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ABSTRACT 

Background: Variation in liability to cannabis use disorder (CUD) has a strong genetic 

component (estimated twin and family heritability ~ 50-70%) and is associated with negative 

outcomes, including increased risk of psychopathology. The aim of the current study was to 

conduct a well-powered GWAS to identify novel genetic variants associated with CUD. 

Methods: We conducted the largest GWAS meta-analysis of CUD to date (Ncase = 20,916; Ncontrol 

= 363,116), and used polygenic risk score approaches to examine associations between CUD 

and relevant traits in independent samples: cannabis use frequency in the UK Biobank, a variety 

of health codes in the BioVU sample, and brain volume in adolescents. 

Outcomes: We identified two genome-wide significant loci: a novel chromosome 7 locus 

(FOXP2; lead SNP rs7783012, OR = 1.11, p = 1.84e-09), and the previously identified 

chromosome 8 locus (near CHRNA2 and EPHX2; lead SNP rs4732724, OR = 0.89, p = 6.46e-

09). A phenome-wide analysis of electronic health codes in an independent sample (N = 

66,915) revealed genetic overlap between CUD and mental health, respiratory illness, and 

infectious conditions. Although they were genetically correlated (rg = 0.50, p =1.5e-21), CUD and 

cannabis use showed opposite directions of genetic correlation with education, body mass 

index, and age at first birth, suggesting at least partially different genetic underpinnings of 

cannabis use versus use disorder. Further, polygenic scores for CUD, but not cannabis use, 

were associated with less total white matter volume in cannabis-naïve children from the 

Adolescent Brain Cognitive Development Study (N = 4,539).  
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Interpretation: Collectively, these findings reinforce the conclusion that CUD is a psychiatric 

disorder with greater shared liability to psychopathology and potential early brain volume 

differences, and distinctions from genetic likelihood of cannabis use. 

Funding: MH109532 (AA, HJE, JG); F32AA027435 (ECJ); 1U01MH109514-01 (ADB); 
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and the Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark (grant to ADB); 

the European Commission, Horizon 2020, grant number 667302 (ADB); R01‐DA034076 

(deCODE, TET); R01HD060726 (BWD, KMH, JDB, MBM); Health Research Council of New 

Zealand 16/600 (JB, JH, MAK, JFP); Health Research Council of New Zealand 11/792 (JB, JH); 
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K01MH113848, The Brain & Behavior Research Foundation NARSAD grant 28632 (REP); R21 

DA047527, R21 DC018098 (RP); SAMHSA Grant # 1H79TI081668 (MDR); R01DA026911, 
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INTRODUCTION 

Approximately 50-70% of cannabis use disorder (CUD) liability is attributable to genetic 

factors1,2. Three genome-wide association studies (GWAS) of CUD3–5 have identified genome-

wide significant variants, but limited sample sizes (largest N = 51,372) and heterogeneity among 

samples have contributed to a paucity of replicable findings: only one locus, tagged by a cis-

eQTL for CHRNA2 that encodes a nicotinic acetylcholine receptor, has been identified4. As in 

other polygenic disorders, particularly substance use disorders,  increasing the sample size will 

reveal additional reliable genetic associations for CUD.  

 

Cannabis use is common, and a recent GWAS of lifetime cannabis use (N = 184,765; Ncases = 

43,380) identified eight genome-wide significant loci, and 35 significant genes6. Twin studies 

suggest high genetic correlations between earlier stages of cannabis experimentation and later 

CUD7,8; however, casual cannabis use is also influenced by a variety of socio-environmental 

influences and age-period-cohort effects, while progression to CUD likely accrues risk related to 

other psychopathologies. Furthermore, comparisons of alcohol consumption and alcohol use 

disorder support partially distinct genetic etiologies with respect to both associated variants and 

genetic relationships with other psychiatric disorders and traits9–11. Thus, genomic liability for 

subdiagnostic substance use measured in population-based cohorts may be partially distinct 

from that associated with disordered use. Whether the genetic architectures of cannabis use 

and CUD show divergence like alcohol has not yet been investigated. 

 

METHODS 

Samples 

Twenty samples were included: the Psychiatric Genomics Consortium (PGC) Substance Use 

Disorders working group (18 samples; European ancestry, NCUD = 8,277, Ncontrol = 23,497; 

African ancestry NCUD = 3,848, Ncontrol = 5,897), the iPSYCH cohort12 (all Europeans, 

https://victr.vumc.org/biovu-funding/
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NCUD=2,758, Ncontrol=53,326), and the deCODE sample (all Europeans, NCUD=6,033, Ncontrol= 
280,396) (Table 1; Supplementary Information). First, the summary statistics from the 18 PGC 

samples were meta-analyzed together, followed by a meta-analysis that included results from 

the GWAS of iPSYCH and deCODE samples (between-sample genetic correlations rg = 0.66 - 

0.70).  

