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Response to Reviewers: Response to reviewers’ comments

Reviewer #1:

1.From the work presented here, there is not compelling evidence that the results can
address the concerns previously expressed on performing TWAS in tissues that differ
from the known tissue type of interest. In this proposed work, the authors state that
they find 126 significant associations for 50 distinct genes across 48 tissues after
multiple testing correction, 22 of which (for 12 distinct genes) remain after excluding
the APOE locus. The authors argue that the best tissue overlap is found with the skin,
which not coincidentally has the highest number of samples. Wainberg et al (Nature
Genetics doi: 10.1038/s41588-019-0385-z) specifically warn against performing TWAS
in tissues without clear relevance to the trait, showing how known causal genes drop
out while new genes appear, without any evidence for a causal association. Wainberg
et al go on to demonstrate how using reference gene expression panels from tissues
that are less related to the trait introduces bias in TWAS.

We have included a scatter plot of GTEx tissue sample against the number of
associations (Supplementary Figure 1). There is certainly a positive correlation
between tissue sample size and the number of significant associations with
Alzheimer’s disease, however the relatively large number of associations found in skin
is an outlier. Furthermore, genes with a significant association in both skin and
(biologically relevant) brain tissues had concordant effect directions. We accept these
observations do not imply causality but rather reflect potential shared regulatory
mechanisms that may provide useful surrogate information for less accessible brain
tissues. We have further addressed the concerns raised by the reviewer and Wainberg
et al. in response 2 and response 3 below, where we performed fine mapping of causal
gene sets (FOCUS) and transcriptomic imputation analyses with a large brain
expression dataset.

2.There is also considerable concern about identifying multiple causal genes at the
same locus. For these results to be reasonably considered, I recommend that the
authors perform additional fine mapping or conditional analysis that will help to
prioritize genes for each identified locus. An example of such an approach is here:
FOCUS fine-mapping methods (http://github.com/bogdanlab/focus).

We applied FOCUS to fine-map each Alzheimer’s disease risk locus. We used as input
the IGAP GWAS summary statistics and expression weights from 48 GTEx (version 7)
tissues, METSIM (adipose tissue), NTR (whole blood), YFS (whole blood), and CMC
(dorsolateral prefrontal cortex). We excluded chromosome 19 as the APOE region
cannot be disentangled with current computational fine-mapping approaches. FOCUS
prioritised candidate causal genes in 10 loci, including several candidates not yet
implicated in Alzheimer’s pathophysiology (methods: lines x-y; results: lines 247-258).

3.To address if these results provide reasonable targets that are relevant in the brain,
these results should be validated in either an independent dataset for the relevant
tissue, or using a targeted approach with just the brain samples from GTEx. One
possibility would be to validate their findings using the newly available CommonMind
Consortium which has the requisite expression and WGS sequencing data available.
We performed S-PrediXcan using expression weights generated using gene
expression and SNP genotype data from the CommonMind Consortium (CMC)
(methods: lines 141-154, results lines 231-244). There was substantial overlap with the
meta-analysed GTEx results, as well as some novel gene candidates.

Reviewer #2

Gerring et al., present an analysis of publicly available genome-wide genotyping using
publicly available models of tissue expression data. They then used the results of the
imputed transcriptome-wide association study to perform gene set enrichment
analysis. The authors acknowledge that sample size is likely guiding much of their
findings in peripheral versus brain tissue, but it is interesting that variants in and around
APOE are associated with different expression in skin. However, there is not a clear
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picture of how to use these new findings since the organ of interest in Alzheimer’s
disease is generally thought to be the brain so expression differences in the skin (or
other organ) seem likely due to pleiotropy. Still there is nothing that seems technically
wrong with the analysis and it seems like it ought to be published.

The authors are upfront that other people have published similar analyses (with one
using the same GTEx data); however, there are some differences in approach.

Minor points:

1.Line 98: there were 88-173 samples from 15 brain regions per table s1

Thank you, we have amended the text to reflect the number of regions in Table S1.

2.Figure 1 initially confused me since the location of zero is not in the center of the z-
score scale is there a bias to positive z-scores overall?

Thank you. We have centred the z-score scale in Figure 1. There was a slight bias
towards positive z-scores; we have noted this bias in the results (lines 182-183).

3.Does the lipid pathway remain significant if APOE and the locus around it (APOC1,
etc.) are removed?
We ran the pathway analyses with and without the APOE locus, using both the GTEx
and CMC data. In GTEx, the lipid pathway is no longer significant (P=0.5216) after the
APOE region was removed. In the CMC analyses, plasma lipoprotein clearance
pathway remained significant (P=5.88 × 10-56) with the removal of APOE, along with
immune system pathways (Supplementary Table 9 and Supplementary Table 10).

4.Lines 263-267: the link between the accumulation of those neuropathologic changes
and lipid clearance is not as settled in the Alzheimer’s disease field as the authors
seem to suggest - I would suggest presenting this as an observed association.

We have changed the text to emphasise the observed (rather than casual) association
between plasma lipoprotein clearance and genetically-regulated gene expression in
Alzheimer’s disease. We also emphasise the potential biological consequences of this
association have yet to be causally linked with Alzheimer’s disease.

5.The last paragraph seems out of step with the results. For instance, the major
pathway identified was lipid transport, which was also seen in the UTMOST paper;
therefore, it is unclear why the findings in microglia are relevant here. Also, there are
really few large-scale attempts to identify Alzheimer’s disease eQTLs given the rarity of
brain material for sequencing.

We have updated the final paragraph to more broadly discuss the potential utility of
studying immune-specific effects of susceptibility variants in Alzheimer’s disease, given
we found strong enrichment of immune-related pathways in dorsolateral prefrontal
cortex from the CMC. We suggest immune dysfunction may arise from microglial cells,
the chief immune cells of the central nervous system, in line with a recent Alzheimer’s
disease GWAS (10.1038/s41588-018-0311-9).

