]. The Alzheimer’s discase GWAS, performed by members of the
International Genomics of Alzheimer’s Project (IGAP), included an initial meta-analysis of 4
samples of European ancestry (17,008 cases and 37,154 controls) followed by an analysis of
moderately associated SNPs (P < 1 x 10-%) in an independent sample of 8,572 cases and 11,312
controls of European ancestry. All cases received clinical confirmation of late-onset
Alzheimer’s disease. SNPs were imputed using the European population reference from the
1000 Genomes Project 2010 interim release based on the sequence data freeze from 4 August
2010 and phased haplotypes from December 2010) [11]. Logistic regression association tests
were conducted for imputed marker dosages with age and sex as covariates, as well as principal
components to control for possible population stratification. Summary statistics for 7,055,881

autosomal SNPs were made available by IGAP and were utilized in our study.

2.2. Identification of genes with differential expression levels between Alzheimer’s disease
cases and controls,

We used S-PrediXcan to integrate eQTL information with eur-GWAS summary statistics to
identify genes of which genetically predicted expression levels are associated with Alzheimer’s
disease status. S-PrediXcan estimates gene expression weights by training a linear prediction
model in a reference sample with both gene expression and SNP genotype data. The weights

are used to predict gene expression from GWAS summary statistics, while incorporating the
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variance and co-variance of SNPs from an linkage disequilibrium (LD) reference panel. We

used expression weights for 48 tissues with S-PrediXcan expression weights from the GTEx

Project (version 7)_and dorsolateral prefrontal cortex from the CommonMind Consortium

(CMCQ), and LD information from the 1000 Genomes Project Phase 3[12]. These data were
processed with beta values and standard errors from the Alzheimer’s disease GWAS to estimate
the expression-GWAS association statistic. To increase power to identify genes whose
expression is similarly differentially regulated across tissues, we meta-analysed the {tissue-

specific)—statistiecs—fromGTEX S-PrediXcan results using the S-FissueXean—MultiXcan

algorithm[13]. We used Bonferroni correction to adjust for the number of tests performed

within each tissue as well as across all tissues and genes (Table S1).

A

2.3. Fine-mapping of causal gene sets (FOCUS)

S-PrediXcan and other transcriptomic approaches may yield false positive gene-trait«

associations due to correlation (LD) among SNPs used to generate the eQTL weights in the

predication models[14]. We used FOCUS (fine-mapping of causal gene sets) to appropriately

model the impact of gene-trait correlations on the S-PrediXcan expression weights and assign

a causal probabilityies to each gene within Alzheimer’s disease risk loci. We used a multi-

tissue—multiple  —eQTL reference panel database provided by the authors

(https://github.com/bogdanlab/focus/) and LD information from the 1000 Genomes Project

Phase 3[12] as reference genotypes. \We-exeluded-cChromosome 19 was removed due to the
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complexity—of-modelling—association—sigralscomplex association signals within the APOE

locus.

2:3.2.4.  Pathway analysis of gene-based analyses

We performed a biological pathway analysis using generalised linear model regression, with

the z-score from the GTEX S-FissueXean-MultiXcan or CMC S-PrediXcan association data as

the dependent variable and membership in Reactome pathways as a linear predictor. Pathways
containing fewer than 10 cis-heritable genes (i.e. genes whose average expression across
tissues is influenced by proximal [<1 Mb from the gene start or end] SNPs) were removed,
resulting in 1318 biological pathways for pathway enrichment analysis. A Bonferroni corrected
P value of P = 3.79 x 10 (adjusting for 1318 tested pathways) was used to correct for multiple

testing.

