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A B S T R A C T : T h e s y n t h e s i s o f n e w b i s -
(thiosemicarbazonato)copper(II) complexes featuring poly-
amine substituents via selective transamination reactions is
presented. Polyamines of different lengths, with different
ionizable substituent groups, were used to modify and adjust
the hydrophilic/lipophilic balance of the copper complexes.
The new analogues were radiolabeled with copper-64 and
their lipophilicities estimated using distribution coefficients.
The cell uptake of the new polyamine complexes was
investigated with preliminary in vitro biological studies using
a neuroblastoma cancer cell line. The in vivo biodistribution
of three of the new analogues was investigated in vivo in mice
using positron-emission tomography imaging, and one of the
new complexes was compared to [64Cu]Cu(atsm) in an A431 squamous cell carcinoma xenograft model. Modification of the
copper complexes with various amine-containing functional groups alters the biodistribution of the complexes in mice. One
complex, with a pendent (N,N-dimethylamino)ethane functional group, displayed tumor uptake similar to that of
[64Cu]Cu(atsm) but higher brain uptake, suggesting that this compound has the potential to be of use in the diagnostic
brain imaging of tumors and neurodegenerative diseases.

■ INTRODUCTION

Copper complexes of bis(thiosemicarbazonato) ligands derived
from 1,2-diones are of interest as potential diagnostic and
therapeutic agents. The ligands can be used to form copper(II)
complexes with radioactive isotopes of copper that are stable
(Ka = 1018), charge-neutral, lipophilic, and capable of crossing
cell membranes.1 The positron-emitting isotopes, 60Cu (t1/2 =
24 m), 61Cu (t1/2 = 3.33 h), 62Cu (t1/2 = 9.75 m), and 64Cu
(t1/2 = 12.7 h) are of interest in the development of new
imaging agents for positron-emission tomography (PET).
Copper-64 also has a β− emission (Eβ

−
max = 0.574 MeV,

40%) that is of potential use in targeted radiotherapy, as does
67Cu (t1/2 = 62 h, β−, 100%, Eave = 0.12 MeV).
The coppe r comp lex d i a ce t y lb i s (4 -me thy l - 3 -

thiosemicarbazonato)copper(II) [Cu(atsm); Figure 1] has
been investigated as a hypoxia imaging agent in tumors and
myocardial ischemia.2−6 Studies on [64Cu]Cu(atsm) have
progressed to a phase II human trial as a PET imaging and
therapeutic agent for cervical cancer.7−10 The hypoxia

selectivity of Cu(atsm) is related to the CuII/I reduction
potential, which leads to selective reduction of the metal ion
and subsequent trapping of the radioactivity in certain
cells.3,5,11,12 The high lipophilicity of Cu(atsm) results in
high nonspecific cell uptake and liver uptake. The nonspecific
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Figure 1. Copper complex Cu(atsm).
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uptake can compromise the image quality, and the high liver
uptake results in dose-limiting radiotoxicity to the liver for
therapeutic applications.13

The ability of Cu(atsm) to cross the blood−brain barrier has
led to radiolabeled [62Cu]Cu(atsm) being investigated as a
probe for the redox status of the brain in mitochondrial
disease, Parkinson’s disease, and amyotrophic lateral sclerosis
(ALS).14−16 In addition to radiopharmaceutical applications,
nonradioactive Cu(atsm) has been investigated as a potential
therapeutic agent for Parkinson’s disease and ALS.17−23 The
therapeutic potential for Cu(atsm) in both ALS and
Parkinson’s disease is currently being investigated in two
human clinical trials.
The biodistribution, cellular accumulation, and metabolism

of bis(thiosemicarbazonato)copper(II) [Cu(btsc)] complexes
is dependent on their lipophilicity and their CuII/I reduction
potentials.24,25 The lipophilicity of Cu(btsc) complexes can be
altered by changing the nature of both the substituent on the
π-conjugated backbone and the terminal (N4) amine of the
ligand.24,26 In general, changing the aliphatic substituents on
the N4 amine does not affect the redox potential significantly
(±0.05 V), especially compared to the changes that can occur
as a result of changes in the substituents on the diimine
backbone (±0.2 V).5 Hydrophilic analogues of Cu(atsm) have
been identified as potential targets for new hypoxia-selective
copper radiopharmaceuticals to reduce the level of liver and
kidney uptake.27−30

We have prepared a series of new bis(thiosemicarbazones)
with amine and polyamine functional groups with the goal of
producing complexes with biodistribution profiles different
from those of Cu(atsm). The biogenic polyamines butane-1,4-
diamine (putrescine), N-(3-aminopropyl)butane-1,4-diamine
(spermidine), and N,N′-bis(3-aminopropyl)butane-1,4-dia-

mine (spermine) are ubiquitous in nearly every prokaryotic
and eukaryotic cell type and have been used to increase the
blood−brain barrier permeability of therapeutic peptides and
proteins.31−33 In aqueous solution at pH 7.4, the polyamines
are fully protonated, giving them considerable water solubility.
Polyamine side chains have been shown to enhance the cellular
uptake and specificity of anticancer pharmaceuticals and
imaging agents by a combination of utilization of polyamine
transport systems and the ability of polyamines and alkylated
amine functional groups to modify the hydrophobic−lipophilic
character as well as overall charge and solvation.34−43

The synthesis of new Cu(btsc) complexes featuring
polyamine substituents via selective transamination reactions
is presented. Polyamines of different lengths, numbers of
charged groups, and substituent groups were used to modify
and adjust the hydrophilic/lipophilic balance of the copper
complexes. The new analogues were radiolabeled with 64Cu,
and their distribution coefficients were determined. The cell
uptake of the new polyamine complexes was investigated with
preliminary in vitro biological studies using a neuroblastoma
cancer cell line because hypoxia is a strong independent risk
predictor in neuroblastoma patients.44 We also examined the in
vivo biodistribution of three of the new analogues using in vivo
small-animal PET imaging and selected one complex for
evaluation in an A431 squamous cell carcinoma xenograft
model.

■ RESULTS AND DISCUSSION

Synthesis of Bis(thiosemicarbazone)−Polyamines
and Their Copper Complexes. Selective transamination
reactions of the nonsymmetric molecule H2L

1 with nucleo-
philic amines resulting in the selective displacement of
dimethylamine from the dimethyl substituent have proven to

Figure 2. Structures of Cu(L3−10).
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be a reliable method to prepare substituted bis-
(thiosemicarbazone) (Figure 2).29,45−48 The incoming amine
reacts with the electrophilic thiocarbonyl carbon atom of
N4,N4-dimethylthiosemicarbazone substituents with preference
toward the N4-monosubstituted moiety, which is capable of
undergo ing t au tomer i z a t ion . A f ami l y o f b i s -
(thiosemicarbazones) complexes were prepared where short-
chain polyamines, 1,2-diaminoethane, N,N-dimethylethylene-
diamine, and N-methylethylenediamine, as well as the biogenic
polyamines putrescine and spermine, were appended to the
ligand framework. The reaction of N,N-dimethylethylenedi-
amine with H2L

1 allowed the isolation of H2L
2 in high yield.