 

This study was approved by the institutional review board (IRB) at Washington University 

School of Medicine and was conducted in accordance with all relevant ethical regulations. 

Investigators for each contributing study obtained informed consent from their participants and 

received ethics approvals from their respective review boards in accordance with applicable 

regulations. Personal identifiers associated with phenotypic information and samples were 

encrypted using a third-party encryption system13. 

 

Measures 

CUD phenotyping 

PGC cases met criteria for a lifetime diagnosis of DSM-IV (or DSM-III-R) cannabis abuse or 

dependence14 derived from clinician ratings or semi-structured interviews9. iPSYCH cases had 

ICD-10 codes of F12.1 (cannabis abuse) and/or F12.2 (cannabis dependence) in the Danish 

Psychiatric Central Research Register15, and the remaining individuals in iPSYCH were used as 

controls. deCODE cases met criteria for lifetime DSM-III-R or DSM-IV cannabis abuse or 

dependence or DSM-5 cannabis use disorder according to diagnoses made at the National 

Center of Addiction Medicine in Iceland, while controls were derived from the general population 

of Iceland (Appendix pp 1-7). Exposure data were not available for some large cohorts (e.g., 

iPSYCH, deCODE), therefore, controls were defined regardless of lifetime cannabis exposure 

across all datasets. 

 

Genotyping: quality control and imputation 

PGC: Standard procedures for GWAS quality control (QC) and imputation were applied using 

the Ricopili16 pipeline (https://github.com/Nealelab/ricopili) for case-control cohorts and the 

Picopili pipeline (https://github.com/Nealelab/picopili) for family-based samples. Briefly, variants 

in each cohort were filtered for call rate (<5% missingness), followed by individual-level filtering 

for call rate (<2% missingness) and heterozygosity (|Fhet| > .20). If available, chromosome X 

variants were checked to ensure concordance between genotype sex and reported sex. 

Variants were then filtered more stringently: 2% missingness, differential missingness between 

https://github.com/Nealelab/ricopili
https://github.com/Nealelab/picopili
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cases and controls < 2%, invariant markers and those departing from Hardy-Weinberg 

equilibrium (HWE) in cases (P > 1e-10) or controls (P > 1e-6) were removed (Appendix pp 7-9). 

Principal components analysis (PCA) was performed on a stringently quality controlled (QC’ed) 

set of variants using EIGENSOFT17,18 to exclude population outliers, infer ancestry among the 

retained individuals (using the 1000 Genomes Phase 319 cosmopolitan reference panel), and 

derive ancestry-specific principal components for inclusion in analyses (Appendix p 9). Final 

sample and variant QC procedures, including filters for call rate, heterozygosity, and departure 

from HWE, were then performed within each ancestry group in each cohort. Each cohort was 

phased using SHAPEIT20 and imputed using IMPUTE221, using the 1000 Genomes Phase 319 

cosmopolitan reference panel (Appendix pp 9-10). After imputation, duplicate individuals were 

removed and cryptic relatedness between cohorts was tested using PLINK22,23 (individuals who 

were cryptically-related across cohorts were excluded from all but one cohort, to avoid “double-

counting”), and SNPs were filtered for INFO score > 0.8 and minor allele frequency (MAF) ≥ 

0.01 prior to analysis (Appendix pp 10-11); 

 

iPSYCH: Quality control of iPSYCH data mirrored the process implemented in PGC, with minor 

deviations in thresholds for exclusion.  

 

deCODE: Samples were assayed with several Illumina arrays at deCODE genetics. SNPs with 

low call rate (<95%), significant deviation from Hardy-Weinberg equilibrium (P<0.001), and 

excessive inheritance error rates (>0.001) were excluded. Variant imputation, based on the 

IMPUTE HMM model and long-range phasing, was performed as described previously24. 

Variants were further filtered for imputation info score >0.8 and minor allele frequency ≥1% 

before inclusion into meta-analysis. 

