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	1	

ABSTRACT:	2	

Bipolar	disorder	is	a	highly	heritable	psychiatric	disorder	that	features	episodes	of	mania	and	3	

depression.	We	performed	the	largest	genome-wide	association	study	to	date,	including	20,352	4	

cases	and	31,358	controls	of	European	descent,	with	follow-up	analysis	of	822	sentinel	variants	5	

at	loci	with	P<1x10-4	in	an	independent	sample	of	9,412	cases	and	137,760	controls.	In	the	6	

combined	analysis,	30	loci	reached	genome-wide	significant	evidence	for	association,	of	which	7	

20	were	novel.	These	significant	loci	contain	genes	encoding	ion	channels	and	neurotransmitter	8	

transporters	(CACNA1C,	GRIN2A,	SCN2A,	SLC4A1),	synaptic	components	(RIMS1,	ANK3),	immune	9	

and	energy	metabolism	components.	Bipolar	disorder	type	I	(depressive	and	manic	episodes;	10	

~73%	of	our	cases)	is	strongly	genetically	correlated	with	schizophrenia	whereas	bipolar	11	

disorder	type	II	(depressive	and	hypomanic	episodes;	~17%	of	our	cases)	is	more	strongly	12	

correlated	with	major	depressive	disorder.	These	findings	address	key	clinical	questions	and	13	

provide	potential	new	biological	mechanisms	for	bipolar	disorder.	14	

	15	

	16	

	17	

	18	

	 	19	
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INTRODUCTION	1	

Bipolar	disorder	(BD)	 is	a	severe	neuropsychiatric	disorder	characterized	by	recurrent	episodes	2	

of	mania	 and	 depression	 which	 affect	 thought,	 perception,	 emotion,	 and	 social	 behaviour.	 A	3	

lifetime	prevalence	of	1-2%,	elevated	morbidity	and	mortality,	onset	in	young	adulthood,	and	a	4	

frequently	 chronic	 course	make	BD	a	major	public	health	problem	and	a	 leading	 cause	of	 the	5	

global	burden	of	disease	1.	Clinical,	twin	and	molecular	genetic	data	all	strongly	suggest	that	BD	6	

is	 a	 multifactorial	 disorder	 2.	 Based	 on	 twin	 studies,	 the	 overall	 heritability	 of	 BD	 has	 been	7	

estimated	to	be	more	than	70%	3,4,	suggesting	a	substantial	involvement	of	genetic	factors	in	the	8	

development	of	the	disorder,	although	non-genetic	factors	also	influence	risk.	9	

		 BD	can	be	divided	into	two	main	clinical	subtypes	5,6:	bipolar	I	disorder	(BD1)	and	bipolar	10	

II	disorder	(BD2).	In	BD1,	manic	episodes	typically	alternate	with	depressive	episodes	during	the	11	

course	of	illness.	Diagnosis	of	BD2	is	based	on	the	lifetime	occurrence	of	at	least	one	depressive	12	

and	 one	 hypomanic	 (but	 no	manic)	 episode.	 Although	modern	 diagnostic	 systems	 retain	 the	13	

Kraepelinian	 dichotomy	 7	 between	 BD	 and	 schizophrenia,	 the	 distinction	 between	 the	 two	14	

disorders	 is	 not	 always	 clear-cut,	 and	 patients	who	 display	 clinical	 features	 of	 both	 disorders	15	

may	 receive	a	diagnosis	of	 schizoaffective	disorder	 (SAB).	 Likewise,	 in	 genetic	 studies	 the	 two	16	

diagnoses	are	usually	treated	separately,	although	recent	epidemiological	and	molecular	genetic	17	

studies	 provide	 strong	 evidence	 for	 some	 overlap	 between	 the	 genetic	 contributions	 to	 their	18	

etiology	2,8.	19	

Recent	 genome-wide	 association	 studies	 (GWAS)	 in	 BD	 have	 identified	 a	 number	 of	20	

significant	associations	between	disease	status	and	common	genetic	variants	9–23.	The	first	large	21	

collaborative	 BD	 GWAS	 by	 the	 multinational	 Psychiatric	 Genomics	 Consortium	 (PGC)	 Bipolar	22	