The copper complex was prepared by reacting H2L
2 with

copper acetate monohydrate, which leads to double deproto-
nation of the ligand and the formation of charge-neutral
Cu(L2) (Scheme 1).
The reactions with polyamines that contain more than one

nucleophilic amine required selective protection, with N-tert-
butoxycarbonyl (t-Boc) groups (Figure 2). The syntheses of
[H3L

4][CF3CO2] and [Cu(H2L
4)][CF3CO2]2 were described

previously (Figure 2) but are included.45 Both the primary and
secondary amines of N-methylethylenediamine are sufficiently
nucleophilic to complicate a transamination reaction. To
prevent the secondary amine from reacting, it was protected
with a t-Boc group. The primary amine was first protected
using a trifluoroacetamide group.49 Ethyl trifluoroacetate reacts
preferentially with the primary amine under controlled
conditions. The t-Boc group was added to the secondary
amine before trifluoroacetamide was removed in a basic
solution. The resulting product was subjected to trans-
amination to give the product H2L

5, and the copper complex
Cu(L5) was prepared by the addition of copper acetate
monohydrate (Figure 2).
The room temperature 1H and 13C{1H} NMR spectra of

H2L
5 contain broadened signals and signals that have been

divided in two. These signals correspond to proton and carbon
environments near the carbamate bond. The signals due to the
bis(thiosemicarbazone) groups were much sharper in compar-
ison. In the 13C{1H} NMR spectrum, the signals are split into
two peaks for the methylene (δ = 41.7, 42.5 and 46.6, 47.3),
carbonyl (δ = 154.7, 155.5), N-methyl (δ = 34.0, 34.4), and
quaternary (δ = 78.3, 78.6) carbon atoms (Figure S1). A likely
explanation is that electron delocalization results in partial
double-bond character for the carbamate group and hindered
rotation about the C(carbonyl)−N bond (Figure S2). The
partial double-bond character renders the carbamate group
planar, with it existing in either the s-cis or s-trans rotamer.
Hindered rotation about secondary amide peptide bonds and
carbamates is known.50−53 At room temperature, both isomers
are observed in the NMR spectrum as a result of slow
interconversion between the two forms relative to the NMR
time scale. Coalescence of the isomeric signals was observed as
the temperature was increased. At 70 °C, a single broad peak

was observed for the methylene (δ = 42.0 and 46.8) carbonyl
(δ = 155.0), N-methyl (δ = 34.0), and quaternary (δ = 78.3)
carbon atoms, which indicates that the rate of interconversion
was now faster than the time scale of the NMR experiment.
The electron-donating N-methyl group of the carbamate on
H2L

5 may be stabilizing the C(carbonyl)−N double-bond
form, thus increasing the barrier to C(carbonyl)−N bond
rotation.54,55 In contrast, isomerization was not observed in the
room temperature NMR spectra of H2L

3 because the partial
double bond is less stabilized, leading to faster interconversion
between the s-cis and s-trans isomers.
The t-Boc protecting group of H2L

5 and Cu(L5) was
removed with trifluoroacetic acid to give [H3L

6][CF3CO2] and
[Cu(HL6)][CF3CO2]·0.8CF3CO2H, respectively. The electro-
spray ionization mass spectrometry (ESI-MS) spectrum of
[Cu(HL6)][CF3CO2]·0.8CF3CO2H (m/z 365.05; 100%)
corresponded to that of [Cu(HL6)]+, and reverse-phase high-
performance liquid chromatography (RP-HPLC; RT = 7.424
min) indicated successful deprotection, while the microanalysis
suggested the presence of trifluoroacetate as the counterion.
One of the primary amines of the polyamine putrescine was

protected with t-Boc using a literature procedure.56 Trans-
amination of H2L

1 with t-Boc-protected polyamine tert-butyl 4-
aminobutylcarbamate produced H2L

7 in high yield (Figure 2).
To ensure a selective transamination reaction with one of the
primary amine groups of spermine, one of the primary amines
and both secondary amines were protected using t-Boc. The
tri-t-Boc spermine compound was prepared using a literature
procedure.57 The transamination reaction between H2L

1 and
(N1,N4,N9-tri-tert-butoxycarbonyl)-N,N′-bis(3-aminopropyl)-
butane-1,4-diamine gave H2L

9 in good yield following silica
chromatography. Signals in the 1H and 13C{1H} NMR spectra
were broad when obtained at room temperature, possibly
because of cis/trans isomerism of the three carbamate bonds.
Increasing the temperature to 70 °C sharpened some of the
signals, allowing the spectra to be more easily assigned with
two-dimensional NMR spectroscopy. The ESI-MS spectrum
gave a peak at m/z 732.43 (100%), corresponding to [H2L

9 +
H+], and the RP-HPLC had a single peak (RT = 18.16 min).
The copper complex Cu(L9) (m/z 793.34; 100%; RT = 17.40
min) was prepared with the addition of copper acetate
monohydrate to a solution of H2L

9 in ethanol (Figure 2).
Deprotection of H2L

9 and Cu(L9) with trifluoroacetic acid
gave the trications [H5L

10][CF3CO2]3 and [Cu(H3L
10)]-

[CF3CO2]3·2H2O (Figure 2), respectively. ESI-MS spectra
for [Cu(H3L

10)][CF3CO2]3·2H2O (m/z 493.18 and 247.10;
100%) corresponded to [Cu(HL10)]+ and [Cu(H2L

10)]2+,
respectively.

Electrochemical Characterization, Radiolabeling with
64Cu, and Distribution Coefficients. The hypoxia selectivity
and biological activity of the Cu(btsc) complexes strongly
correlate with the CuII/I reduction potential. The new
complexes Cu(L2−10) all retain the methyl substituents on

Scheme 1. Synthesis of H2L
2 and Cu(L2)a

a(a) N,N-Dimethylethylenediamine (1.3 equiv), acetonitrile, reflux, 6.5 h, 74%. (b) Cu(CH3CO2)2·H2O (1 equiv), acetonitrile, reflux, 1.5 h, 75%.
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the diimine-like backbone to ensure that they display CuII/I

couples similar to those of Cu(atsm). The electrochemistry of
the new complexes was investigated by cyclic voltammetry.
The median potentials (E) and peak separations (Epa − Epc;
Table 1) reveal no significant differences between the

complexes. For example, Cu(L2) has a quasi-reversible
reduction with a median potential58−60 E = −0.65 V [vs
standard calomel electrode (SCE), where E = (Epc + Epa)/2
and ferrocene/ferrocinium (Fc/Fc+) = 0.54 V] with an anodic-
to-cathodic peak separation of 105 mV in N,N-dimethylforma-
mide (DMF) at a glassy carbon working electrode, which was
attributed to a CuII/I reduction process (Figure 3A and Table
1). Deprotection of the complexes with trifluoroacetic acid led
to their isolation as aminium salts, and cyclic voltammetry of
these protonated cationic salts revealed irreversible reduction
waves characteristic of the adsorption of a reduced species to
the working electrode (Figure S3A). Neutralization of the
protonated cations with triethylamine resulted in the
observation of quasi-reversible CuII/CuI couples (Figure S3B).
The copper-64 complexes were prepared by the addition of

64Cu (0.02 M HCl, pH 1) to a buffered solution of the ligands
(pH ∼7). The complexes were prepared at a specific activity
range of 0.74−3.7 GBq mg−1 of the ligand. The purities of the
complexes were confirmed using HPLC coupled to a
radioactivity detector and a comparison with the HPLC traces
of the nonradioactive analogues (λ = 280 nm). All of the
radiolabeled complexes could be prepared at room temper-
ature in minutes under mild conditions with >90% radio-
chemical purity without additional purification, making them
ideal candidates for in vivo imaging.
The respective retention times of the RP-HPLC traces

highlighted the differences in lipophilicity between the
complexes and were quantified by obtaining the distribution
coefficients (log D at pH 7.4) in phosphate-buffered saline
(PBS; Figure 4). Cu(atsm) possessed the highest log D, pH
7.4, value of 1.49 ± 0.08 and a retention time of 10.12 min. Of
the new derivatives, the ligand featuring a dimethylamine

substituent, Cu(L2), was the most lipophilic (0.83 ± 0.03 and
8.91 min) and the spermine derivative the most hydrophilic
(−1.29 ± 0.01). The complexes possessing either a single
primary amine, Cu(L4) and Cu(L8), or a single secondary
amine, Cu(L6), had similar lipophilicities (−0.21 ± 0.02,
−0.25 ± 0.01, and −0.14 ± 0.05, respectively).