3. RESULTS

3.1. A cross-tissue transcriptome-wide association study identifies peripheral tissues
enriched with Alzheimer’s disease association signals

Using S-PrediXcan, we identified 126 significant associations_(Supplementary Table S2)

targeting 50 unique genes (Supplementary Table S3) after multiple testing correction for all

genes and tissues (P<2.68 x 10°7){(TFable-1:—Supplementary-Table-S3). Among significant

associations, there was a slight bias towards positive z-scores (N=75 [60%]). The number of

significant associations per tissue was largely a function of sample size, with skin (sun-exposed

lower leg) (number of RNA-seq samples N=473) harbouring the Fhe-tissue-with-the-largest

number of associations was-skin-{sun-exposed-tewerleg)-(n=9), followed by lung (n=8) (Table

2) (Supplementary Figure S1). For significant genes identified in multiple GTEX tissues, effect

directions were largely consistent across tissues (Figure 1)-suggesting-peripheral-tissues-may

. The most significant gene

8
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association in GTEx data was for APOE; genetic variants associated with increased HabHity-te
Alzheimer’s disease risk are predicted to downregulate expression levels of APOE in 3-three
peripheral tissues, including sun-exposed skin (Z=19.50, p=1.03 x 10-%*) and non-sun-exposed
skin (--16.56, p=1.27 x 10') (Table 1; Supplementary Table S3) after multiple testing
correction (Bonferroni correction for 186,230 tests [0.05/186,230] P < 2.68 x 107). Of note,
although APOE is expressed more widely in brain compared to most other tissues
(Supplementary Figure S1S2), the eQTL associations with APOE are only found in non-brain
tissues. While these associations are likely to be due, at least in part, to the increased sample
size (and therefore statistical power) of nen-brainperipheral tissues, they highlight the
importance of interrogating multiple (accessible) tissues in eQTL analyses of complex (brain-

related) traits.



Table 1: Top 5 S-PrediXcan associations inside-and-eutsideby APOE region
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219  Figure 1: Heatmap of the Z score effect directions for significant genes identified in multiple
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We removed genes flanking the APOE region (+/- 500kb) due to its strong association with

ABAlzheimer’s disease and identified 22-29 significant associations-targeting-12-unigue-genes

(Supplementary Table S3);7-ef-which-were-not-identified-as-candidate-causal-(i-e—nearest)
gene-intheLambertetal GWAS. The most significant gene outside the APOE region was the

vasodilator-stimulated phosphoprotein VASP (Z = -11.30, P = 1.24 x 10"%) in Testis (Table 1).
The most significant association outside chromosome 19 was observed for the clusterin CLU
in skin (sun exposed lower leg) (Table 1; Supplementary Table S3). Taken together with

findings for APOE, these data suggest skin (together with other peripheral tissues) may be used
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as an accessible surrogate tissue for peripheral biomarker discovery and molecular studies of

causal disease processes.

Table 22: Number of significant S-PrediXcan associations per tissue
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. Gene
Tissue -
- Associa
JTissue sample tions Genes Formatted: Font: 11 pt
size (N
(N) (N)
Skin Sun Exposed 14 910 APOE, APOC1, NECTIN2, SIX5, CLU, Formatted: Font: 11 pt

Lower leg = CLPTM1, ZNF229, ZYX, PPP1R13L, KLC3
RELB, APOE, CEACAM19, APOC2, APOC1,

Lung 383 8 APOC4, MS4A2, DMPK

PPP1R13L, KLC3, EPHAL, ZNF234, MS4A2,
Oesophagus Mucosa 358 78 RP11-385F7.1, TOMM40, PVR
Oesophagus 335 6 NECTIN2, BLOC1S3, CR1, CEACAM19, BIN1,
Muscularis PVR
Skin Not Sun ; 335 56 APOE, APOC2, ZNF229, CLPTM1, MS4A2,
Exposed Suprapubic = PVR
Adrenal Gland 175 4 APOC1, APOC4, QPCTL, CEACAM19
Brain Hippocampus 111 4 CEACAM19, CR1, NECTIN2, HLA-DQA2
[Pancreas 220 4 CEACAM1Y9, CBLC, FOSB, BCAM
Spleen 146 4 PVR, FZD4, CEACAML19, SIX5
Stomach 237 4 MS4A2, ZNF45, CBLC, CEACAM19