Thank you for your helpful comments on our manuscript.

Sincerely,

Zachary Gerring, PhD
Postdoctoral Research Fellow, Translational Neurogenomics
QIMR Berghofer Medical Research Institute

Additional Information:

Question Response

<b>Is this study a clinical
trial?</b><hr><i>A clinical trial is defined

No
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by the World Health Organisation as 'any
research study that prospectively assigns
human participants or groups of humans
to one or more health-related
interventions to evaluate the effects on
health outcomes'.</i>
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ABSTRACT 48 

Introduction: Genome-wide association studies (GWAS) have successfully identified 49 

multiple independent genetic loci that harbour variants associated with Alzheimer’s disease 50 

(AD), but the exact causal genes and biological pathways are largely unknown. 51 

Methods: To prioritise likely causal genes associated with ADAlzheimer’s disease, we used 52 

S-PrediXcan to integrated gene expressionexpression quantitative trait loci (eQTL) from the 53 

Genotype-Tissue Expression (GTEx) study and CommonMind Consortium (CMC) and with 54 

AD Alzheimer’s disease GWAS summary statistics across 48 tissues using S-PrediXcan. We 55 

meta-analysed the single-tissue GTEx results using S-TissueXcanMultiXcan, prioritised 56 

disease-implicated loci using a computational fine-mapping approach,  and performed a 57 

biological pathway analysis on the gene-based results. 58 

Results: We identified 126 tissue-specific gene-based associations across 48 GTEx tissues, 59 

targeting 50 unique genes. Meta-analysis of the tissue-specific associations identified 73 genes 60 

whose expression was associated with Alzheimer’s disease. Additional analyses in dorsolateral 61 

prefrontal cortex from the CMC identified 12 significant associations, 8 of which also had a 62 

significant association in GTEx tissues. S-PrediXcan identified 126 significant associations 63 

targeting 50 genes after multiple testing correction, 22 of which (targeting 12 genes) remained 64 

significant after removal of the APOE region. Fine-mapping of causal gene sets prioritised 65 

gene candidates in 10 Alzheimer’s disease loci with strong evidence for causality. Biological 66 

pathway analyses of the meta-analysed GTEx data and CMC data identified a significant 67 

enrichment of Alzheimer’s disease association signals in Meta-analysis of S-PrediXcan results 68 

identified 73 genes that were significantly enriched in plasma lipoprotein clearance, in addition 69 

to multiple immune-related pathways. . 70 

Conclusions: The integration of GWAS and gene expression data across multiple tissues 71 

improves power to identify and prioritise candidate genes and biological pathways for 72 
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ADAlzheimer’s disease, and may identify accessible surrogate tissue for follow-up functional 73 

genetic studies of AD. 74 

 75 

Keywords: Alzheimer’s disease; Gene expression; Genome-wide Association Study; 76 

Genetics; Genetic Epidemiology; Computational Biology    77 
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1. BACKGROUND 78 

An estimated 5.5 million Americans are were living with Alzheimer’s disease (AD) in 2017, 79 

with a prevalence of 10% for people over the age of 65 years [1]. In the absence of a significant 80 

medical breakthrough the number of people living with AD Alzheimer’s disease is estimated 81 

to reach 13.8 million in the US alone by 2050 [1]. AD Alzheimer’s disease is officially the 82 

sixth leading cause of death in the US, but this is likely to be underestimation as complications 83 

of the disease, such as pneumonia, are often recorded as the primary cause of death. 84 

Alzheimer’s diseaseAD is characterised by neuronal death and key neuropathological changes, 85 

including the deposition of β-amyloid and hyperphosphorylated tau tangles. Genome wide 86 

association studies (GWAS) for AD have been successful in identifyingied genetic risk factors 87 

for AD Alzheimer’s disease and providing provided novel insights into disease aetiology. A 88 

GWAS meta-analysis of 74,046 individuals (25580 cases and 48466 controls) identified 19 89 

genetic risk loci [2], which has since increased to some 24 loci with larger the additional 90 

samples caseslarger sample sizes [3]. Biological pathway analyses of these data implicate the 91 

immune system and lipid metabolism as well as tau binding and amyloid precursor protein 92 

metabolism [2], although a disease mechanism of action .has yet to be established.  93 

 94 

In GWAS,  significant associations are reported for an index single nucleotide polymorphism 95 

(SNP) with the lowest P value, but the signal could be led explained by any one (or more) 96 

variant within the linkage disequilibrium block where that SNP resides. Furthermore, GWAS 97 

loci may contain multiple genes or regions that affecting the expression of alternative other 98 

genes. Additional analysis analyses is are required to elucidate the biological mechanisms that 99 

underlie statistical associations between genetic variants and disease risk. One method is to 100 

identify the genomic regionsloci where SNP variation is associated with differences in gene 101 

expression, called expression quantitative trait loci (eQTLs). Genome-wide gene expression 102 
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data has been successfully integrated with SNP genotype data to prioritise risk genes and reveal 103 

possible mechanisms underlying susceptibility to a range of psychiatric disorders [4–7]. This 104 

approach may be performed in cases and controls for whom both gene expression and SNP 105 

genotype data are available. However, these data sets are likely to have limited sample size and 106 

suffer from confounding from reverse causality as variation in gene expression may be 107 

influenced by disease status or drug treatment.  108 

 109 

An alternative method is to integrate GWAS findings with independent gene expression data 110 

provided by large international consortia, such as the multi-tissue Genotype-Tissue Expression 111 