Cytotoxicity and Cel lular Uptake of Bis-
(thiosemicarbazonato)copper(II) Complexes. The copper
content of SH-SY5Y cells, a neuroblastoma cell line, treated
with either Cu(L2), Cu(L4), Cu(L6), Cu(L8), or Cu(L10) (10
μM, 1 h) was measured by inductively coupled plasma mass
spectrometry (ICP-MS; Figure 5a). The highest level of
cellular copper was observed in cells treated with the complex
Cu(L2), where a (62 ± 2)-fold increase in the copper levels
was detected compared to vehicle-treated controls. This value
was greater than the value detected for Cu(atsm) [(47 ± 5)-
fold increase]. Significant increases in the copper content (35−
37-fold) were observed for the complexes [Cu(H2L

4)]2+,
[Cu(HL6)]+, and [Cu(HL8)]+, which have either a single
primary or secondary amine. The complex [Cu(H3L

10)]3+,
which has two secondary amines and one primary amine that
are likely protonated at biological pH, showed significantly less
uptake than the other complexes including unchelated Cu2+ (a
3-fold compared to a 5-fold increase in the copper levels).

Table 1. Median Potentials and Peak Separations of the
Cyclic Voltammograms (Scan Rate 0.1 V s−1; Potentials Are
Quoted Relative to a SCE)

compound Cu(atsm) Cu(L2) Cu(L6) Cu(L8) Cu(L10)

CuII/CuI E (V) −0.63 −0.65 −0.60 −0.65 −0.63
CuII/CuIEpa−Epc (mV) 102 105 104 92 89

Figure 3. (A) Cyclic voltammogram of Cu(L2). (B) Cyclic voltammogram of Cu(L6) in the presence of triethylamine. Scan rate 0.1 V s−1.
Potentials are quoted relative to a SCE, where Fc/Fc+ = 0.54 V.

Figure 4. RP-HPLC retention times (RT) versus the distribution
coefficients (log D at pH 7.4) of Cu(atsm) and the new polyamine
copper-64 complexes.
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The lactate dehydrogenase (LDH) assay measures mem-
brane integrity and can be used to assess the cytotoxicity.61,62

The neuroblastoma SH-SY5Y cells were treated with Cu(btsc)
complexes at concentrations ranging from 1−10 μM for 1 h.
The dose−response curve for the release of LDH, following
treatment with the copper complexes, indicates that there is
∼5% cell death, but there are no dose-dependent changes over
the concentration range tested (Figure 5b). The cell
membrane integrity is therefore maintained upon exposure to
the Cu(btsc) complexes at the concentrations investigated.

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay measures the inhibition of reductase
enzymes and therefore the cell viability upon exposure to
chemical compounds.63 The dose−response curve for the
MTT assay indicates that the complexes Cu(atsm) and Cu(L2)
were the only complexes that inhibited intracellular reductase
activity in a dose-dependent manner (Figure 5c), and up to
concentrations of 10 μM, the inhibition of the reductase
activity was relatively small. The complexes Cu(L2) and
Cu(atsm), which have the highest cellular copper uptake,
exhibit a modest dose-dependent inhibition of intracellular
reductase activity and are the most lipophilic compounds in
the series tested.
The addition of polyamines to the ligand framework of the

Cu(btsc) complexes allows for subtle control of the
lipophilicity but retains the electrochemical features [a CuII/I

reduction potential E°′ ∼ −0.63 V (vs SCE)], which are
thought to be important to the hypoxia selectivity and
biological activity of Cu(atsm). The addition of a dimethyl-
amine group in complex Cu(L2) increased the amount of
copper transported into SH-SY5Y cells compared to Cu(atsm).
Although the addition of either a primary or secondary amine
group (complexes [Cu(H2L

4)]2+, [Cu(HL4)]+, and [Cu-
(HL8)]+) reduced the cellular copper uptake compared to
Cu(atsm), these values (35−37-fold increase) were consistent
and still significantly greater than those obtained following
treatment with unchelated Cu2+. The addition of two
secondary amines and a primary amine in the case of
[Cu(H3L

10)]3+ saw a significant decrease in the uptake of
copper compared to Cu(atsm). Bis(thiosemicarbaonato)-
copper(II) complexes are notorious for being poorly soluble
in water, but [Cu(H3L

10)]3+, the most hydrophilic complex in
this series, is soluble in water at pH 7.4 at millimolar
concentrations.

Small-Animal PET Imaging. Three of the new copper-64
complexes, [64Cu]Cu(L2), [64Cu]Cu(L6), and [64Cu]Cu(L8),
were selected for preliminary in vivo biodistribution studies
using small-animal microPET imaging and compared to
Cu(atsm). Mice (Balb/c) were administered radioactive
copper complexes (15−20 MBq) via intravenous tail vein
injection and imaged 5 min postinjection (Figure 6).
Qualitative analysis of the images reveals that the biodis-
tribution at 5 min postinjection of each of the new compounds
is dramatically different from that of [64Cu]Cu(atsm)], which
is rapidly taken up in the liver (Figure 6). The images are also
different from the PET images obtained following admin-
istration of “free” nonchelated copper-64.64,65 The difference in
the microPET images of [64Cu]Cu(L2), [64Cu]Cu(L6), and
[64Cu]Cu(L8) compared to [64Cu]Cu(atsm) and nonchelated
64Cu suggests that the complexes are sufficiently stable in vivo
to provide imaging agents with a different biodistribution at
early time points (5 min postinjection). All three new
complexes appear to have increased uptake in the kidney
and bladder compared to [64Cu]Cu(atsm), suggesting a shift
from predominant hepatobiliary to a combination of renal and
hepatobiliary clearance. The complexes with a secondary
amine, [64Cu]Cu(L6), and a primary amine functional group,
[64Cu]Cu(L8), showed little to no radioactivity in the brain.
The complex with a pendent secondary amine, [64Cu]Cu(L2),
had a relatively high level of uptake in the brain and did not
have the prominent high degree of uptake in the olfactory bulb
that is evident in the images acquired following the
administration of [64Cu]Cu(atsm).66,67

Figure 5. (A) Copper levels in SH-SY5Y cells treated with Cu(btsc)
complexes (10 μM) and with CuSO4 (10 μM) for 1 h. The metal
levels were measured in washed cell pellets by ICP-MS and calculated
as a fold increase compared with the vehicle controls. (B) Dose−
response curve for the LDH assay. SH-SY5Y cells were treated with
the Cu(btsc) complexes (0, 2.5, 5.0, 7.5, and 10 μM) for 1 h. The
LDH levels are presented as the relative % LDH release of Triton X-
100-treated total LDH release (100% LDH release). (C) Dose−
response curve for the MTT assay. SH-SY5Y cells were treated with
the Cu(btsc) complexes (0, 2.5, 5.0, 7.5, and 10 μM) for 1 h. The
MTT levels are presented as the relative % MTT reduction of vehicle-
treated cells (100% MTT reduction).
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Tumor Uptake and Biodistribution in a A431 Tumor
Model. The hypoxia-selective retention of radioactivity from
[62Cu]Cu(atsm) in an ex vivo rat heart model of ischemia
stimulated much interest in the potential to use radiolabeled
versions of Cu(atsm) as hypoxia imaging agents.3 The hypoxia-
selective retention of radioactivity following the treatment of
EMT6 cells with [64Cu]Cu(atsm) has been demonstrated in
vitro.68 The tumor uptake of copper-64 following injection of
[64Cu]Cu(atsm) to BALB/c mice bearing EMT6 tumors was
4.17 ± 1.03%IA/g (%IA/g = injected activity per gram of
tissue) at 40 min postinjection, and the retention was
attributed to hypoxia.68 Injection of either [64Cu]Cu(atsm)
or [64Cu]Cu(CH3CO2)2 in mice bearing CaNT or EMT6
tumors resulted in similar degrees of copper-64 retention in the
representative tumors at 2 and 16 h postinjection, and the
areas of uptake correlated with the areas of hypoxia identified
by immunohistochemistry. However, the copper uptake
following the administration of either [64Cu]Cu(atsm) or
[64Cu]Cu(CH3CO2)2 at earlier time points (15 min and 2 h
postinjection) did not correlate to areas of hypoxia in this
model.69 Despite the similarities between the biodistribution of
[64Cu]Cu(atsm) and [64Cu]Cu(CH3CO2)2 at later time
po in t s , r ad ioa c t i v e coppe r comp l e xe s o f b i s -
(thiosemicarbazonato) ligands do not behave like unchelated
copper in the early phase of biodistribution. There is a
dramatic difference in the brain uptake of [64Cu]Cu(atsm) and
[64Cu]Cu(CH3CO2)2.