 

Association analyses 

Association analyses were conducted separately for each cohort (i.e., 18 individual PGC 

samples, iPSYCH, and deCODE) by ancestry (European or African – PGC only). For the seven 

case–control studies from PGC, imputed dosages were analyzed using logistic regression 

models, implemented in the Ricopili16 pipeline. For family-based PGC samples, association 

analyses were conducted with imputed best-guess genotypes using generalized estimating 

equations (GEE) for samples that included only first-degree relatives (e.g., sibships), and 

logistic mixed models for complex pedigrees, in the Picopili pipeline 

(https://github.com/Nealelab/picopili)9. For calculation of SNP-heritability and genetic 

https://github.com/Nealelab/picopili
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correlations, subsets of genetically unrelated individuals (NCUD = 5,289, Ncontrol = 10,004) were 

selected from each family-based sample from PGC (Appendix pp 11-12) and analyzed using 

logistic regression through Picopili; these results were then meta-analyzed along with the case-

control cohorts. PGC covariates included sex and 5-10 within-ancestry principal components to 

account for population stratification (details in Appendix pp 11-12). Because age was not 

available in all samples, it was not included as a covariate in PGC analyses. However, we 

adjusted for age and age-squared in CATS and found it to have no impact on study-specific 

findings. 

 

In the iPSYCH cohort, logistic regression was conducted with imputed dosages, covarying for 

five ancestral principal components, data processing waves, and the presence of another 

psychiatric disorder (because iPSYCH was established to study major psychiatric disorders, 

CUD cases and controls include comorbidity)4. Adding sex as a covariate to iPSYCH analyses 

has been shown not to alter findings25. 

 

The deCODE Genetics data were analyzed using logistic regression of imputed dosage data 

with sex, age, and county of origin as covariates26. To account for inflation due to population 

stratification and relatedness, test statistics were divided by an inflation factor estimated from 

LD score regression (LDSR)27 (see Appendix p 12).  

 

Meta-analyses within ancestry were conducted using METAL28 (Appendix pp 12-13). First, 

summary statistics from case-control and family-based samples were combined, weighted by 

the effective sample size, because effect sizes from case-control logistic regression analyses 

and family-based analyses using GEE and logistic mixed models are not directly comparable. 

The summary statistics were filtered such that a SNP had to be present in at least two of the 

three contributing GWAS (deCODE, iPSYCH, and PGC). Second, a meta-analysis that 

excluded related individuals from the family-based PGC samples was performed with an inverse 

variance-weighted scheme to generate summary statistics that produced effect sizes for use in 

follow-up analyses (Ncases = 14,080, Ncontrols = 343,726). We also completed a trans-ancestral 

meta-analysis using METAL28 by combining results across the European (EUR) and African 

(AFR) ancestry cohorts, comprising 20,916 individuals with CUD (17,068 EUR, 3,848 AFR) and 

363,116 controls (357,219 EUR, 5,897 AFR); see Supplemental Table 1. Conditional analyses 

were conducted in GCTA-COJO29 by conditioning the meta-analysis summary statistics on the 

lead genome-wide significant variants. 
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Gene- and pathway-based tests 

The FUMA web-based platform30 v1.3.5e was used for visualization and annotation and 

MAGMA31 was used within the FUMA framework to conduct gene-based association analyses, 

with SNPs assigned to genes based on physical position (Appendix p 13). We also used Hi-C 

coupled MAGMA32 (H-MAGMA), which takes into account long-range regulatory interaction 

effects to assign non-coding SNPs (intergenic and intronic) to genes based on their chromatin 

interactions (exonic and promoter SNPs are still assigned to genes based on genomic location; 

Appendix p 13). Pathway analyses were conducted using PASCAL33 to test canonical pathways 

from MSigDB34 in the EUR sample. All variants within all genes were tested, using default 

settings, with LD structure estimated using the 1000 Genomes European sample as a 

reference. We also used S-PrediXcan35 to examine gene expression differences associated with 

case-control status, using our CUD summary statistics and transcriptome data from the 

PredictDB Data Repository (http://predictdb.org) for 11 brain regions, liver tissue, whole blood, 

and two types of adipose tissue. We included these tissues because CUD is a psychiatric 

disorder and tetrahydrocannabinol (THC), a key psychoactive cannabis component, 

accumulates in adipose.36,37 Analyses were restricted to the EUR-ancestry meta-analysis 

because the prediction models were trained on reference transcriptome data from GTEx v838 

using only individuals of European ancestry. The significance threshold was corrected for the 

total number of gene-tissue pairs tested (75,684 gene-tissue pairs tested; 𝛼𝛼 = 6.69e-7). 

 

Heritability and genetic correlation analyses 

Heritability explained by common variants (h2SNP) and genetic correlations with 23 other traits 

chosen because of previous findings or hypothesized relationships (Appendix pp 13-14 and 

Supplemental Table 2) were estimated using LDSR27,39 on the results of the meta-analysis of 

case-control subjects of EUR-ancestry. The number of unrelated AFR ancestry cases was 

below the acceptable sample size threshold for LDSR. Conversion of h2SNP estimates from 

observed scale to liability scale was performed using a range of estimated population 

prevalences from 1% (used by Demontis et al.4) to 8.5% (because in some samples we used 

DSM-IV cannabis abuse or dependence40). Significance of genetic correlations with other traits 

was determined using a Bonferroni correction for 23 tests (𝛼𝛼 = 0.002). Finally, we examined 

whether the genetic correlations for CUD were significantly different than those for cannabis use 

using the jackknife procedure implemented through LDSC39.  