(GTEx) project [8] and the CommonMind Consortium (CMC). GTEx (version 7) contains SNP 112 

genotype data linked to gene expression across 53 tissues from 714 donors, including 13 brain 113 

tissues regionsfrom 216 donors, and the CMC contains gene expression data from the 114 

dorsolateral prefrontal cortex of 986646 donors. This These data represents a valuable resource 115 

with which to quantify the association between genetically regulated expression in multiple 116 

tissues and the phenotype of interest. Association testing can be carried out using a gene-based 117 

approach implemented by transcriptome-wide association study (TWAS)transcriptomic 118 

imputation approaches [5,9,10] which reduce the high level of multiple testing from single-119 

variant tests, and increase power to identify trait associated loci from both a strong functional 120 

SNP signal, or from a combination of modest signals. The application of TWAS transcriptomic 121 

imputation approaches using GWAS summary statistics without the need for individual level 122 

data allows this these methods to be applied to large scale GWAS meta-analyses results. Here, 123 

we apply a TWAS transcriptomic imputation approach called S-PrediXcan to Alzheimer’s 124 

disease GWAS summary statistics in order to explore the genetic component of gene 125 

expression associated with the disorder., We then use these data in a fine-mapping approach to 126 

identify prioritise candidate causal genes with disease implicated loci, and prioritise identify 127 
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biologically informative surrogate tissues that might be used to identify characterise 128 

Alzheimer’s disease pathways and processes.  129 

 130 

2. MATERIALS AND METHODS 131 

2.1. Alzheimer’s disease GWAS summary statistics 132 

Detailed methods, including a description of population cohorts, quality control of raw SNP 133 

genotype data, and association analyses for the Alzheimer’s disease GWAS is described in 134 

detail elsewhere [2]. The Alzheimer’s disease GWAS, performed by members of the 135 

International Genomics of Alzheimer’s Project (IGAP), included an initial meta-analysis of 4 136 

samples of European ancestry (17,008 cases and 37,154 controls) followed by an analysis of 137 

moderately associated SNPs (P < 1 × 10-3) in an independent sample of 8,572 cases and 11,312 138 

controls of European ancestry. All cases received clinical confirmation of late-onset 139 

Alzheimer’s disease. SNPs were imputed using the European population reference from the 140 

1000 Genomes Project 2010 interim release based on the sequence data freeze from 4 August 141 

2010 and phased haplotypes from December 2010) [11]. Logistic regression association tests 142 

were conducted for imputed marker dosages with age and sex as covariates, as well as principal 143 

components to control for possible population stratification. Summary statistics for 7,055,881 144 

autosomal SNPs were made available by IGAP and were utilized in our study. 145 

 146 

2.2. Identification of genes with differential expression levels between Alzheimer’s disease 147 

cases and controls 148 

We used S-PrediXcan to integrate eQTL information with our GWAS summary statistics to 149 

identify genes of which genetically predicted expression levels are associated with Alzheimer’s 150 

disease status. S-PrediXcan estimates gene expression weights by training a linear prediction 151 

model in a reference sample with both gene expression and SNP genotype data. The weights 152 

are used to predict gene expression from GWAS summary statistics, while incorporating the 153 
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variance and co-variance of SNPs from an linkage disequilibrium (LD) reference panel. We 154 

used expression weights for 48 tissues with S-PrediXcan expression weights from the GTEx 155 

Project (version 7) and dorsolateral prefrontal cortex from the CommonMind Consortium 156 

(CMC), and LD information from the 1000 Genomes Project Phase 3[12]. These data were 157 

processed with beta values and standard errors from the Alzheimer’s disease GWAS to estimate 158 

the expression-GWAS association statistic. To increase power to identify genes whose 159 

expression is similarly differentially regulated across tissues, we meta-analysed the (tissue-160 

specific) statistics fromGTEx S-PrediXcan results using the S-TissueXcan MultiXcan 161 

algorithm[13]. We used Bonferroni correction to adjust for the number of tests performed 162 

within each tissue as well as across all tissues and genes (Table S1). 163 

to adjust for both tissue-specific correction threshold for each interrogated tissue (Table S1) as 164 

well as a transcriptome-wide significance threshold of P<2.68 × 10-7, adjusting for all tissues 165 

and genes (i.e. N=186,230 gene-based tests in the GTEx).  166 

 167 

  168 

2.3. Fine-mapping of causal gene sets (FOCUS) 169 

 S-PrediXcan and other transcriptomic approaches may yield false positive gene-trait 170 

associations due to correlation (LD) among SNPs used to generate the eQTL weights in the 171 

predication models[14]. We used FOCUS (fine-mapping of causal gene sets) to appropriately 172 

model the impact of gene-trait correlations on the S-PrediXcan expression weights and assign 173 

a causal probabilityies to each gene within Alzheimer’s disease risk loci. We used a multi-174 

tissue, multiple  eQTL reference panel database provided by the authors 175 

(https://github.com/bogdanlab/focus/) and LD information from the 1000 Genomes Project 176 

Phase 3[12] as reference genotypes. We excluded cChromosome 19 was removed due to the 177 
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complexity of modelling association signalscomplex association signals within the APOE 178 

locus. 179 

 Pathway analysis of gene-based analyses 180 

2.3.2.4. Pathway analysis of gene-based analyses 181 

We performed a biological pathway analysis using generalised linear model regression, with 182 

the z-score from the GTEx S-TissueXcan MultiXcan or CMC S-PrediXcan association data as 183 

the dependent variable and membership in Reactome pathways as a linear predictor. Pathways 184 

containing fewer than 10 cis-heritable genes (i.e. genes whose average expression across 185 

tissues is influenced by proximal [<1 Mb from the gene start or end] SNPs) were removed, 186 

resulting in 1318 biological pathways for pathway enrichment analysis. A Bonferroni corrected 187 