66,67

The difference in the biodistribution of [64Cu]Cu(L2) and
[64Cu]Cu(atsm) revealed by PET imaging at 5 min post-
injection coupled with the relatively high brain uptake
displayed by [64Cu]Cu(L2) encouraged us to select this
compound for evaluation in a tumor model. The new tracer,
[64Cu]Cu(L2), was compared with [64Cu]Cu(atsm) in an
A431 squamous cell carcinoma xenograft model that leads to
intratumoral hypoxia.70 Mice were administered with either
[64Cu]Cu(L2) or [64Cu]Cu(atsm) via intravenous tail vein
injection (10−15 MBq) and imaged with a small-animal PET
scanner at 1, 3, and 22 after tracer injection. The microPET
imaging data reveal that at each time point the standardized
uptake values (SUVs) in the tumor for [64Cu]Cu(L2) and
[64Cu]Cu(atsm) are not significantly different (p > 0.08; Table
2).
Following the final scan, the mice were culled and tissues

excised for an ex vivo biodistribution analysis (Table 3). The
administration of [64Cu]Cu(atsm) and [64Cu]Cu(L2) leads to

Figure 6. (A) Small-animal microPET images (maximum-intensity projection) of two BALB/c mice 5 min after a single intravenous administration
of 15−20 MBq of [64Cu]Cu(atsm), [64Cu]Cu(L2), [64Cu]Cu(L6), and [64Cu]Cu(L8). The animals were placed on the bed of a Philips Mosaic
small-animal PET scanner 5 min postinjection and imaged over 10 min. (B) Representative false color images: close-up of the brain region (sagittal
plane) and maximum-intensity projection.

Table 2. Tumor SUV Data (SUV ± Standard Error; n = 3)
As Determined by Small-Animal PET Imaging

time (h) [64Cu]Cu(atsm) [64Cu]Cu(L2)

1 0.61 ± 0.05 0.79 ± 0.08
3 0.70 ± 0.02 0.81 ± 0.06
22 0.78 ± 0.05 0.99 ± 0.08

Inorganic Chemistry Article

DOI: 10.1021/acs.inorgchem.9b00117
Inorg. Chem. 2019, 58, 4540−4552

4545

http://dx.doi.org/10.1021/acs.inorgchem.9b00117


tumor uptakes of 2.59 ± 0.20%IA/g and 3.35 ± 0.20%IA/g,
respectively, 23 h after injection (p < 0.06). The degree of
uptake observed 16 h postinjection of [64Cu]Cu(atsm) to CBA
mice bearing CaNT tumors was 1.32 ± 0.09%IA/g.69 The
A431 squamous cell carcinoma xenograft model used in this
study has been previously shown to lead to intratumoral
hypoxia, but a limitation of this present study is that, in this
instance, the tumors were not confirmed as hypoxic using
immunohistochemistry.70 Considering that injection of either
[64Cu]Cu(atsm) or [64Cu]Cu(CH3CO2)2 in mice bearing
CaNT or EMT6 tumors resulted in similar degrees of copper-
64 retention at 16 h postinjection, it would be pertinent to
have included [64Cu]Cu(CH3CO2)2 in the present study and
to investigate the in vivo stability of the two complexes.69 It is
possible that the uptake of copper-64 in tumors at 16 h
postinjection actually reflects endogenous copper metabolic
pathways involving specific chaperone and transport proteins
as well as cuproenzymes rather than specific uptake mediated
by the injected complex.71−73 Significant differences were
found between the biodistribution of the two tracers in the
lungs, kidneys, heart, muscle, and brain (p < 0.05) at 23 h
postinjection. The ability of Cu(atsm) to cross the blood−
brain barrier has led to radiolabeled [62Cu]Cu(atsm) being
used to distinguish the tumor grade in human glioma
patients,74 and treatment with [64Cu]Cu(atsm) was inves-
tigated recently as a therapeutic option in a mouse model of
glioblastoma.75 Brain imaging with [62Cu]Cu(atsm) has also
been used to probe the redox status in human patients with
mitochondrial disease,14 Parkinson’s disease,15 and ALS.16 The
administration of [64Cu]Cu(L2) leads to more radioactivity in
the brain, 4.41 ± 0.23%ID/g, compared to that of [64Cu]Cu-
(atsm), 2.43 ± 0.31%ID/g, (p < 0.01), suggesting that this new
variant could be of interest as a brain imaging agent. The
addition of the same functional group to copper complexes of
functionalized pyridylthiosemicarbazone ligands also improved
brain uptake.76

■ CONCLUSION
A range of new Cu(btsc) complexes with amine and polyamine
functional groups have been prepared using a selective
transamination reaction. The addition of the amine functional
groups reduces the lipophilicity of these derivatives of
Cu(atsm) but does not significantly alter the CuII/I reduction
potential that is thought to be central to the biological activity
of this type of complex. With the exception of the complex that
incorporates a spermine functional group, [Cu(H3L

10)]3+, the
complexes were all capable of dramatically increasing the
intracellular copper content of neuroblastoma SH-SY5Y cells,

suggesting that they retain the ability of Cu(atsm) to cross cell
membranes, which is also thought to be crucial to the
biological activity of this family of complexes. The biodis-
tribution in mice of three of the new complexes, [64Cu]Cu-
(L2), [64Cu]Cu(L6), and [64Cu]Cu(L8), was investigated using
microPET imaging and revealed that each of these less
lipophilic derivatives of [64Cu]Cu(atsm) has a different early
biodistribution compared to [64Cu]Cu(atsm). The difference
in the biodistribution of [64Cu]Cu(L2) and [64Cu]Cu(atsm)
revealed by a preliminary PET imaging study and the relatively
high brain uptake encouraged us to evaluate this compound in
an A431 tumor model. In this model, the administration of
[64Cu]Cu(L2) leads to tumor uptake (3.35 ± 0.20%IA/g) 23 h
postinjection similar to that of the administration of [64Cu]-
Cu(atsm) (2.59 ± 0.20%IA/g; p < 0.06). The administration
of [64Cu]Cu(L2), possessing a pendent N,N-dimethylamino-
ethane functional group to mice results in a significantly higher
brain uptake than the administration of [64Cu]Cu(atsm),
suggesting that the compound has the potential to be used in
imaging brain tumors as well as ALS and Parkinson’s disease.