 

http://predictdb.org/
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Confounding effects of cannabis exposure and smoking behaviors 

We used mtCOJO41 to condition the CUD summary statistics analysis on loci associated with 

cannabis use at p < 0.0016 (this threshold was chosen to adjust for as many SNPs as possible 

while retaining computational efficiency). Adjusted summary statistics were used to recompute 

genetic correlations. Due to the high co-occurrence of cannabis use and tobacco smoking, 

mtCOJO analyses conditioning the CUD summary statistics for loci significantly associated (p < 

5e-8) with smoking initiation and cigarettes smoked per day42 (excluding 23andMe data, due to 

limited access) were also performed. Given long-standing interest in the comorbidity of 

schizophrenia and cannabis misuse, we also used mtCOJO to condition the CUD summary 

statistics on significant schizophrenia loci.  

 

Examining cannabis use in the UK Biobank 

We first tested whether CUD and cannabis use in the UK Biobank were genetically correlated 

by running LDSR on CUD and a broad measure of maximum cannabis use frequency (derived 

from the Neale lab GWAS of the UK Biobank; 

https://github.com/Nealelab/UK_Biobank_GWAS). Linear regression was then used to examine 

the extent to which CUD PRS predicted a pseudo-continuous measure of self-reported cannabis 

use frequency, while co-varying for age, sex and 20 ancestral principal components (Appendix p 

14). PRSice-2 was used to perform gene-set enrichment using gene sets and pathways from 

the Molecular Signatures Database (MSigDB43): (H) hallmark biological processes or states, 

(C1) positional sets from cytogenetic maps, (C2) chemical or genetic perturbations and 

canonical pathways, (C3) regulatory processes, (C4) computationally derived gene sets of 

cancer gene neighborhoods and modules, (C5) biological process, cellular component, and 

molecular function gene ontologies, (C6) oncogenic signatures, and (C7) immunologic 

signatures. 

 

Phenome-wide association study (PheWAS) in BioVU biobank 

Polygenic scores for CUD were computed using PRS-CS44 (Appendix pp 14-15) for each of the 

66,915 genotyped individuals of European descent in BioVU. Genotyping and QC of this sample 

have been described elsewhere45,46. A logistic regression model was fitted to each of 1,335 

case/control phenotypes that had at least 100 cases to estimate the odds of each diagnosis 

given the CUD polygenic score, after adjustment for sex, median age of the longitudinal EHR 

measurements, and the top 10 principal components of ancestry. To explore whether pleiotropic 

effects of the CUD PRS were mediated by smoking behaviors, we conducted two additional 
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PheWAS sensitivity analyses: (1) a PheWAS on CUD summary statistics that had been 

conditioned on the top smoking initiation loci using mtCOJO41, and (2) a PheWAS using a 

diagnosis of tobacco use disorders (TUD) as an additional covariate in the regression model, 

which is likely a conservative over-correction given the extremely high comorbidity expected 

between CUD and TUD. We used a Bonferroni-corrected phenome-wide significance threshold 

of p < .05 / 1335 = 3.74e-5, given the 1,335 phecodes; this is likely over-conservative because it 

incorrectly assumes independence between phecodes. PheWAS analyses were run using the 

PheWAS R package v0.12.47  

 

Polygenic risk and brain structure among children in the Adolescent Brain Cognitive Development 

(ABCD) study 

Data from the ongoing Adolescent Brain Cognitive Development (ABCD) study48 (data release 

2.0.1; https://abcdstudy.org/) were used to test whether CUD PRS are associated with brain 

structure among 4,539 cannabis-naïve (via self-report or hair toxicology) children of European 

ancestry (mean age = 9.93±0.63 years; 46.8% girls). Total bilateral white matter volume, gray 

matter volume, and intracranial volume were estimated using FreeSurfer49 5.3. Genotyping and 

quality control are described in the Appendix p 15. PRS from the CUD GWAS were generated 

at nine p-value thresholds (i.e., PT = 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, and 1), as were 

PRS for cannabis use6. Linear mixed-effects models were used to include scanner (for imaging 

analyses) and family as nested random effects, conducted using the lme4 package in R50, 

version 3.6.0. All analyses included the following fixed effect covariates: first 20 ancestral 

principal components, age, sex, age by sex, parents combined income, caregiver education, 

genotyping batch, caregiver’s marital status, prenatal cannabis exposure before and after 

knowledge of pregnancy, and twin status. Multiple testing within each brain structure phenotype 

was accounted for by applying random field theory correction51 across p-value thresholds, as 

this method directly models the overlap across the different PRS thresholds and corrects for the 

statistical dependence among them.  