To improve power relative to the single-tissue analyses, we combined results from different
single-tissue models into a single aggregate statistic using S-FissuexXeanmultiXcan. We
identified 73 gene-level S-FissuexXean-MultiXcan associations after correction for multiple
testing (Table 3, Supplementary Table S4), of which 36 were located outside the APOE region.
The S-TissueXean-MultiXcan analysis identified 27 additional significant genes not found in
the single tissue analyses, 19 of which encoded genes outside the APOE region (Supplementary
Table S4). The most significant S-FissuexXean-MultiXcan association was for PVRL2 (also
known as NECTIN2), located within the APOE region (oesophagus muscularis; Zmean = -4.94,
P = 2.64 x 10°131), followed by APOE (skin sun exposed lower leg; Zmean = -3.58, P = 4.25 x
10-191), The most significant protein coding gene outside the APOE region was for Protein

Tyrosine Phosphatase, Receptor Type H PTPRH (brain caudate basal ganglia); Zmean = 0.35, P
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=2.19 x 101?). A total of 7 genes were significant in the single-tissue analyses but not the S-

TFissuexean-MultiXcan meta-analysis, due in part to heterogeneity in the effect directions of

imputed gene expression across tissues-{Supplementary-Table-S5).
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Table 3: Top 5 S-Fissuexean-MultiXcan associations rside-and-outsideby APOE region « Formatted
N Z score | Formatted
Gene MoestsignificanttTop NN / Formatted
name tissue £Tissues P-value Min Max Mean SD Formatted
JInside APOE
Oesophagus-Esophagus 2.64xELQ; | Formatted
PVRL2 Muscularis 17 181 .19.28 578 -494 6.75 <« Formatted
Skin Sun Exposed 4.25x105= | Formatted
APOE Lowerleg 7 o .1950 751 -358 10.50
4.05x10E Formatted
APOC1 Adrenal Gland 4 9 -19.13 598 -6.24 1343 Formatted
Oesephagus Esophagus Formatted
BLOC1S3  Muscularis 6 9.00x10%7 -1563 348 -1.78 7.07
APOC4 Adrenal Gland 4 140x108® 953 591 -092 796 Formatted
Outside APOE | Formatted
Skin Sun Exposed Formatted
SIX5 Lower-leg 4 124x105%  -6.18 103 -041 7.40 <
VASP Testis 3 558x10F%  -11.3 261 -229 7.82 |
Oesophagus-Esophagus \\ Formatted
BIN1 Muscularis 23 3.58x10F8 632 4.09 -221 326 |\ [ Formatted
Skin Sun Exposed \
CLU Lower-leg 8 7.51x105% -307 822 128 412 | Formatted
Oesephagus-Esophagus \ Formatted
CR1 Muscularis 7 1.69x10%  -0.38 7.33 4299 345 \ Formatted

Notes: N Tissues, number of tissues with significant gene-based association; Z score: Minimum,

maximum, mean and standard deviation of the Alzheimer’s disease association coefficient from S-
FissueXeanMultiXcan.

3.2. A comparison of multi-tissue GTEX results with brain-specific eQTL database from
the CommonMind consortium

<

We performed an S-PrediXcan analysis using expression weights for a single brain region

(dorsolateral prefrontal cortex) collected by the CMC, and identified 12 significant (P<5.08 x

10) gene-based associations (Supplementary Table S5). We compared these data with the

meta-analysed results from 48 tissues in GTEx (Table 4). Of 12 significant gene-based

associations in GFEXCMC, 8 also showed a significant association in GTEX tissues (P<1.93 x

10-5). The Z scores between CMC and GTEx were concordant where the mean absolute GTEX
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Z score was > 1, highlighting the consistency of the datasets. The top CMC association was Formatted

TOMMA40 (P=1.37 x 10-1%%), located within the APOE gene cluster on Chromosome 19g13.
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We tested for the enrichment of S-TFissueXcan-Alzheimer’s disease associations in Reactome

biological pathways by regressing gene pathway membership against the (signed) z-Z-score

from the S-Fissuexean-S-PrediXeanMultiXcan analyses. This approach allowed us to assess

the enrichment of S-FissueXeanAlzheimer’s disease associations within biological pathways,
as well as the mean effect size and effect direction of gene expression within the enriched

pathways. In the (multi-tissue) GTEx S-MultiXcan analysis, ©re-one pathway——plasma