Disorder	Working	 Group	 comprised	 7,481	 BD	 patients	 and	 9,250	 controls	 and	 identified	 four	23	

genome-wide	significant	loci	9.	Three	subsequent	meta-analyses	that	included	the	PGC	BD	data	24	
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10,12,18	identified	an	additional	5	loci.		1	

Estimates	 of	 the	 proportion	 of	 variance	 in	 liability	 attributable	 to	 common	 variants	2	

genome-wide	(SNP-heritability)	 indicate	that	~30%	of	the	heritability	for	BD	is	due	to	common	3	

genetic	variants	8.	To	date,	only	a	small	fraction	of	this	heritability	is	explained	by	associated	loci,	4	

but	 results	 from	 other	 human	 complex	 traits	 suggest	 that	 many	 more	 will	 be	 identified	 by	5	

increasing	 the	sample	size	of	GWAS	24.	 	Here,	we	report	 the	second	GWAS	of	 the	PGC	Bipolar	6	

Disorder	Working	Group,	comprising	20,352	cases	and	31,358	controls	of	European	descent	in	a	7	

single,	 systematic	 analysis,	with	 follow	 up	 of	 top	 findings	 in	 an	 independent	 sample	 of	 9,412	8	

cases	 and	 137,760	 controls.	 Some	 of	 our	 findings	 reinforce	 specific	 hypotheses	 regarding	 BD	9	

neurobiology;	however,	the	majority	of	the	findings	suggest	new	biological	insights.	10	

	11	

RESULTS	12	

GWAS	of	bipolar	disorder	(BD)	13	

We	performed	a	GWAS	meta-analysis	of	32	cohorts	from	14	countries	in	Europe,	North	America	14	

and	Australia	(Supplementary	Table	1A),	totaling	20,352	cases	and	31,358	controls	of	European	15	

descent	(effective	sample	size	46,582).	This	is	the	largest	GWAS	of	BD	to	date	and	includes	6,328	16	

case	and	7,963	control	samples	not	previously	reported,	a	2.7-fold	increase	in	the	number	of	17	

cases	compared	to	our	previous	GWAS	9.	We	imputed	variant	dosages	using	the	1,000	Genomes	18	

reference	panel	(see	Methods),	retaining	association	results	for	9,372,253	autosomal	variants	19	

with	imputation	quality	score	INFO	>	0.3	and	minor	allele	frequency	≥	1%	in	both	cases	and	20	

controls.	We	performed	logistic	regression	of	case	status	on	imputed	variant	dosage	using	21	

genetic	ancestry	covariates.	The	resulting	genomic	inflation	factor	(λGC)	was	1.23	and	scaled	to	22	

1,000	cases	and	1,000	controls	(λ1000)	was	1.01	(Supplementary	Figure	1).	The	LD-score	23	

regression	intercept	did	not	significantly	differ	from	one,	indicating	that	the	observed	genomic	24	
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inflation	is	indicative	of	polygenicity	rather	than	stratification	or	cryptic	population	structure	25.	1	

The	LD-score	regression	SNP-heritability	estimates	for	BD	were	0.17-0.23	(on	the	liability	scale,	2	

assuming	population	lifetime	risk	of	0.5-2%).		See	Supplementary	Table	1A,	Online	Methods	3	

and	Supplementary	Note	for	sample	and	method	details.		4	

We	find	a	marked	increase	in	phenotypic	variance	explained	by	genomewide	polygenic	5	

risk	scores	(PRS)	compared	to	previous	publications	(sample	size	weighted	mean	observed	6	

Nagelkerke’s	R2	=	0.08	across	datasets,	liability	scale	R2=0.04,	for	P-threshold	�	0.01;	7	

Supplementary	Figure	2	and	Supplementary	Table	2).	Among	the	different	datasets,	we	8	

observed	no	association	between	the	PRS	and:	(i)	the	gender	distribution	of	the	BD	cases	9	

(p=0.51);	(ii)	the	proportion	of	cases	with	psychosis	(p=0.61);	(iii)	the	proportion	with	a	family	10	

history	of	BD	(p=0.82);	or	(iv)	the	median	age	of	onset	for	BD	(p=0.64).	In	our	primary	genome-11	

wide	analysis,	we	identified	19	loci	exceeding	genome-wide	significance	(P<	5x10-8).		12	