P value of P = 3.79 × 10-5
 (adjusting for 1318 tested pathways) was used to correct for multiple 188 

testing. 189 

 190 

3. RESULTS 191 

3.1. A cross-tissue transcriptome-wide association study identifies peripheral tissues 192 

enriched with Alzheimer’s disease association signals 193 

Using S-PrediXcan, we identified 126 significant associations (Supplementary Table S2) 194 

targeting 50 unique genes (Supplementary Table S3) after multiple testing correction for all 195 

genes and tissues (P<2.68 × 10-7) (Table 1; Supplementary Table S3). Among significant 196 

associations, there was a slight bias towards positive z-scores (N=75 [60%]). The number of 197 

significant associations per tissue was largely a function of sample size, with skin (sun-exposed 198 

lower leg) (number of RNA-seq samples N=473) harbouring the The tissue with the largest 199 

number of associations was skin (sun-exposed lower leg) (n=9), followed by lung (n=8) (Table 200 

2) (Supplementary Figure S1). For significant genes identified in multiple GTEx tissues, effect 201 

directions were largely consistent across tissues (Figure 1), suggesting peripheral tissues may 202 

provide reliable surrogate information for brain-related processes. The most significant gene 203 
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association in GTEx data was for APOE; genetic variants associated with increased liability to 204 

Alzheimer’s disease risk are predicted to downregulate expression levels of APOE in 3 three 205 

peripheral tissues, including sun-exposed skin (Z=19.50, p=1.03 × 10-84) and non-sun-exposed 206 

skin (--16.56, p=1.27 × 10-61) (Table 1; Supplementary Table S3) after multiple testing 207 

correction (Bonferroni correction for 186,230 tests [0.05/186,230] P < 2.68 × 10-7). Of note, 208 

although APOE is expressed more widely in brain compared to most other tissues 209 

(Supplementary Figure S1S2), the eQTL associations with APOE are only found in non-brain 210 

tissues. While these associations are likely to be due, at least in part, to the increased sample 211 

size (and therefore statistical power) of non-brainperipheral tissues, they highlight the 212 

importance of interrogating multiple (accessible) tissues in eQTL analyses of complex (brain-213 

related) traits. 214 

  215 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 
 

 216 

Table 1: Top 5 S-PrediXcan associations inside and outsideby APOE region 

Gene name 

Chr 

Most significant tissue 

N 

SNPs 

N 

tTissuess Z score P value 

Inside APOE 

APOE 

19 Skin Sun Exposed Lower 

leg 10 3 -19.50 1.03 × 10E-84 

NECTIN2 19 Oesophagus Muscularis 3 8 -19.28 8.32 × 10E-83 

APOC1 

19 

Adrenal Gland 3 3 -19.13 

1.48E48 × 10-

81 

BLOC1S3 19 Oesophagus Muscularis 9 1 -15.63 4.29 × 10E-55 

RELB 19 Lung 24 1 11.55 7.14 × 10E-31 

Outside APOE 

VASP 19 Testis 53 1 -11.30 1.24 × 10E-29 

SIX5 

19 Skin Sun Exposed Lower 

leg 40 2 10.28 8.60 × 10E-25 

CD3EAP 19 Brain Substantia nigra 6 1 10.06 8.65 × 10E-24 

ZNF155 19 Minor Salivary Gland 62 2 -8.45 3.02 × 10E-17 

CLU 

2 Skin Sun Exposed Lower 

leg 5 2 8.22 2.04 × 10E-16 

Notes: Chr=Chromosome; N SNPs is number of eQTLs included in the MetaXcan prediction 

model; N tissues=N tissues with P-value < 7.63 × 10-7; Z score represents the strength of 

association between gene expression and disease risk. Positive values indicate that an increased 

level of gene expression is associated with increased disease risk while negative values indicate that 

a reduced level of gene expression increases disease risk. 

 217 

  218 
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Figure 1: Heatmap of the Z score effect directions for significant genes identified in multiple 219 

tissues 220 
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 222 

We removed genes flanking the APOE region (+/- 500kb) due to its strong association with 223 

ADAlzheimer’s disease and identified 22 29 significant associations targeting 12 unique genes 224 

(Supplementary Table S3), 7 of which were not identified as candidate causal (i.e. nearest) 225 

gene in the Lambert et al GWAS. The most significant gene outside the APOE region was the 226 

vasodilator-stimulated phosphoprotein VASP (Z = -11.30, P = 1.24 × 10-24) in Testis (Table 1). 227 

The most significant association outside chromosome 19 was observed for the clusterin CLU 228 

in skin (sun exposed lower leg) (Table 1; Supplementary Table S3). Taken together with 229 

findings for APOE, these data suggest skin (together with other peripheral tissues) may be used 230 
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as an accessible surrogate tissue for peripheral biomarker discovery and molecular studies of 231 

causal disease processes. 232 

 233 

 

Table 22: Number of significant S-PrediXcan associations per tissue 

Tissue 

Tissue 

sample 

size (N)  

Gene 

Associa

tions 

(N) 