17




lipoprotein clearancez——was significantly downregulated in Alzheimer’s disease cases after

correction for multiple testing (beta coefficient = -0.7861, P = 6.64 x 10%) (Table 45,

Supplementary Table S6S7))—consistent—with—theknownpatheaetiology—of Alzheimer’s

disease. Plasma lipoprotein clearance was also significantly downregulated in cases using the

CMC data (beta=-0.5646; P=8.31 x 10?°). Furthermore, we identified the uprequlation of

[Formatted: Font: Italic }

multiple immune-related pathways, especially related to Toll Like Receptor (TLR) cascades

(e.q. Toll Like Receptor TLR1:TLR2 Cascade; beta=0.3684, 1.32 x 10 (Table 5,

Supplementary Table S8), using the CMC data.

Table 5: Biological pathways associated with Alzheimer’s disease association signals in
dorsolateral prefrontal cortex from the CMC

Pathway ID Pathway name Coef SE P <
S-MultiXcan

R-HSA-8964043 Plasma lipoprotein clearance -0.7861 0.1745 6.64x10°

CMC DLPFC

R-HSA-168179  Toll Like Receptor TLR1:TLR2 Cascade 0.3684 0.0263 1.32x10*
R-HSA-167044  Signalling to RAS 0.6713 0.0493 2.78x10*
R-HSA-187687  Signalling to ERKs 0.5786 0.0438 6.52x10%
R-HSA-447115  Interleukin-12 family signalling 0.6109 0.0468 7.27x10*
R-HSA-354192 Integrin alphallb beta3 signalling 0.6337 0.0486 8.14x10°°
Notes: Coef, beta coefficient from a logistic regression model testing the enrichment of «

genes associated with Alzheimer’s disease in Reactome pathways.

2:4.DISCUSSION «
We performed multi-tissue analysis of gene expression underlying Alzheimer’s disease to
identify and prioritise candidate causal genes and pathogenic tissues. Using the transcriptome-

wide association study method S-PrediXcan_ and tissue-specific eQTL information from GTEX,

we identified 50 unigue candidate risk genes for Alzheimer’s disease. A meta-analysis of these

tissue-specific data found 73 genes associated with Alzheimer’s discase. Because GTEX-

derived brain tissues may lack sufficient power to identify robust association signals underlying
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complex diseases, we ran S-PrediXcan using expression weights derived from 646 dorsolateral

prefrontal cortex samples from the CommonMind Consortium. We identified 12 gene-based

associations, 8 of which were also significant in the meta-analysed GTEXx analysis. Fine-

mapping of causal gene sets further prioritised novel gene candidates within 10 independent

risk loci. Biological Ppathway analysis of the meta-analysed GTEx data and CMC data the
reta-analysed—association—signals—found—enrichment—offound down-regulation of genes
involved in plasma lipoprotein clearance. Furthermore, the CMC data strongly implicated

upregulation of genes involved in immune-related pathways and processes, particularly toll-

like receptor activity. —These results highlight the utility of investigating multiple tissues

underlying complex disorders, including peripheral tissues unrelated to the pathogenic tissue
of interest (such as skin tissue for brain-related processes in Alzheimer’s disease)[7]. Our

results demonstrate a multi-tissue approach to gene discovery in Alzheimer’s disease may not

only identify candidate causal genes and pathways, but peripheral (i.e. accessible) surrogate

tissues for diagnostic biomarkers and the discovery of causal mechanisms.-ane-gere-expression
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Two recent studies performed transcriptome-wide association analyses of brain samples in

Alzheimer’s disease. Raj et al.[15] used TWAS FUSION[16] with eQTL data derived from
450 frontal cortex samples and genotype data from the Religious Order Study or the Memory
and Aging Project (ROS/MAP), while Marioni et al.[17] applied Summary-data-based
Mendelian Randomization (SMR)[18] to GWAS summary data from a meta-analysis of proxy
Alzheimer’s disease cases from the UK Biobank and IGAP meta-analysis summary data, and
eQTL data from over 600 frontal cortex samples from the Common Mind Consortium. These
analyses identified a total of 9 candidate genes whose expression in brain tissue was associated
with Alzheimer’s disease. We found a significant association with 4 of these candidate genes
(CR1, TOMM40, PVR, CLPTML) in at least one peripheral tissue. The effect direction of the
beta coefficients in our study had the same effect directions for the candidate genes CR1, PVR,

CLPTM1, and the strongest associations were found in peripheral tissues, including skin.