 

ROLE OF THE FUNDING SOURCE 

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all of the data 

and the final responsibility to submit for publication. 

 

RESULTS 
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We identified two genome-wide significant loci in the trans-ancestral meta-analysis (AFR+EUR, 

Ncase = 20,916; Ncontrol = 363,116; Figure S1, Supplemental Table 3). Both loci were significant in 

the European-ancestry meta-analysis (NCUD = 17,068, Ncontrols = 357,219) but did not reach 

significance in the much smaller African-ancestry GWAS (Ncase = 3,848; Ncontrol = 5,897). No 

additional ancestry-specific loci were observed. Inflation in the test statistics (𝜆𝜆 = 1.10) most 

likely reflects the polygenic architecture of CUD, a conclusion that is supported by LDSR (LDSR 

intercept = 0.99). Conditioning the CUD summary statistics on the lead SNP in each genome-

wide significant locus, rs7783012 and rs4732724, revealed no evidence of additional 

independent significant findings.  

 

Based on effect sizes and LD from the European-ancestry meta-analysis that excluded related 

individuals (NCUD = 14,080, Ncontrols = 343,726), the genome-wide significant locus on 

chromosome 8 contains a single association (independent at R2 < 0.1) with lead SNP 

rs4732724 (OR = 0.89, SE = 0.02, p = 6.46e-09; Figures 1, S2 & S3). This locus was previously 

associated with CUD in the iPSYCH cohort4, and includes eQTLs for CHRNA2 (cholinergic 

receptor nicotinic alpha 2 subunit) in cerebellum and cerebellar hemisphere and EPHX2 

(epoxide hydrolase 2) in cerebellum and adipose tissue (Supplemental Table 4). One genome-

wide significant variant in the chromosome 8 locus (rs1565735) had a CADD score of 13.28, 

indicating high probability of deleteriousness (Supplemental Table 5). There were additional 

eQTL signals at this chromosome 8 locus, for CCDC25 (coiled-coil domain containing 25; in 

nucleus accumbens; multiple SNPs), CLU (adipose; rs2640724), and STMN4 (stathmin 4; in 

prefrontal cortex; rs78875955 and rs72477506) (Figure S5).  

 

The chromosome 7 locus is located in an intron of FOXP2 (Forkhead box protein P2; index 

SNP: rs7783012, OR = 1.11, SE = 0.02, p = 1.84e-09; see Figures 1, S2 & S4). The index 

variant was an eQTL for FOXP2 in brain (prefrontal cortex, anterior cingulate cortex) and 

adipose tissue, and demonstrated chromatin interactions with FOXP2, MDFIC, MIR3666, and 

AC073626.2 (Figure S6).  

 

The gene-wise association analysis of EUR-ancestry summary statistics identified three 

significant genes (𝛼𝛼 = 2.664e-6): FOXP2 (p=7.31e-08), PDE4B (p=6.66e-07), and ENO4 

(p=3.51e-08; Figure S7, Supplemental Table 6). No pathways were significant (Supplemental 

Table 7) were identified. Three genes (NAT6 (amygdala, cortex, frontal cortex), HYAL3 (both 

adipose tissues, whole blood, cerebellum, frontal cortex, hippocampus, nucleus accumbens, 
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spinal cord), and IFRD2 (cerebellum)) were significantly related to CUD via genetically-

regulated gene expression (Figure S8, Supplemental Tables 8 & 9). Connecting SNPs to genes 

via chromatin interaction data revealed significant associations in the adult brain tissue (10 

genes), fetal brain tissues (12 genes), iPSC-derived astrocytes (11 genes), and iPSC-derived 

neurons (8 genes); these genes included HYAL3, ENO4, CHRNA2, FOXP2 (Supplemental 

Tables 10-13, Figure S9).  

 

The SNP-heritability (h2SNP) for CUD ranged from 0.067 - 0.121 (SE = 0.006 - 0.011) on the 

liability scale, depending on the estimated population prevalence (h2SNP = 0.02 (SE = 0.002) on 

the raw scale). CUD showed significant positive genetic correlations (rg) with 16 of the 23 

studied phenotypes (Figure 2, Supplemental Table 14). The strongest relationships were 

observed with smoking initiation42 (rg = 0.66, p = 3.2e-83), Townsend Deprivation Index (a 

measure of regional poverty52; rg = 0.58, p = 3.3e-37), educational attainment53 (rg = -0.39, p = 

6.7e-34), and age at first birth (rg = -0.49, p = 5.4e-28). Thus, increased CUD risk is genetically 

correlated with living in an area of greater material poverty, having children at an earlier age, 

and lower levels of educational attainment. Liability to CUD was positively genetically correlated 

with alcohol use and tobacco smoking42, nicotine dependence54, psychiatric disorders (e.g., 

ADHD25, schizophrenia55, major depression56), and body-mass index57 (BMI).  