■ EXPERIMENTAL SECTION
General Procedures. The following reagents were used as

received: spermine (Sigma-Aldrich), butane-1,4-diamine (Sigma-
Aldrich), di-tert-butyl dicarbonate (Sigma-Aldrich), N,N-dimethyle-
thylenediamine (Aldrich Chemicals), and N-methylethylenediamine
(Aldrich Chemicals). All solvents were obtained from standard
commercial sources and used as received. NMR spectra were acquired
on Varian FT-NMR 500 and FT-NMR 400 spectrometers. 1H NMR
spectra were acquired at 500 or 400 MHz, and 13C{1H} NMR spectra
were acquired at 125.7 MHz. All NMR spectra were recorded at 25
°C unless otherwise indicated. 1H and 13C{1H} chemical shifts were
referenced to residual solvent peaks and are quoted in parts per
million relative to tetramethylsilane . MS spectra were recorded on an
Agilent 6510 ESI-TOF LC/MS mass spectrometer. Cyclic voltammo-
grams were recorded on an Autolab PGSTAT100 electrochemical
workstation using GPES V4.9 software and employing a glassy carbon
working electrode, a platinum counter electrode, and an Ag/Ag+

reference electrode [silver wire in CH3CN (AgNO3; 0.01 M)]. All
measurements were carried out in DMF. All solutions were 5 mM
analyte in a 0.1 M tetrabutylammoniumtetrafluoroborate solution.
DMF was obtained from commercial sources and dried over 3 Å
sieves before use. Each solution was purged with N2 prior to analysis
and measured at ambient temperatures under a N2 atmosphere. The
peak (Ep) and median (E) potentials were referenced to the Fc/Fc+

couple, +0.54 V in DMF versus SCE. The Fc/Fc+ median potential
under the conditions used was +0.07 V. Microanalyses for carbon,
hydrogen, and nitrogen were carried out by Chemical & Micro-
analytical Services (CMAS) Pty. Ltd., Belmont, Victoria, Canada. RP-
HPLC utilized an Agilent 1200 series HPLC system using an Agilent
Zorbax Eclipse XDB-C18 column (4.6 × 150 mm, 5 μm) with a 1
mL/min flow rate, gradient elution of buffer A = 0.1% TFA in H2O
and buffer B = 0.1% TFA in acetonitrile (0−100% B in A at 20 min)
and detection at 220, 254, and 275 nm. 64Cu was produced via the
64Ni(p,n)64Cu reaction, using a custom-manufactured solid target
assembly positioned externally to a Cyclone 18/9 (IBA) cyclotron.
The target consisted of 64Ni metal (enriched to 94.8−99.07%)
electroplated onto a gold foil (15 mm × 125 μm) backing, housed in a
custom-made aluminum cradle. The primary proton beam was
degraded to 11.7 MeV using a graphite degrader built into a graphite
collimator. Helium cooling was on the target holder at beam entry
and chilled water upon beam exit. All targets were irradiated at 40 μA,
for up to 2 h. After irradiation, the target was transferred to the
laboratory for further chemical processing, in which 64Cu was isolated
using ion-exchange chromatography using low concentrations of HCl
in alcohol solutions. Final reconstitution of the 64Cu fraction in

Table 3. Biodistribution (%IA/g ± Standard Error; n = 3) at
23 h Postinjection

[64Cu]Cu(atsm) [64Cu]Cu(L2)

blood 2.34 ± 0.28 2.98 ± 0.56
lungs 6.79 ± 0.44 15.53 ± 1.47
heart 3.58 ± 0.42 5.42 ± 0.35
liver 14.27 ± 1.96 16.59 ± 3.08
kidneys 5.98 ± 0.55 8.97 ± 0.45
muscle 0.74 ± 0.07 1.42 ± 0.05
spleen 5.04 ± 0.22 4.62 ± 0.77
brain 2.43 ± 0.31 4.41 ± 0.23
eyes 1.06 ± 0.14 1.97 ± 0.60
tumor 2.59 ± 0.20 3.35 ± 0.20
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aqueous HCl yielded 1−2.6 GBq of 64Cu as 64CuCl2 (specific activity,
28.9 GBq μmol−1 (μA·h/mg of 64Ni)−1; radionuclidic purity, 99%).
Cu(atsm) and H2L

1, H2L
3, Cu(L3), [H3L

4][CF3CO2], and
[Cu(H2L

4)][CF3CO2]2 were prepared as previously published.45

Synthesis. Diacetyl-4-ethylenedimethylamine-4′-methylbis-
(thiosemicarbazone), H2L

2. To a stirring suspension of H2L
1 (0.21

g, 0.85 mmol) in acetonitrile (30 mL) was added N-dimethylethy-
lenediamine (0.01 g, 1.12 mmol). The resulting yellow suspension
was heated at reflux for 6.5 h under an atmosphere of N2. The
resulting orange solution was cooled to room temperature, resulting in
the precipitation of colorless crystals, which were collected by
filtration, washed with acetonitrile (1×) and diethyl ether (3×), and
dried to give H2L

2 (0.18 g, 0.55 mmol, 74%). Elem anal. Found: C,
41.69; H, 7.36; N, 30.74. Calcd for C11H23N7S2: C, 41.61; H, 7.30; N,
30.88. 1H NMR (DMSO-d6, 500 MHz): δ 2.16, 3H, s, CH3; 2.19, 6H,
s, CH3; 2.21, 3H, s, CH3; 2.46, 2H, t,

3JHH = 6.5 Hz, CH2; 3.03, 3H, d,
3JHH = 4 Hz, NHCH3; 3.61, 2H, m, CH2; 8.34−8.37, 2H, m, NHCH2,
NHCH3; 10.24, 2H, br s, NH.

13C{1H} NMR (125.7 MHz): δ 11.3,
11.7, CH3; 31.2, NHCH3; 41.4, CH2; 45.0, N(CH3)2; 57.1, CH2;
147.5, 147.9, CN; 177.6, 178.5, CS. ESI-MS (positive ion; 100%,
[M + H+]): m/z 318.15 (experimental), 318.15 (calcd). RP-HPLC:
RT = 7.58 min.
D ia c e t y l - 4 - e t h y l en ed ime thy l am ine - 4 ′ -me th y l b i s -

(thiosemicarbazonato)copper(II), Cu(L2). To a solution of H2L
2

(0.10 g, 0.3 mmol) in acetonitrile (10 mL) was added Cu(OAc)2·
H2O (0.07 g, 0.3 mmol), and the resulting red/brown suspension was
stirred at reflux for 1.5 h and then allowed to cool to room
temperature. The solid was collected by filtration, washed with
acetonitrile (1×) and diethyl ether (3×), and dried to give Cu(L2)
(0.09 g, 75%). Elem anal. Found: C, 34.87; H, 5.62; N, 25.79. Calcd
for C11H21CuN7S2: C, 34.86; H, 5.58; N, 25.87. ESI-MS: (positive
ion; 100%, [M + H+]): m/z 379.07 (experimental), 379.07 (calcd).
RP-HPLC: RT = 7.67 min.
tert-Butyl Methyl[2-(2,2,2-trifluoroacetylamino)ethyl]-

carbamate. The title compound was prepared according to a
literature procedure and isolated as a white crystalline solid (3.90 g,
72%).49 1H NMR (CDCl3, 500 MHz): δ 1.46, 9H, s, (CH3)3; 2.90,
3H, s, CH3; 3.48, 4H, br m, CH2; 7.95, br s, NH.
tert-Butyl (2-Aminoethyl)methylcarbamate. The title compound

was prepared according to a literature procedure and isolated as a
yellow oil (1.71 g, 68%).49 1H NMR (CDCl3, 500 MHz): δ 1.45, 9H,
s, (CH3)3; 2.82, 2H, t, NH2CH2; 2.87, 3H, s, CH3; 3.27, br m, 2H,
CH2.
tert-Butyl 4-Aminobutylcarbamate. The title compound was

prepared according to a literature procedure and isolated as a colorless
oil.56 1H NMR (CDCl3, 500 MHz): δ 1.43, 9H, s, (CH3)3; 1.45−1.53,
4H, m, CH2; 2.70, 2H, t,