We observed largely concordant effect directions in the S-PrediXcan association statistics (z

scores) across brain and peripheral tissues, which can be expected given the observed high

level of tissue-shared eQTL regulation at GWAS loci [19]. Furthermore, eQTL sharing among

brain and skin—the peripheral tissue with the highest number of Alzheimer’s disease

associations—is higher than other peripheral tissues [20]. These results highlight-the-utiity-of

studying—muttiple{indicate accessible peripheral} tissues, especially skin, may capture the

genetic effects on gene expression underlying Alzheimer’s disease and other brain-related

traits. Future studies can therefore increase power to identify molecular effects in Alzheimer’s

20
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disease by studying eQTL effects in large peripheral tissue eQTL datasets, before the use fine-

mapping techniques in disease-relevant brain tissue.in-genetic-studies-of-brain-related-traits;

Transcriptome imputation methods such as S-PrediXcan are prone to false positive associations

due to linkage disequilibrium between SNPs used to build the expression weights, which

induce spurious gene-trait associations within chromosomal regions. We used fine-mapping of

causal gene sets to further prioritise genes within risk loci. We found the probability for each

gene in a region to be causal was a largely a function of its S-PrediXcan Z score, where genes

with larger Z scores had larger posterior inclusion probabilities as the causal gene. Nonetheless,

we identified 6 genes that were not reported as the closest gene within + 100 kb of the top SNP

of known GWAS-defined associated genes at the time of publication of Lambert et al. [2],

which represent novel, functionally relevant candidate causal genes in Alzheimer’s disease.

Among these novel candidates is GRIK4 at the SORL1 locus and UNC79 at the SLC24A4-RIN3

locus. Both GRIK4 (glutamate ionotropic receptor kainate type subunit 4) and UNC79 (unc-79

homolog, NALCN channel complex subunit) have biased expression in the brain and encode

ion channel subunits, and it is conceivable their dysfunction may contribute to altered synaptic

plasticity, learning and development in Alzheimer’s disease[21].

Gene—Biological pathway analysis of genes frem—in both our meta-analysed {(S-
Fissuexean)GTEX and CMC results feund-one-pathwayfound down-regulation of —“plasma
lipoprotein clearance” in Alzheimer’s disease. 2—sisnificantty-downregulatedinAdzheimer’s
disease-cases-compared-to-controls—These results are consistent with a recent meta-analysis of

cross-tissue expression imputation of 44 GTEX tissues[22], which found the enrichment genes
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whose expression was associated with Alzheimer’s disease in gene ontology terms related to

lipoprotein clearance. Lipoprotein clearance has-a-wel-establishedmay play an important role

in Alzheimer’s disease pathogenesis through the association of APOE and several other genes
that function in lipid or lipoprotein metabolism, including Clusterin (CLU) and ATP binding

cassette (ABC) transporter A7 (ABCA7)[23]. Specifically, it has been hypothesised that

dysfunctional lipoprotein clearance in the central nervous system is-theught-to-be-invelved

imay facilitate the formation of two critical neuroanatomical features in Alzheimer’s disease:
amyloid plaques and neurofibrillary tangles. These neuroanatomical features may be indicated
by global changes in gene (MRNA) and protein expression of lipid and lipoprotein-related
genes in both brain tissue and peripheral blood [24]. The association of lipoprotein-related
genes with Alzheimer’s disease in skin and other non-brain tissues, together with concordant
effect directions across tissues (including brain tissue), suggests peripheral tissues may provide
a biologically valid substrate for the study of genetic factors and their impact on higher order

molecular processes in Alzheimer’s disease.