 

The rg between cannabis use6 and CUD was 0.50 (SE = 0.05, p = 1.5e-21; genetic covariance 

intercept = 0.014 (SE = 0.005); Supplemental Table 14). Of the eight genome-wide significant 

SNPs associated with cannabis use6, only four had p <0.05 in the CUD meta-analysis 

(Supplemental Table 15; there was modest sample overlap between the two studies). 

Conditioning the CUD summary statistics for loci associated with cannabis use neither 

substantially modified the effect sizes of the genome-wide significant loci (rs4732724, Beta = -

0.11, SE = 0.02, p = 8.25e-09; rs7783012, Beta = 0.10, SE = 0.02, p = 2.62e-09) nor identified 

additional novel loci (see Supplemental Table 16). The heritability of CUD adjusted for cannabis 

use loci (using mtCOJO41) was 0.095 (SE = 0.01) on the liability scale (estimated population 

prevalence = 8.5%).  

 

A comparison of genetic correlations with other phenotypes revealed similarities and distinctions 

between cannabis use and CUD (Supplemental Table 17, Figure 2). The genetic correlations 

with CUD and cannabis use were significantly different for 12  of the 22 traits tested. Both 

cannabis use6 and CUD were genetically correlated in the same direction with liability to 
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smoking initiation, schizophrenia, major depressive disorder, risk tolerance, and the Townsend 

Deprivation Index. Cannabis use6 was positively genetically correlated with educational 

achievement and later age at first birth, and negatively with BMI. In contrast, CUD was 

genetically correlated with lower education attainment, earlier age at first birth, and higher BMI 

(i.e., in the opposite direction). Liability to CUD was genetically correlated with nicotine 

dependence (rg = 0.48, p = 1.35e-09), while the genetic correlation of this trait with cannabis use 

was not significant (p = 0.44). In contrast, cannabis use was significantly genetically correlated 

with chronotype (rg = -0.24, p = 6.40e-19), while CUD showed no significant correlation with this 

trait (p = 0.18). Conditioning the genetic correlations of CUD on cannabis use loci (with p < 

0.001) made little difference in the magnitude of the rgs (Supplemental Table 18).  

 

Liability to CUD and maximum cannabis frequency were genetically correlated (rg = 0.75, p = 

1.80e-6) in the UK Biobank. CUD PRS were significantly associated with our pseudo-continuous 

measure of cannabis use frequency in the UKB (maximum R2 = 0.04%, Z = 7.42, p = 1.15x10-13, 

PT = 0.3; Figure S10, Supplemental Table 19). A total of 65/12,461 gene-sets/pathways were 

significantly enriched (Supplemental Table 20) at PT = 0.3, highlighting involvement of central 

nervous system morphogenesis (transcription factor Nkx-2.2 target genes, R2 = 0.02%, Z = 4.46, 

p = 8.22x10-6) and immune responses to exogenous compounds (ZFP91 target genes R2 = 

0.01%, Z = 4.41, p = 1.01x10-5; CD4+ T-cell R2 = 0.02%, Z = 4.41, p = 3.79x10-6; and macrophage 

gene sets R2 = 0.01%, Z = 4.62, p = 1.04x10-5) 

 

Of 1,335 phenotypes in the BioVU biobank, 46 were significantly associated with a PRS for 

CUD (p < 3.74 x 10-5, Figure 4, Supplemental Table 21). The phenotype groups with the most 

abundant associations were mental disorders (n=12), the strongest associations being with 

tobacco use disorder (Ncases = 5,280, OR = 1.18, SE = .02, p = 2.66 × 10-27) and substance use 

disorders (Ncases = 6,155, OR=1.18, SE=0.01, p = 1.24 × 10-30), mood disorders (Ncases = 9,588, 

OR=1.09, SE=0.01, p = 2.38 × 10-12) and suicidal ideation or attempt (Ncases = 689, OR=1.27, 

SE=0.04, p = 1.81 × 10-9); respiratory diseases (n=12), such as respiratory failure (Ncases = 4,485 

, OR=1.11, SE=0.02, p = 4.45 × 10-10) or chronic airway obstruction (Ncases = 4,436, OR=1.13, 