3JHH = 7 Hz, CH2; 3.12, 2H, q,
3JHH = 6 Hz,

CH2.
(N1,N4,N9-Tri-tert-butoxycarbonyl)-N,N′-bis(3-aminopropyl)-

butane-1,4-diamine. The title compound was prepared according to
a literature procedure and obtained as a colorless, homogeneous oil
(1.33 g, 51%), Rf 0.5 [CH2Cl2−MeOH−concentrated aqueous NH3,
5:1:0.1 (v/v/v)] after purification over silica gel [CH2Cl2−MeOH−
concentrated aqueous NH3, 100:0:0 to 5:1:0.1 (v/v/v)].57 1H NMR
(CDCl3, 500 MHz): δ 1.42−1.50, 31H, m, CH3 × 3, CH2 × 2; 1.61−
1.67, 4H, m, CH2 × 2; 3.08−3.31, 10H, m, CH2 × 5. ESI-MS
(positive ion; 100%, [M + H+]): m/z 503.41 (experimental), 503.41
(calcd).
Diacetyl-tert-butyl-4-ethylmethylcarbamate-4′-methylbis-

(thiosemicarbazone), H2L
5·0.5CH3CN. Following the same procedure

employed for the synthesis of H2L
2, H2L

1 (0.55 g, 2.0 mmol) and tert-
butyl (2-aminoethyl)methylcarbamate (0.42 g, 2.4 mmol) were used
to prepare H2L

5 (0.70 g, 86%). Elem anal. Found: C, 45.30; H, 7.17;
N, 25.00. Calcd for C15H29N7O2S2·0.5CH3CN: C, 45.31; H, 7.25; N,
24.77. 1H NMR (DMSO-d6, 500 MHz, 343 K): δ 1.38, 9H, s, (CH3)3;
2.05, CH3CN; 2.21, 3H, s, CH3; 2.22, 3H, s, CH3; 2.84, 3H, s, CH3;
3.05, 3H, d, 3JHH = 4.5 Hz, NHCH3; 3.43, 2H, t,

3JHH = 6.0 Hz, CH2;
3.71−3.77, 2H, m, CH2; 8.25−8.35, 2H, br m, NHCH2, NHCH3;
10.07, 2H, s, NH. 13C{1H} NMR (125.7 MHz, 343 K): δ 11.2, 11.3,
CH3; 27.8, (CH3)3; 30.9, NHCH3; 34.0, NCH3; 42.0, CH2; 46.8,

CH2; 78.3, C(CH3)3; 147.4, 147.8, CN; 155.0, CO; 178.1, 178.6,
CS. ESI-MS (positive ion; 100%, [M + H+]): m/z 404.19
(experimental), 404.19 (calcd).

Diacetyl-tert-butyl-4-ethylmethylcarbamate-4′-methylbis-
(thiosemicarbazonato)copper(II), Cu(L5)·H2O. To a solution of H2L

5

(0.18 g, 0.5 mmol) in ethanol (10 mL) was added Cu(OAc)2·H2O
(0.10 g, 0.5 mmol), and the resulting red/brown suspension was
stirred at reflux for 2 h. The solvent was removed in vacuo, and the
brown residue was dissolved in acetone (3 mL) and precipitated with
hexane (30 mL). The solid was collected by filtration, washed with
hexane, and dried to give Cu(L5) (0.16 g, 78%). Elem anal. Found: C,
36.84; H, 5.51; N, 19.82. Calcd for C15H27CuN7O2S2·H2O: C, 37.29;
H, 6.05; N, 20.29. ESI-MS (positive ion; 100%, [M + H+]): m/z
465.10 (experimental), 465.10 (calcd). RP-HPLC: RT = 13.01 min.

Diace t y l - 4 - e t hy l eneme thy lam in ium-4 ′ -me thy lb i s -
(thiosemicarbazone) Trifluoroacetate, [H3L

6][CF3CO2]. A solution of
H2L

5(0.11 g, 0.3 mmol) in CH2Cl2 (4 mL) was added dropwise over
20 min to TFA (4 mL) with stirring in an ice bath. The resulting
solution was left to warm to room temperature before the solvent was
removed in vacuo. To the orange oily residue was added diethyl ether
(25 mL), resulting in a precipitate, which was collected by filtration,
washed with diethyl ether, and dried to give [H3L

6][CF3CO2] as a
white solid (0.09 g, 0.22 mmol). Elem anal. Found: C, 34.46; H, 5.21;
N, 23.35. Calcd for C12H22F3N7O2S2: C, 34.52; H, 5.31; N, 23.49.

1H
NMR (DMSO-d6, 500 MHz): δ 2.23, 6H, s, CH3; 2.61, 3H, s, CH3;
3.02, 3H, d, CH3; 3.16, 2H, br, CH2; 3.89, br, 2H, CH2; 8.40, 1H, br,
NH; 8.50, br, 3H, NH, NH2

+CH3; 10.25, s, 1H, NH; 10.54, s, 1H,
NH. 13C{1H} NMR (125.7 MHz): δ 11.7, 11.9, CH3; 31.2, CH3;
32.9, CH3; 40.5, 47.5, CH2; 117.2, q,

1JCF = 299.5 Hz, CF3; 147.7,
148.9, CN; 158.2, q, 2JCF = 31.3 Hz, CCF3; 178.5, CS. ESI-MS
(positive ion; 100%, [M + H+]): m/z 304.14 (experimental), 304.14
(calcd).

Diace t y l - 4 - e t hy l eneme thy lam in ium-4 ′ -me thy lb i s -
(thiosemicarbazonato)copper(II) Trifluoroacetate, [Cu(HL6)]-
[CF3CO2]·0.8CF3CO2H. To a solution of trifluoroacetic acid (5 mL,
0 °C) cooled in an ice bath was added Cu(L5) (0.07 g, 0.14 mmol) in
portions over 20 min. The solution mixture was warmed to room
temperature and stirred for 1.5 h. The solvent was removed in vacuo
to give a brown oil. Diethyl ether was added, and a brown solid
precipitated, which was collected by filtration, washed with diethyl
ether, and dried to give [Cu(HL6)][CF3CO2]·0.8CF3CO2H (0.05 g,
65%). Elem anal. Found: C, 28.38; H, 3.87; N, 17.49. Calcd for
C12H19CuF3N7O2S2·0.8C2HF3O2: C, 28.65; H, 3.68; N, 17.19. ESI-
MS (positive ion; 100%, [M + H+]): m/z 365.05 (experimental),
365.05 (calcd). RP-HPLC: RT = 7.42 min.

Diacety l tert -Buty l -4-buty lcarbamate-4 ′ -methylbis -
(thiosemicarbazone), H2L

7. Following the same procedure that was
employed for the synthesis of H2L

2, H2L
1 (0.20 g, 0.74 mmol) and

tert-butyl 4-aminobutylcarbamate (0.21 g, 1.1 mmol) were used to
prepare H2L

7 (0.27 g, 87%). Elem anal. Found: C, 45.63; H, 7.56; N,
23.31. Calcd for C16H31N7O2S2: C, 46.02; H, 7.48; N, 23.48.

1H
NMR (DMSO-d6, 500 MHz): δ 1.35−1.42, 11H, br, (CH3)3, CH2;
1.54, 2H, m, CH2; 2.20, 6H, s, CH3; 2.93, 2H, m, CH2; 3.02, 3H, d,
3JHH = 6 Hz, NHCH3; 3.55, 2H, m, CH2; 6.77, 1H, s, NHCO; 8.35−
8.40, 2H, br m, NHCH3, NHCH2; 10.13, 2H, br s, NH. 13C{1H}
NMR (125.7 MHz): δ 11.6, 11.7, CH3; 26.2, CH2; 27.0, CH2; 28.3,
(CH3)3; 31.2, CH3NH; 40.2, CH2; 43.5, CH2

1; 77.3, C(CH3)3; 147.8,
148.0, CN; 155.6, CO; 177.6, 178.5, CS. ESI-MS (positive
ion; 100%, [M + H+]): m/z 418.21 (experimental), 418.21 (calcd).
RP-HPLC: RT = 16.40 min.