Pathway analysis of the CMC gene-based found the up-regulation of genes involved in

immune-related processes, most notably toll-like receptor cascades. Toll-like receptors are

involved in many physiological and pathological responses, and their activity is thought to play

a role in several neurological disorders, including Alzheimer’s disease [25,26]. The receptors

are widely expressed on microglial cells—the chief immune cells of the central nervous

system—and their activation is associated with AP plaque deposition [27] and enhanced

neurodegeneration [28]. Although we cannot draw mechanistic conclusions, our results suggest

a_potential relationship between altered immune signalling, impaired plasma lipoprotein

clearance, and AP plaque deposition in Alzheimer’s disease.
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Our multi-tissue transcriptome-wide—association_imputation approach has a number of
advantages over traditional expression quantitative loci studies of complex diseases. First,

PAAS-transcriptome imputation methods allow the study of genetically regulated gene

expression without directly measuring expression data from an appropriate cell type in diseased
cases and health controls. Second, by #rputing-estimating the genetically regulated component

of gene expression, WAS—transcriptome imputation methods remove the impact of

unmeasured (i.e. uncontrolled) environmental factors on gene expression, thereby improving

the interpretability of expression association signals. Third, transcriptome FAAS-imputation

aggregates SNP level associations to individual genes, reducing the multiple testing burden and
increasing statistical power. A multi-tissue meta-analysis, such as FissueXeanS-MultiXcan,
further reduces the multiple testing burden by combining association statistics across all
interrogated tissues. Fourth, TWAS methods utilise eQTL information from large eQTL
databases with uniform sample collection and strict quality control protocols which improves

the reliability of results and enables replication across disorders/traits.

A disadvantage of the use of datasets such as GTEX is that tissues are not homogeneous, and

thus under represent certain cell populations. Many of the ABAlzheimer’s disease risk loci

identified through GWAS are not highly expressed in whole brain tissues. Previous attempts

to identify brain tissue eQTLs corresponding to ABAlzheimer’s disease GWAS loci have

likely been affected by this issue—cellular heterogeneity [29,30]. A large proportion of

ADAlzheimer’s disease risk loci have been linked to immune function, and our results in

(dorsolateral prefrontal cortex) brain tissue corroborate these findings. However, the study of

immune function in the brain is complicated by Fhe-the heterogeneous pepwation-ofbrain-cell

populations, which s-dilutes eellimmune-specific signatures ef-from small populations of cells
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such as microglia. Analyses of primary cell-type specific expression from the Immune

Variation project have shown that ADAlzheimer’s disease risk alleles are enriched among

monocyte-specific eQTLs—as—epposed—to—TF—eeH-specificeQFLs. More easily accessible
Meneeytes-monocytes could be used as a proxy to examine the-the (immune) cell-specific

effects of miereghia—susceptibility variants in ADAlzheimer’s disease. Fhis—Hmplication—of

3-5.CONCLUSIONS .

In summary, we performed a multi-tissue transcriptome-wide association study of Alzheimer’s
disease. We confirmed an association between DNA sequence variation and gene expression
for known Alzheimer’s disease candidate genes and identified multiple genes whose expression
has not previously been associated with the disease. Mest-Many disease associations were
observed in peripheral tissues, most notably skin tissue, rather than brain tissues, and the effect
directions for the association statistics were largely consistent across tissues. This suggests
accessible peripheral tissues such as skin may provide biologically meaningful surrogate

information for brain-related processes. A meta-analysis of 48 GTEX tissues, including 13 brain

tissues; confirmed the association of candidate genes identified in single tissue analyses, in

additional to several novel genes, most of which were also identified in an analysis of gene

expression in dorsolateral prefromtal cortex. These results suggest gene expression data from

peripheral tissues improves power to identify and prioritise candidate genes for brain-related

traits. The use of skin tissue—where—the peripheral tissue with —the largest number of

associations with Alzheimer’s discase—was-observed;-represents a particularly useful avenue
for future research, and might provide a useful surrogate for biomarker discovery for disease

onset and progression.
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