SE=0.02, p = 5.64 × 10-14), endocrine/metabolic conditions (n=3), such as disorders of fluid 

(Ncases = 12,562, OR=1.06, SE=0.01, p = 5.77 × 10-8); infectious diseases (n=4), such as viral 

hepatitis (Ncases = 135, OR=1.3, SE=0.03, p = 3.34 × 10-20); and digestive diseases (n=3), 

including cirrhosis of liver (e.g. Ncases = 1,928, OR=1.14, SE=0.02, p = 2.49 × 10-8).  
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The secondary pheWAS analysis in BioVU with CUD summary statistics conditioned on 

smoking initiation revealed attenuated findings, with only ten codes now passing Bonferroni 

corrections; anxiety disorder, viral hepatitis, and several respiratory codes were still significant 

(Supplemental Table 22). When we conditioned the pheWAS on tobacco use disorder (TUD) 

diagnosis, some associations remained significant (respiratory conditions, viral hepatitis), 

whereas other associations (e.g. anxiety disorder) were no longer significantly associated with 

CUD PRS (Supplemental Table 23). 

 

CUD PRS were significantly associated with reduced total white matter volume in cannabis-naïve 

children from the ABCD study (standardized βs ~ -0.04; p = 0.002 to 0.004; Figure 3), explaining 

up to 0.17% of the variance in white matter volume at the most predictive threshold of PT < 0.5 

(Supplemental Table 24). Children in the highest quartile of PRS, on average, had white matter 

volume that was 1% lower than those in the lowest quartile. Results remained significant when 

including intracranial volume as a covariate (standardized β = -0.08, p = 0.01) and when excluding 

children who used any substance (N = 3,282 ; standardized β =  -0.05, p = 0.001), or who used 

any substance or were prenatally exposed to any substance (N = 2,057; standardized β = -0.05, 

p = 0.03). The cannabis use PRS was not correlated with white matter volume (Figure 3). There 

was no association between CUD PRS or cannabis use PRS and gray matter volume (all ps > 

0.01; Figure S11, Supplemental Table 25). 

 

DISCUSSION 

This GWAS meta-analysis extended support for one previously identified locus on chromosome 

8 and identified a novel variant on chromosome 7.  The lead variant (rs7783012) at the 

chromosome 7 locus is a cis-eQTL for FOXP2 expression in brain and adipose tissue. FOXP2 

was also significantly implicated in gene-based tests that incorporated information about 

chromatin interactions in iPSC-derived astrocytes (Figure S9). rs7783012 has also been 

associated with a variety of measures related to externalizing behaviors (e.g., ADHD25, age at 

first sexual intercourse58, generalized risk tolerance59) and with educational attainment53. 

FOXP2 is essential to synaptic plasticity and has been implicated in the normal development of 

speech and language acquisition60–62. However, due to the prominence of the protein product of 

FOXP2 as a regulator of numerous genes, indirect pathways of vulnerability beyond risk taking 

are also possible.  
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Individual SNPs on chromosome 8 are eQTLs for CHRNA2 and EPHX2, extending prior work 

by Demontis et al.4 in iPSYCH, which along with the deCODE data are included in the present 

analysis and continue to be the main contributors to this finding (piPSYCH = 5.73e-08, pdeCODE = 

3.03e-4, pPGC (including relateds) = 0.06; see Figure S3). The large GWAS of schizophrenia63 has also 

implicated this variant (p = 3.68e-6), but conditioning for top schizophrenia loci did not modify 

the association with CUD (p = 4.33e-8; Supplemental Table 26). Given the role of CHRNA2 

variants in tobacco smoking42,64,65, it is plausible that the finding for both CUD and schizophrenia 

are partially driven by the high rates of tobacco use in those populations66.  However, 

conditioning on the GWAS of cigarettes per day actually increased the significance of the lead 

variant rs4732724 (pmtcojo_CPD = 4.16e-09; Supplemental Table 27), although a new SNP was 

identified as the “lead” SNP (rs11783093). When this new lead SNP was conditioned for the 

GWAS of smoking initiation, there was an attenuation of the signal (pmtcojo_smkinitation = 1.55e-06; 

Supplemental Table 28). These findings suggest that the chromosome 8 signal may be partly 

driven by smoking initiation, or indicative of a pleiotropic effect with a stronger impact on CUD 

than on smoking initiation42. Despite the plausibility of CHRNA2 in the etiology of CUD, it is 

worth noting that EPHX, which is involved in the metabolism of cannabinoids67–69, was also 

identified in eQTL analyses but not supported by other post-hoc studies.  