Diacety l tert -Buty l -4-buty lcarbamate-4 ′ -methylbis -
(thiosemicarbazonato)copper(II), Cu(L7)·H2O·0.5CH3CN. Following
the same procedure that was employed for the synthesis of Cu(L2),
H2L

7 (0.10 g, 0.25 mmol) and Cu(OAc)2·H2O (0.05 g, 0.25 mmol)
were used to prepare Cu(L7) (0.10 g, 81%). (Elem anal. Found: C,
39.25; H, 6.24; N, 20.83. Calcd for C16H29CuN7O2S2·H2O·
0.5CH3CN: C, 39.44; H, 6.33; N, 20.29. ESI-MS (positive ion;
100%, [M + H+]): m/z 479.12 (experimental), 479.12 (calcd). RP-
HPLC: RT = 15.13 min.
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Diacetyl-4-butyleneaminium-4′-methylbis(thiosemicarbazone)
Trifluoroacetate, [HL8][CF3CO2]. Following the same procedure that
was employed for the synthesis of [H3L

6][CF3CO2], H2L
7 (0.06 g,

0.13 mmol) was used to prepare [HL8][CF3CO2] (0.05 g, 86%).
Elem anal. Found: C, 36.30; H, 5.71; N, 21.59. Calcd for
C13H24CuN7F3O2S2: C, 36.19; H, 5.61; N, 22.72. 1H NMR
(DMSO-d6, 500 MHz): δ 1.52−1.67, 4H, m, CH2; 2.21, 6H, s,
CH3; 2.82, 2H, m, CH2; 3.02, 3H, d, CH3,

3JHH = 4 Hz; 3.60, m, 2H,
CH2; 7.69, 3H, br s, NH3

+; 8.35−8.47, m, 2H, NH; 10.21, br s, 2H,
NH. ESI-MS (positive ion; 100%, [M+]): m/z 318.15 (experimental),
318.15 (calcd). RP-HPLC: RT = 10.02 min.
D i a c e t y l - 4 - b u t y l e n e a m i n i u m - 4 ′ - m e t h y l b i s -

(thiosemicarbazonato)copper(II) Trifluoroacetate, [Cu(HL8)]-
[CF3CO2]. Following the same procedure that was employed for the
synthesis of [Cu(HL6)][CF3CO2]·0.8CF3CO2H, Cu(L

7) (0.04 g, 0.1
mmol) was used to prepare [Cu(HL8)][CF3CO2] (0.02 g, 51%).
Elem anal. Found: C, 31.64; H, 4.56; N, 19.81. Calcd for
C13H22CuN7F3O2S2: C, 31.67; H, 4.50; N, 19.89. ESI-MS (positive
ion; 100%, [M+]): m/z 379.07 (experimental), 379.07 (calcd). RP-
HPLC: RT = 7.62 min.
Diacetyl 4-(N1,N4,N9-Tri-tert-butoxycarbonyl)-N,N′-bis(3-

am i n o p r o p y l ) b u t a n e - 1 , 4 - d i am i n e - 4 ′ - m e t h y l b i s -
(thiosemicarbazone), H2L

9. To a stirring suspension of H2L
1 (0.30 g,

1.1 mmol) in acetonitrile (20 mL) was added (N1,N4,N9-tri-tert-
butoxycarbonyl)-N,N′-bis(3-aminopropyl)butane-1,4-diamine (0.56
g, 1.1 mmol). The mixture was heated at reflux for 3 h and
monitored by thin-layer chromatography analysis [5% MeOH−
CH2Cl2 (v/v)]. The resulting suspension was cooled to room
temperature and filtered to remove the white precipitate. The solvent
was removed in vacuo to give a light-yellow, glassy solid, which was
purified over silica [CH2Cl2−MeOH−Et3N 100:0:0 to 100:1:0.1 to
100:4:0.1 (v/v/v)] to afford H2L

9 as a white glassy solid (0.66 g, 0.9
mmol, 81%), Rf = 0.6 [5% MeOH−CH2Cl2 (v/v)]. Elem anal. Found:
C, 52.37; H, 8.46; N, 17.17. Calcd for C32H61N9O6S2: C, 52.50; H,
8.40; N, 17.22. 1H NMR (DMSO-d6, 500 MHz, 343 K): δ 1.38, 9H, s,
(CH3)3; 1.39, 9H, s, (CH3)3; 1.41, 9H, s, (CH3)3; 1.42−1.47, 4H, br
m, CH2

5, CH2
6; 1.59, 2H, p, 3JHH = 7 Hz, CH2; 1.73−1.81, 2H, br m,

CH2; 2.21, 3H, s, CH3; 2.22, 2H, s, CH3; 2.91, 2H, q,
3JHH = 6 Hz,

CH2; 3.05, 3H, d,
3JHH = 4.5 Hz, CH3NH; 3.10−3.17, 6H, m, CH2,

CH2, CH2; 3.21, 2H, t,
3JHH = 7 Hz, CH2; 3.57, 2H, q,

3JHH = 6.5 Hz,
CH2; 6.44−6.60, 1H, br s, NH; 8.28, 1H, m, NHCH3; 8.39−8.60, 1H,
br s, NHCH2; 9.95−10.10, 2H, br s, NH. 13C{1H} NMR (125.7
MHz, 343 K): δ 11.1, 11.3, CH3; 25.3, CH2, CH2; 27.8, 27.8, 28.0,
(CH3)3, CH2; 28.5, CH2; 30.1, CH3NH; 37.5, CH2; 40.8, CH2; 43.5,
CH2; 44.2, CH2; 46.1, CH2, CH2; 77.2, 78.0, 78.3, C(CH3)3; 147.5,
147.7, CN; 154.4, 155.2, CO; 177.7, 178.5, CS. ESI-MS
(positive ion; 100%, [M + H+]): m/z 732.43 (experimental), 732.43
(calcd). RP-HPLC: RT = 18.16 min.
Diacetyl 4-(N1,N4,N9-tri-tert-butoxycarbonyl)-N,N′-bis(3-

am i n o p r o p y l ) b u t a n e - 1 , 4 - d i am i n e - 4 ′ - m e t h y l b i s -
(thiosemicarbazonato)copper(II), Cu(L9). To a solution of H2L

9

(0.31 g, 0.4 mmol) in ethanol (5 mL) was added Cu(OAc)2·H2O
(0.09 g, 0.4 mmol). The red/brown solution was stirred at room
temperature for 19 h. The solvent was removed in vacuo, and the
brown residue was dissolved in dichloromethane (3 mL) and filtered.
The solvent was removed in vacuo to give Cu(L9) as a brown/red
glassy solid (0.29 g, 88%). Elem anal. Found: C, 48.38; H, 7.53; N,
15.92. Calcd for CuC32H59N9O6S2: C, 48.43; H, 7.49; N, 15.89. ESI-
MS (positive ion; 100%, [M + H+]): m/z 793.34 (experimental),
793.34 (calcd). RP-HPLC: RT = 17.40 min.
Diacetyl 4-N-(3-Aminiumpropyl)-N′-(3-aminopropyl)butane-1,4-

diaminium-4′-methylbis(thiosemicarbazone), [H5L
10][CF3CO2]3.