Genes 

Skin Sun Exposed 

Lower leg 
414 910 

APOE, APOC1, NECTIN2, SIX5, CLU, 

CLPTM1, ZNF229, ZYX, PPP1R13L, KLC3 

Lung 383 8 
RELB, APOE, CEACAM19, APOC2, APOC1, 

APOC4, MS4A2, DMPK 

Oesophagus Mucosa 358 78 
PPP1R13L, KLC3, EPHA1, ZNF234, MS4A2, 

RP11-385F7.1, TOMM40, PVR 

Oesophagus 

Muscularis 
335 6 

NECTIN2, BLOC1S3, CR1, CEACAM19, BIN1, 

PVR 

Skin Not Sun 

Exposed Suprapubic 
335 56 

APOE, APOC2, ZNF229, CLPTM1, MS4A2, 

PVR 

Adrenal Gland 175 4 APOC1, APOC4, QPCTL, CEACAM19 

Brain Hippocampus 111 4 CEACAM19, CR1, NECTIN2, HLA-DQA2 

Pancreas 220 4 CEACAM19, CBLC, FOSB, BCAM 

Spleen 146 4 PVR, FZD4, CEACAM19, SIX5 

Stomach 237 4 MS4A2, ZNF45, CBLC, CEACAM19 

 234 

To improve power relative to the single-tissue analyses, we combined results from different 235 

single-tissue models into a single aggregate statistic using S-TissueXcanmultiXcan. We 236 

identified 73 gene-level S-TissueXcan MultiXcan associations after correction for multiple 237 

testing (Table 3, Supplementary Table S4), of which 36 were located outside the APOE region. 238 

The S-TissueXcan MultiXcan analysis identified 27 additional significant genes not found in 239 

the single tissue analyses, 19 of which encoded genes outside the APOE region (Supplementary 240 

Table S4). The most significant S-TissueXcan MultiXcan association was for PVRL2 (also 241 

known as NECTIN2), located within the APOE region (oesophagus muscularis; Zmean = -4.94, 242 

P = 2.64 × 10-131), followed by APOE (skin sun exposed lower leg; Zmean = -3.58, P = 4.25 × 243 

10-101). The most significant protein coding gene outside the APOE region was for Protein 244 

Tyrosine Phosphatase, Receptor Type H PTPRH (brain caudate basal ganglia); Zmean = 0.35, P 245 
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= 2.19 × 10-12). A total of 7 genes were significant in the single-tissue analyses but not the S-246 

TissueXcan MultiXcan meta-analysis, due in part to heterogeneity in the effect directions of 247 

imputed gene expression across tissues (Supplementary Table S5). 248 

 249 

Table 3: Top 5 S-TissueXcan MultiXcan associations inside and outsideby APOE region 

 

   

Z score 

Gene 

name 

Most significant tTop 

tissue 

N N 

tTissues P value Min Max Mean SD 

Inside APOE 
  

PVRL2 

Oesophagus Esophagus 

Muscularis 17 

2.64×E10-

131 -19.28 5.78 -4.94 6.75 

APOE 

Skin Sun Exposed 

Lower leg 7 

4.25×10E--

101 -19.50 7.51 -3.58 10.50 

APOC1 Adrenal Gland 4 

4.05×10E-

92 -19.13 5.98 -6.24 13.43 

BLOC1S3 

Oesophagus Esophagus 

Muscularis 6 9.00×10E-75 -15.63 3.48 -1.78 7.07 

APOC4 Adrenal Gland 4 1.40×10E-39 -9.53 5.91 -0.92 7.96 

Outside APOE 
  

SIX5 

Skin Sun Exposed 

Lower leg 4 1.24×10E-37 -6.18 10.3 -0.41 7.40 

VASP Testis 3 5.58×10E-28 -11.3 2.61 -2.29 7.82 

BIN1 

Oesophagus Esophagus 

Muscularis 23 3.58×10E-16 -6.32 4.09 -2.21 3.26 

CLU 

Skin Sun Exposed 

Lower leg 8 7.51×10E-14 -3.07 8.22 1.28 4.12 

CR1 

Oesophagus Esophagus 

Muscularis 7 1.69×10E-11 -0.38 7.33 4.299 3.45 

Notes: N Tissues, number of tissues with significant gene-based association; Z score: Minimum, 

maximum, mean and standard deviation of the Alzheimer’s disease association coefficient from S-

TissueXcanMultiXcan. 

 250 

3.2. A comparison of multi-tissue GTEx results with brain-specific eQTL database from 251 

the CommonMind consortium 252 

We performed an S-PrediXcan analysis using expression weights for a single brain region 253 

(dorsolateral prefrontal cortex) collected by the CMC, and identified 12 significant (P<5.08 × 254 

10-6) gene-based associations (Supplementary Table S5). We compared these data with the 255 

meta-analysed results from 48 tissues in GTEx (Table 4). Of 12 significant gene-based 256 

associations in GTExCMC, 8 also showed a significant association in GTEx tissues (P<1.93 × 257 

10-6). The Z scores between CMC and GTEx were concordant where the mean absolute GTEx 258 
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Z score was ≥ 1, highlighting the consistency of the datasets. The top CMC association was 259 

TOMM40 (P=1.37 × 10-101), located within the APOE gene cluster on Chromosome 19q13. 260 

The GTEx tissue with the strongest association for TOMM40 was esophagus mucosa (Z 261 

score=5.57, P=2.61 × 10-8) (Supplementary Table S2), a tissue that contains over twice the 262 

number of samples as the largest brain tissue (N=407 versus N=173 in cerebellum). One 263 

TOMM40 association was observed in GTEx brain tissue (Putamen basal ganglia); the 264 

association was insignificant (P=6.73 × 10-2) but the Z score direction of effect was consistent 265 

with CMC data (GTEx: Z=-1.83; CMC: -21.40).  266 

 267 

Table 4: Significant associations in CMC dorsolateral prefrontal cortex and corresponding GTEx 

association statistics 

CMC (DLFPC) 
 

GTEx (48 tissues) 