 

Cannabis use and CUD were genetically correlated (rg = 0.50) but conditioning for cannabis use 

loci did not substantially reduce the heritability of CUD, and although it reduced the significance 

of the top loci, the effect sizes remained consistent. This is an imperfect method of accounting 

for possible index-event bias, but we are reassured that conditioning the genetic associations 

with CUD on genetic loci for cannabis use did not meaningfully change our results. Importantly, 

cannabis use and CUD show divergent genetic relationships with educational attainment53, 

body-mass index57, and age at first birth, with CUD indexing greater impairment in these 

psychosocial and anthropometric indices. This divergence is similar to that found between 

alcohol intake and alcohol use disorder9,10.  

 

Cannabis use frequency in the UK Biobank was genetically correlated with CUD, but, similarly 

to other psychiatric and behavioral traits70, the CUD polygenic risk scores explained only a small 

proportion of variance in cannabis use frequency (R2 = 0.04%). We also found genetic overlap 

between CUD and several mental health phenotypes, respiratory illnesses, and infectious 

diseases in the BioVU biobank. The strongest association was with tobacco use disorder, but 

conditioning for loci associated with smoking initiation retained many of the pheWAS 
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associations at significant levels, including anxiety, phobic, and dissociative disorders, 

respiratory failure, and viral hepatitis. An even more stringent analysis that co-varied for TUD 

revealed independent associations with viral hepatitis, type 1 diabetes, respiratory measures 

and pain, but not mental health. These associations could reflect genuine pleiotropy (e.g., with 

risk-taking behaviors and injection drug use) or index putatively causal peripheral effects of 

cannabis.  

 

We identified an association between polygenic risk for CUD and lower white matter volume in 

drug-naïve children. Some prior cross-sectional studies have linked differences in gray matter 

volume with cannabis use and dependence71–73; however, a large mega-analysis did not find 

reductions in global or regional volumes in cannabis-dependent adults compared with controls74. 

In our study, the association between CUD PRS and white matter volume persisted in the 

subset of children who were not exposed to any substance, including prenatally. We 

recapitulate a relationship between CUD and white matter volume with PRS between CUD and 

cannabis use frequency by detecting enrichment of Nkx-2.2 transcription factor targets. Nkx-2.2 

is highly expressed in the brain and plays a critical role in myelin gene expression75. This 

suggests that polygenic liability for CUD might index differences in white matter volume in the 

developing brain, independently of the onset of substance use behaviors. Still, the CUD PRS 

white matter association was small (% R2 ranging from 0.15% to 0.18%), and additional studies 

are needed to confirm this association.  

 

Some limitations are noteworthy. Our AFR sample was under-powered and warrants greater 

data collection76–78. We had little or no information regarding comorbid psychiatric disorders for 

the majority of PGC samples, however, we conducted conditional analyses to account for these 

in a subset of studies and it made little difference. Another limitation is our lack of information 

regarding lifetime cannabis exposure and the potency of cannabis used by our samples. Our 

estimates of genome-wide SNP-h2 (0.07 - 0.12) were far lower than the h2 estimated from twin 

and family studies (0.5 - 0.7). This is very common across essentially all psychiatric disorders, 

and might be due to low power and some heritability residing in variants too rare to be included 

in our GWAS. An additional limitation is that we did not conduct formal Mendelian 

Randomization analyses; to do this, we would have needed to remove sample overlap between 

our CUD GWAS and the other GWAS of interest, which would have greatly decreased our 

statistical power. However, using latent causal variable (LCV) analyses, we briefly examined the 

evidence for bidirectional causality between CUD and the top genetically correlated traits: 
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educational attainment, age at first birth, Townsend Deprivation Index (TDI), smoking initiation, 

and ADHD.  LCV79 is an approach related to MR but can account for sample overlap among the 

input GWAS. There was no significant evidence of causal relationships between CUD and any 

of these traits, with the absolute value of the genetic causality proportion ranging from 0.05 - 

0.27, and p-values for the null hypothesis that there is no genetic causality ranging from 0.13 - 

0.86 (see Appendix pp 15-16). Estimates of genetic overlap may be sensitive to sample 

characteristics, e.g., older volunteers in the UK Biobank cohort80 and some younger registry-

based cohorts in our CUD GWAS. In addition, imbalance between cases and controls could 

have impacted our findings, although we don’t observe substantial genetic heterogeneity 

(Supplemental Figures S3-S4). 

 

In conclusion, our findings provide further evidence that CUD is a serious, psychiatric illness 

with neurobiological influences that diverge at least partially from cannabis use. From a public 

health perspective, the recognition that CUD is a serious form of psychopathology should spur 

efforts to identify and aid at-risk individuals in the face of escalating cannabis use worldwide, 

especially among adolescents. 
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