Following the same procedure that was employed for the synthesis
of [H3L

6][CF3CO2], H2L
9 (0.23 g, 0.3 mmol) was used to prepare

[H5L
10][CF3CO2]3 (0.22 g, 89%). Elem anal. Found: C, 35.51; H,

5.31; N, 16.20. Calcd for C23H40F9N9O6S2: C, 35.70; H, 5.21; N,
16.29. 1H NMR (DMSO-d6, 500 MHz): δ 1.63, 4H, m, CH2, CH2;
1.87−1.96, 4H, m, CH2, CH2; 2.20, 6H, s, CH3 × 2; 2.86−3.00, 10H,
br, CH2, CH2, CH2, CH2, CH2; 3.02, 3H, d,

3JHH = 4.5 Hz, CH3NH;
3.65, 2H, q, 3JHH = 6 Hz, CH2; 7.98−8.09, 3H, br s, H3N

+; 8.39, 1H,
q, 3JHH = 4.5 Hz, NHCH3; 8.53, 1H, t,

3JHH = 6 Hz, NHCH2; 8.70−

8.80, 2H, br, H2N
+; 8.86−8.95, 2H, br, H2N

+; 10.21, 1H, s, NH;
10.30, 1H, s, NH. 13C{1H} NMR (125.7 MHz): δ 11.7, 11.8, CH3;
22.6, 22.7, CH2, CH2; 23.8, CH2; 25.7, CH2; 31.2, NHCH3; 36.2,
CH2; 40.8, CH2; 43.9, CH2; 44.7, CH2; 46.1, 46.2, CH2, CH2; 117.0,
q, 1JCF = 298.9 Hz, CF3; 147.8, 148.6, CN; 158.7, q, 2JCF = 32.0 Hz,
CCF3; 178.1, 178.5, CS. ESI-MS (positive ion; 100%, [M3+−
2H+]): m/z 432.27 (experimental), 432.27 (calcd). RP-HPLC: RT =
6.97 min.

Diacetyl 4-N-(3-Aminiumpropyl)-N′-(3-aminopropyl)butane-1,4-
diaminium-4′-methylbis(thiosemicarbazonato)copper(II), [Cu-
(H3L

10)][CF3CO2]3·2H2O. Following the same procedure that was
employed for the synthesis of [H5L

10][CF3CO2]3, Cu(L
9) (0.14 g,

0.17 mmol) was used to prepare [Cu(H3L
10)][CF3CO2]3·2H2O (0.13

g, 89%). Elem anal. Found: C, 31.69; H, 4.43; N, 14.47. Calcd for
C23H42CuF9N9O8S2: C, 31.71; H, 4.86; N, 14.47. ESI-MS (positive
ion; 100%, [M3+− 2H+]): m/z 493.18 (experimental), 493.18 (calcd).
ESI-MS (positive ion; 100%, [M3+− H+]): m/z 247.10 (exper-
imental), 247.10 (calcd). RP-HPLC: RT = 7.05 min.

Radiochemistry. An aliquot of [64Cu]CuCl2 (95 μL, ∼60 MBq, pH
1) was added to a solution containing the ligand (5 μL, 1 mg/mL
DMSO) and PBS (210 μL, 0.1 M). The reaction was left for 30 min at
room temperature before 5 μL of the reaction solution was injected
onto a C18 analytical RP-HPLC column. A DMSO solution of the
nonradioactive copper complex (1 mg/mL) was injected (8 μL)
under the same conditions (λ = 275 nm) to verify the identity of the
radiolabeled complex. HPLC were performed using a Shimadzu SPD-
10ATvP HPLC system equipped with a Phenomenex Luna C18 100
Å column (4.6 × 150 mm, 5 μm) with a 1 mL/min flow rate and with
scintillation and UV−vis detectors in series (280 nm). Retention
times (RT/min) were recorded using a gradient elution method of 5−
100% B over 10 min; solution A consisted of water (buffered with
0.1% trifluoroacetic acid), and solution B consisted of acetonitrile
(buffered with 0.1% trifluoroacetic acid).

Distribution Coefficients. Octanol/water distribution coefficients
were measured by vortex mixing 0.5 mL of 1-octanol and 0.5 mL of
isotonic PBS (pH 7.4) with a 25−50 μL sample of an aqueous
solution of the copper-64 complex. Following centrifugation, 100 μL
each of the octanol and aqueous phases was sampled, diluted to 1 mL,
and counted in an automatic well counter using a window centered at
511 keV. Distribution coefficients, D, are reported as counts per gram
of octanol divided by counts per gram of water.

Exposure of Bis(thiosemicarbazonato)copper(II) Complexes to
SH-SY5Y Cells and ICP-MS. SH-SY5Y neuroblastoma cells were
seeded into 10 cm plates at a density of 5 × 104 cm−2 and then grown
for 4 days before treatment with the Cu(btsc) complexes. At
treatment, the cells were ∼90% confluent. The copper complexes
were prepared as 10 mM stock solutions in DMSO. CuSO4 was
prepared as a 10 mM stock solution in PBS. An aliquot (50 μL) of the
stock solution was added to 50 mL of a DMEM:F12 medium to give a
final complex concentration of 10 μM. Existing media were removed
from the cells and replaced by the media/copper complex mixture (15
mL/plate). Each compound was treated in triplicate. The cells were
incubated for 1 h at 37 °C. The cells were scraped into the media, and
then the cells/media mixture was centrifuged at 1000g for 3 min to
pellet cells. The media were removed, and the cells were resuspended
in PBS (pH 7.4) and centrifuged at 1000g for 3 min. The cells were
again resuspended in PBS, an aliquot was taken for protein
determination (Protein Microassay, Bio-Rad), the remaining cells
were centrifuged at 3000 rpm for 5 min, and the cell pellets were
stored at −70 °C. The metal levels were determined in cell pellets
using ICP-MS. An Agilent 7700 series ICP-MS instrument was used
under routine multielement operating conditions with a helium
reaction gas cell as described previously.77 Briefly, concentrated nitric
acid (65%, 50 μL; Suprapur, Merck) was added to each cell pellet and
allowed to digest overnight at ambient temperature. The samples were
then heated at 90 °C for 25 min using a heating block to complete the
digestion. To each sample was added 1% (v/v) nitric acid (1.0 mL).
The metal content of the samples was calculated relative to the sample
protein content and then converted to a fold increase in the cellular
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metal compared with vehicle-treated controls. The data are the mean
± standard error of the mean (SEM) from triplicate samples.
LDH and MTT Cytotoxicity Assays. SH-SY5Y cells were cultured as

above. After 4 days of growth, once the cultures had reached 90%
confluency, cultures were treated with Cu(btsc) complexes at
concentrations of 0, 1.25, 2.5, 5, and 10 μM for 1 h. The LDH and
MTT assays were performed as previously described.61−63 The
spectrophotometric absorbance was 490 nm for the LDH assay and
560 nm for the MTT assay. The relative % LDH release was
calculated by treating some cells with the detergent Triton X-100,
which was added to the media to a final concentration of 1% v/v to
permeabilize the cells. This treatment completely permeabilizes the
cell membranes and therefore induces the total release of cellular
LDH into the media (100% LDH release). Relative % MTT reduction
was calculated relative to vehicle-treated cells (100% MTT
reduction). All absorbance readings for the LDH and MTT assays
were adjusted using relevant controls (i.e., absorbance values for cell-
free media were subtracted).
Small-Animal PET Imaging and Biodistribution Studies. All

mouse experiments were performed with approval from the Peter
MacCallum Cancer Centre Animal Experimentation Ethics Commit-
tee. For brain imaging studies, Balb/c mice were anaesthetized using
isoflurane in 50% oxygen in air before being injected intravenously
with 15−20 MBq of activity. The animals were then placed on the bed
of a Philips Mosaic small-animal PET scanner 5 min postinjection and
imaged over 10 min. The PET images were reconstructed using a 3D
RAMLA algorithm as described previously.78 For the A431 xenograft
model, female Balb/C nude mice were injected subcutaneously on the
right flank with 3 × 106 of A431 cells. Once the tumors reached a
volume of 250−500 mm3, the mice were assigned to two groups of
three mice and injected with either [64Cu]Cu(L2) or [64Cu]Cu(atsm)
(10−15 MBq) via intravenous tail vein injection. Animals were
imaged as described previously at 1, 3, and 22 h after tracer injection.
The images were reconstructed using a 3D RAMLA algorithm as
described previously.78 Following the final scan, the mice were
euthanized and tissues excised for ex vivo biodistribution analysis.
Data are presented as mean ± standard error. The statistical
significance was determined using two-tailed unpaired t tests with
Welch’s correction.
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