Gene Z  P  
 

Tissue Z Z SD P 

TOMM40 -21.40 1.37×10-101 
 

Esophagus Mucosa 0.57 3.44 1.10×10-7 

ZNF222 13.93 4.11×10-44  -- -- -- -- 

IRF2BP1 12.28 1.21×10-34 
 

Heart Atrial Appendage -0.94 0.73 4.34×10-1 

EML2 7.98 1.50×10-15 
 

Cerebellar Hemisphere -0.22 2.72 4.01×10-10 

CR1 7.91 2.63×10-15 
 

Esophagus Muscularis 4.30 3.45 1.69×10-11 

CLPTM1 -6.30 2.94×10-10 
 

Skin Sun Exposed leg -2.98 4.89 3.35×10-23 

TRAPC6A -6.29 3.22×10-10 
 

Thyroid -1.02 2.84 2.26×10-13 

ZNF45 -6.12 9.18×10-10 
 

Stomach 0.19 2.72 2.47×10-23 

DMWD 5.91 3.48×10-9 
 

Adipose Visceral 

Omentum 
3.45 1.45 3.08×10-8 

ZNF223 5.90 3.69×10-9 
 

Brain Cerebellum 1.03 1.17 5.88×10-4 

PVR -4.82 1.41×10-6 
 

Spleen -4.64 2.05 9.68×10-27 

AP2A2 -4.65 3.30×10-6 
 

Heart Atrial Appendage -0.30 1.93 2.48×10-2 

Notes: DLPFC, dorsolateral prefrontal cortex 

 268 

3.3. Fine-mapping further prioritises genes within GWAS risk loci 269 

We applied the fine-mapping of causal gene gets (FOCUS) algorithm to prioritise genes within 270 

GWAS risk loci. Genes with a higher posterior inclusion probability tended to have a higher 271 

S-PrediXcan Z score (Spearman correlation = 0.8269, P = 1.64 ×10-87) (Figure 2). Candidate 272 

casual genes not nearest the GWAS index SNP included GRIK4 (SROL1 locus; S-PrediXcan 273 

Z score: -5.16; PIP: 0.985) and UNC79 (SLC24A4 locus: S-PrediXcan Z score: 4.77; PIP: 274 
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0.793) (Supplementary Table S6). Both GRIK1 and UNC79 are involved in ion transmembrane 275 

transport and were not prioritised as likely causal genes in a recent GWAS of Alzheimer’s 276 

disease [3], highlighting the potential utility of FOCUS in gene prioritisation. 277 

 278 

Figure 2: Marginal posterior inclusion probability of credible casual genes versus the S-279 

PrediXcan Z score by chromosomal region 280 

 281 

1.1.3.4. A biological pathway analysis identifies altered expression of lipoprotein 282 

clearance pathways in Alzheimer’s disease 283 

 284 

We tested for the enrichment of S-TissueXcan Alzheimer’s disease associations in Reactome 285 

biological pathways by regressing gene pathway membership against the (signed) z Z-score 286 

from the S-TissueXcan S-PrediXcanMultiXcan analyses. This approach allowed us to assess 287 

the enrichment of S-TissueXcanAlzheimer’s disease associations within biological pathways, 288 

as well as the mean effect size and effect direction of gene expression within the enriched 289 

pathways. In the (multi-tissue) GTEx S-MultiXcan analysis, One one pathway –— “plasma 290 
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lipoprotein clearance” – —was significantly downregulated in Alzheimer’s disease cases after 291 

correction for multiple testing (beta coefficient = -0.7861, P = 6.64 × 10-6) (Table 45, 292 

Supplementary Table S6S7)), consistent with the known pathoaetiology of Alzheimer’s 293 

disease. Plasma lipoprotein clearance was also significantly downregulated in cases using the 294 

CMC data (beta=-0.5646; P=8.31 × 10-26). Furthermore, we identified the upregulation of 295 

multiple immune-related pathways, especially related to Toll Like Receptor (TLR) cascades 296 

(e.g. Toll Like Receptor TLR1:TLR2 Cascade; beta=0.3684, 1.32 × 10-44) (Table 5, 297 

Supplementary Table S8), using the CMC data.  298 

 299 

Table 5: Biological pathways associated with Alzheimer’s disease association signals in 

dorsolateral prefrontal cortex from the CMC 

Pathway ID Pathway name Coef SE P 

S-MultiXcan 
    R-HSA-8964043 Plasma lipoprotein clearance -0.7861 0.1745 6.64 × 10-6 

CMC DLPFC 
    R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 0.3684 0.0263 1.32 × 10-44 

R-HSA-167044 Signalling to RAS 0.6713 0.0493 2.78 × 10-42 

R-HSA-187687 Signalling to ERKs 0.5786 0.0438 6.52 × 10-40 

R-HSA-447115 Interleukin-12 family signalling 0.6109 0.0468 7.27 × 10-39 

R-HSA-354192 Integrin alphaIIb beta3 signalling 0.6337 0.0486 8.14 × 10-39 

Notes: Coef, beta coefficient from a logistic regression model testing the enrichment of 

genes associated with Alzheimer’s disease in Reactome pathways. 

 300 

 301 

2.4.DISCUSSION 302 

We performed multi-tissue analysis of gene expression underlying Alzheimer’s disease to 303 

identify and prioritise candidate causal genes and pathogenic tissues. Using the transcriptome-304 

wide association study method S-PrediXcan and tissue-specific eQTL information from GTEx, 305 

we identified 50 unique candidate risk genes for Alzheimer’s disease. A meta-analysis of these 306 

tissue-specific data found 73 genes associated with Alzheimer’s disease. Because GTEx-307 

derived brain tissues may lack sufficient power to identify robust association signals underlying 308 
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complex diseases, we ran S-PrediXcan using expression weights derived from 646 dorsolateral 309 

prefrontal cortex samples from the CommonMind Consortium. We identified 12 gene-based 310 

associations, 8 of which were also significant in the meta-analysed GTEx analysis. Fine-311 

mapping of causal gene sets further prioritised novel gene candidates within 10 independent 312 

risk loci. Biological Ppathway analysis of the meta-analysed GTEx data and CMC data the 313 