	13	

Follow-up	of	suggestive	loci	in	additional	samples	14	

We	meta-analyzed	lead	variants	that	were	significant	at	P<1x10-4	in	our	discovery	meta-analysis,	15	

(a	total	of	794	autosomal	and	28	X	chromosome	variants)	with	follow-up	samples	totaling	9,412	16	

cases	and	137,760	controls	of	European	ancestry	(Supplementary	Note	and	Supplementary	17	

Table	1B).	Thirty	autosomal	loci	achieved	combined	sample	genome-wide	significance	(P<	5x10-18	

8)	(Figure	1,	Table	1,	Supplementary	Figure	3,	Supplementary	Table	3).	These	include	19	loci	19	

that	were	significant	only	in	the	combined	analysis,	of	which	three	were	reported	to	have	20	

genome-wide	significant	SNPs	in	previous	studies	(ADCY2	18,	POU3F2	18,	ANK3	12,18),	and	11	that	21	

were	significant	in	our	GWAS.	Eight	variants	were	genome-wide	significant	in	the	GWAS	but	not	22	

in	the	combined	analysis.	Using	effect	sizes	corrected	for	winner’s	curse	26,27	for	each	of	the	19	23	

variants	with	GWAS	P<5x10-8,	we	found	that	11	variants	achieving	genome-wide	significance	in	24	
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our	combined	analysis	is	within	the	expected	range	(Poisson	binomial	test	P	=	0.29,	1	

Supplementary	Note	and	Supplementary	Figure	4).	2	

Lead	variants	for	the	30	loci	achieving	genome-wide	significance	in	the	combined	3	

analysis	are	shown	in	Table	1A.	We	show	results	in	Table	1B	for	8	additional	loci	with	P	<	5x10-8	4	

in	our	discovery	GWAS	but	not	in	the	combined	analysis.	Results	for	all	variants	tested	in	the	5	

follow-up	study		are	presented	in	Supplementary	Table	3.	We	refer	to	loci	by	the	gene	name	6	

attributed	in	previous	BD	GWAS	publications,	or	by	the	name	of	the	closest	gene	for	novel	loci,	7	

without	implication	that	the	named	gene	is	causal.	Of	the	30	genome-wide	significant	loci	from	8	

our	combined	analysis,	20	are	novel	BD	risk	loci.	In	Supplementary	Table	4,	we	present	detailed	9	

descriptions	of	the	associated	loci	and	genes,	with	bioinformatic	and	literature	evidence	for	10	

their	potential	roles	in	BD.		11	

	 	12	
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	1	

	2	
Figure	1.	Manhattan	plot	for	our	primary	genomewide	association	analysis	of	20,352	cases	
and	31,358	controls.	GWAS	-log10P-values	are	plotted	for	all	SNPs	across	chromosomes	1-22	
(diamonds,	green	for	loci	with	lead	SNP	GWAS	P	<	10-6).	Combined	GWAS+followup	-log10P-
values	for	lead	SNPs	reaching	genome-wide	significance	in	either	GWAS	or	combined	
analysis	(triangles,	inverted	if	GWAS+followup	-log10P	>	GWAS	-log10P).	Labels	correspond	to	
gene	symbols	previously	reported	for	published	loci	(black)	and	the	nearest	genes	for	novel	
loci	(blue),	at	top	if	GWAS+followup	P	<	5x10-8.		

	3	
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	1	

We	next	asked	if	the	variants	tested	in	the	follow-up	samples	were,	in	aggregate,	2	

consistent	with	the	presence	of	additional	sub	genome-wide	significant	BD	association	signals.			3	

After	excluding	47	variants	that	were	genome-wide	significant	in	our	GWAS,	our	combined	4	

analysis	or	previous	BD	GWAS,	775	variants	remained	in	our	follow-up	experiment.	551	variants	5	

had	the	same	direction	of	effect	in	the	discovery	GWAS	and	follow-up	samples	(71%	compared	6	

to	a	null	expectation	of	50%,	sign	test	P	<	2.2x10-16	),	and	110	variants	had	the	same	direction	of	7	

effect		and	were	nominally	significant	(p<0.05)	in	the	follow-up	samples	(14%	compared	to	an	8	

expected	value	of	2.5%	,	binomial	test	P	<	2.2x10-16).	This	consistency	between	our	GWAS	and	9	

follow-up	samples	suggests	that	many	true	BD	associations	exist	among	these	variants.		10	