meta-analysed association signals found enrichment offound down-regulation of genes 314 

involved in plasma lipoprotein clearance. Furthermore, the CMC data strongly implicated 315 

upregulation of genes involved in immune-related pathways and processes, particularly toll-316 

like receptor activity.  These results highlight the utility of investigating multiple tissues 317 

underlying complex disorders, including peripheral tissues unrelated to the pathogenic tissue 318 

of interest (such as skin tissue for brain-related processes in Alzheimer’s disease)[7]. Our 319 

results demonstrate a multi-tissue approach to gene discovery in Alzheimer’s disease may not 320 

only identify candidate causal genes and pathways, but peripheral (i.e. accessible) surrogate 321 

tissues for diagnostic biomarkers and the discovery of causal mechanisms. and gene expression 322 

data from 48 tissues from the GTEx project, we identified 50 unique genes across 45 tissues 323 

that reached transcriptome-wide significance. The largest number of significant associations 324 

were found in sun exposed lower leg tissue, and included differentially expressed genes 325 

previously thought to be involved in AD pathophysiology (for example, APOE, CLU, and 326 

PPP1R13L). To increase power relative to the single-tissue analyses, we meta-analysed the 327 

single-tissue association signals using S-TissueXcan and found an additional 27 genes 328 

significantly associated with Alzheimer’s disease (73 gene level associations in total).  329 

Pathway analysis of the meta-analysed association signals found enrichment of genes involved 330 

in plasma lipoprotein clearance. These results highlight the utility of investigating multiple 331 

tissues underlying complex disorders, including peripheral tissues unrelated to the pathogenic 332 

tissue of interest (such as skin tissue for brain-related processes in Alzheimer’s disease). Our 333 
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results demonstrate a multi-tissue approach to gene discovery in Alzheimer’s disease may not 334 

only identify candidate causal genes and pathways, but peripheral (i.e. accessible) surrogate 335 

tissues for diagnostic biomarkers and the discovery of causal mechanisms.  336 

 337 

Two recent studies performed transcriptome-wide association analyses of brain samples in 338 

Alzheimer’s disease. Raj et al.[15] used TWAS FUSION[16] with eQTL data derived from 339 

450 frontal cortex samples and genotype data from the Religious Order Study or the Memory 340 

and Aging Project (ROS/MAP), while Marioni et al.[17] applied Summary-data-based 341 

Mendelian Randomization (SMR)[18] to GWAS summary data from a meta-analysis of proxy 342 

Alzheimer’s disease cases from the UK Biobank and IGAP meta-analysis summary data, and 343 

eQTL data from over 600 frontal cortex samples from the Common Mind Consortium. These 344 

analyses identified a total of 9 candidate genes whose expression in brain tissue was associated 345 

with Alzheimer’s disease. We found a significant association with 4 of these candidate genes 346 

(CR1, TOMM40, PVR, CLPTM1) in at least one peripheral tissue. The effect direction of the 347 

beta coefficients in our study had the same effect directions for the candidate genes CR1, PVR, 348 

CLPTM1, and the strongest associations were found in peripheral tissues, including skin.  349 

 350 

We observed largely concordant effect directions in the S-PrediXcan association statistics (z 351 

scores) across brain and peripheral tissues, which can be expected given the observed high 352 

level of tissue-shared eQTL regulation at GWAS loci [19]. Furthermore, eQTL sharing among 353 

brain and skin—the peripheral tissue with the highest number of Alzheimer’s disease 354 

associations—is higher than other peripheral tissues [20]. These results highlight the utility of 355 

studying multiple (indicate accessible peripheral) tissues, especially skin, may capture the 356 

genetic effects on gene expression underlying Alzheimer’s disease and other brain-related 357 

traits. Future studies can therefore increase power to identify molecular effects in Alzheimer’s 358 
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disease by studying eQTL effects in large peripheral tissue eQTL datasets, before the use fine-359 

mapping techniques in disease-relevant brain tissue.in genetic studies of brain-related traits, 360 

where larger sample sizes may provide increased power to identify biologically meaningful 361 

associations. 362 

 363 

Transcriptome imputation methods such as S-PrediXcan are prone to false positive associations 364 

due to linkage disequilibrium between SNPs used to build the expression weights, which 365 

induce spurious gene-trait associations within chromosomal regions. We used fine-mapping of 366 

causal gene sets to further prioritise genes within risk loci. We found the probability for each 367 

gene in a region to be causal was a largely a function of its S-PrediXcan Z score, where genes 368 

with larger Z scores had larger posterior inclusion probabilities as the causal gene. Nonetheless, 369 

we identified 6 genes that were not reported as the closest gene within ± 100 kb of the top SNP 370 

of known GWAS-defined associated genes at the time of publication of Lambert et al. [2], 371 

which represent novel, functionally relevant candidate causal genes in Alzheimer’s disease. 372 

Among these novel candidates is GRIK4 at the SORL1 locus and UNC79 at the SLC24A4-RIN3 373 

locus. Both GRIK4 (glutamate ionotropic receptor kainate type subunit 4) and UNC79 (unc-79 374 

homolog, NALCN channel complex subunit) have biased expression in the brain and encode 375 

ion channel subunits, and it is conceivable their dysfunction may contribute to altered synaptic 376 

plasticity, learning and development in Alzheimer’s disease[21]. 377 

 378 

Gene Biological pathway analysis of genes from in both our meta-analysed (S-379 

TissueXcan)GTEx and CMC results found one pathwayfound down-regulation of  – “plasma 380 

lipoprotein clearance” in Alzheimer’s disease. ” – significantly downregulated in Alzheimer’s 381 

disease cases compared to controls. These results are consistent with a recent meta-analysis of 382 

cross-tissue expression imputation of 44 GTEx tissues[22], which found the enrichment genes 383 
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whose expression was associated with Alzheimer’s disease in gene ontology terms related to 384 

lipoprotein clearance. Lipoprotein clearance has a well-establishedmay play an important role 385 

in Alzheimer’s disease pathogenesis through the association of APOE and several other genes 386 

that function in lipid or lipoprotein metabolism, including Clusterin (CLU) and ATP binding 387 

cassette (ABC) transporter A7 (ABCA7)[23]. Specifically, it has been hypothesised that 388 

dysfunctional lipoprotein clearance in the central nervous system is thought to be involved 389 

inmay facilitate the formation of two critical neuroanatomical features in Alzheimer’s disease: 390 

amyloid plaques and neurofibrillary tangles. These neuroanatomical features may be indicated 391 

by global changes in gene (mRNA) and protein expression of lipid and lipoprotein-related 392 

genes in both brain tissue and peripheral blood [24]. The association of lipoprotein-related 393 

genes with Alzheimer’s disease in skin and other non-brain tissues, together with concordant 394 

effect directions across tissues (including brain tissue), suggests peripheral tissues may provide 395 

a biologically valid substrate for the study of genetic factors and their impact on higher order 396 

molecular processes in Alzheimer’s disease. 397 

 398 

Pathway analysis of the CMC gene-based found the up-regulation of genes involved in 399 

immune-related processes, most notably toll-like receptor cascades. Toll-like receptors are 400 

involved in many physiological and pathological responses, and their activity is thought to play 401 

a role in several neurological disorders, including Alzheimer’s disease [25,26]. The receptors 402 

are widely expressed on microglial cells—the chief immune cells of the central nervous 403 

system—and their activation is associated with Aβ plaque deposition [27] and enhanced 404 

neurodegeneration [28]. Although we cannot draw mechanistic conclusions, our results suggest 405 

a potential relationship between altered immune signalling, impaired plasma lipoprotein 406 

clearance, and Aβ plaque deposition in Alzheimer’s disease. 407 

 408 
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 409 

Our multi-tissue transcriptome-wide association imputation approach has a number of 410 

advantages over traditional expression quantitative loci studies of complex diseases. First, 411 

TWAS transcriptome imputation methods allow the study of genetically regulated gene 412 

expression without directly measuring expression data from an appropriate cell type in diseased 413 

cases and health controls. Second, by imputing estimating the genetically regulated component 414 

of gene expression, TWAS transcriptome imputation methods remove the impact of 415 

unmeasured (i.e. uncontrolled) environmental factors on gene expression, thereby improving 416 

the interpretability of expression association signals. Third, transcriptome TWAS imputation 417 

aggregates SNP level associations to individual genes, reducing the multiple testing burden and 418 

increasing statistical power. A multi-tissue meta-analysis, such as TissueXcanS-MultiXcan, 419 

further reduces the multiple testing burden by combining association statistics across all 420 

interrogated tissues. Fourth, TWAS methods utilise eQTL information from large eQTL 421 

databases with uniform sample collection and strict quality control protocols which improves 422 

the reliability of results and enables replication across disorders/traits. 423 

 424 

A disadvantage of the use of datasets such as GTEx is that tissues are not homogeneous, and 425 

thus under represent certain cell populations. Many of the ADAlzheimer’s disease risk loci 426 

identified through GWAS are not highly expressed in whole brain tissues. Previous attempts 427 

to identify brain tissue eQTLs corresponding to ADAlzheimer’s disease GWAS loci have 428 

likely been affected by this issue cellular heterogeneity [29,30]. A large proportion of 429 

ADAlzheimer’s disease risk loci have been linked to immune function, and our results in 430 

(dorsolateral prefrontal cortex) brain tissue corroborate these findings. However, the study of 431 

immune function in the brain is complicated by The the heterogeneous population of brain cell 432 

populations, which s dilutes cellimmune-specific signatures of from small populations of cells 433 
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such as microglia. Analyses of primary cell-type specific expression from the Immune 434 

Variation project have shown that ADAlzheimer’s disease risk alleles are enriched among 435 

monocyte-specific eQTLs, as opposed to T cell-specific eQTLs. More easily accessible 436 

Monocytes monocytes could be used as a proxy to examine the the (immune) cell-specific 437 

effects of microglia susceptibility variants in ADAlzheimer’s disease. This implication of 438 

specific immune cell types points to the need to identify the cell-autonomous effects of disease 439 

susceptibility variants.  440 

 441 

3.5.CONCLUSIONS 442 

In summary, we performed a multi-tissue transcriptome-wide association study of Alzheimer’s 443 

disease. We confirmed an association between DNA sequence variation and gene expression 444 

for known Alzheimer’s disease candidate genes and identified multiple genes whose expression 445 

has not previously been associated with the disease. Most Many disease associations were 446 

observed in peripheral tissues, most notably skin tissue, rather than brain tissues, and the effect 447 

directions for the association statistics were largely consistent across tissues. This suggests 448 

accessible peripheral tissues such as skin may provide biologically meaningful surrogate 449 

information for brain-related processes. A meta-analysis of 48 GTEx tissues, including 13 brain 450 

tissues, confirmed the association of candidate genes identified in single tissue analyses, in 451 

additional to several novel genes, most of which were also identified in an analysis of gene 452 

expression in dorsolateral prefromtal cortex. These results suggest gene expression data from 453 

peripheral tissues improves power to identify and prioritise candidate genes for brain-related 454 

traits. The use of skin tissue, where—the peripheral tissue with  the largest number of 455 

associations with Alzheimer’s disease— was observed, represents a particularly useful avenue 456 

for future research, and might provide a useful surrogate for biomarker discovery for disease 457 

onset and progression.  458 
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