To	identify	additional	independent	signals,	we	conducted	conditional	analyses	across	11	

each	of	the	30	significant	BD	loci	(Supplementary	Table	5).	We	used	the	effective	number	of	12	
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independent	variants	based	on	LD	structure	within	loci	28	to	calculate	a	multiple	test-corrected	1	

significance	threshold	(P=1.01x10-5,	see	Supplementary	Note).	One	locus	showed	evidence	for	2	

an	independent	association	signal	(rs114534140	in	locus	#8,	FSTL5;	Pconditional	=	2x10-6).	At	one	3	

locus	(#30,	STK4	on	chr	20),	we	found	two	SNPs	with	genome-wide	significance	in	low	LD	(r2	<	4	

0.1);	however,	conditional	analysis	showed	that	their	associations	were	not	independent.	Thus	5	

only	the	FSTL5	locus	demonstrated	clear	evidence	of	more	than	one	independent	association.	6	

	7	

Shared	loci	and	genetic	correlations	with	schizophrenia,	depression	and	other	GWAS	traits	8	

We	next	examined	the	genetic	relationships	of	BD	to	other	psychiatric	disorders	and	traits.	Of	9	

the	30	genome-wide	significant	BD	loci,	8	also	harbor	schizophrenia	(SCZ)	associations	29–31.	10	

Based	on	conditional	analyses	the	BD	and	SCZ	associations	appear	to	be	independent	at	3	of	the	11	

8	shared	loci	(NCAN,	TRANK1	and	chr7q22.3:105Mb	loci)	(Supplementary	Table	6).	No	genome-12	

wide	significant	BD	locus	overlapped	with	those	identified	for	major	depression	(DEPR),	13	

including	44	risk	loci	identified	in	the	most	recent	PGC	study	based	on	130,664	depression	cases	14	

and	330,470	controls32,	and	those	reported	in	a	large	study	of	depressive	symptoms	or	15	

subjective	well-being	33.	As	previously	reported	34,	we	found	substantial	and	highly	significant	16	

genetic	correlations	between	BD	and	SCZ	(LD-score	regression	estimated	genetic	correlation	rg	=	17	

0.70,	se	=	0.020)	and	between	BD	and	DEPR	(rg	=	0.35,	se	=	0.026)		The	BD	and	DEPR	genetic	18	

correlation	was	similar	to	that	observed	for	SCZ	and	DEPR	(rg	=	0.34,	se	=	0.025)	(Supplementary	19	

Table	7A).		20	

We	found	significant	genetic	correlations	between	BD	and	other	psychiatric-relevant	21	

traits	(Supplementary	Table	7B),	including	with	autism	spectrum	disorder	8	(rg	=	0.18,	P=2x10-4),	22	

anorexia	nervosa	35	(rg	=	0.23,	P=9x10-8),	and	subjective	well-being	33	(rg	=	-0.22,	P=4x10-7).	There	23	

was	suggestive	positive	overlap	with	anxiety	disorders	(rg=0.21,	P=0.04)	36	and	neuroticism	24	
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(rg=0.12,	P=0.002)	37.			Significant	rgs	were	seen	with	measures	of	education:	college	attendance	1	

38	(rg	=	0.21,	P=1=x10-7)	and	education	years	39	(rg=0.20,	P=6x10-14),	but	not	with	childhood	IQ	40	2	

(rg=0.05,	P=0.5)	or	intelligence	41	(rg=-0.05,	P=0.08).	Among	a	large	number	of	BD	risk	locus	SNPs	3	

associated	with	additional	traits	from	GWAS	catalog,	we	found	a	handful	of	loci	with	non-4	

independent	associations	(in	one	overlapping	locus	each	with	educational	attainment,	biliary	5	

atresia,	bone	mineral	density,	lipid-related	biomarkers)	(Supplementary	Table	6).	Biliary	atresia	6	

and	lipid-	related	biomarkers,	however,	did	not	show	significant	genetic	correlation	with	BD	7	

(Supplementary	Table	7B).		8	

	9	

BD	subtype	GWAS		10	

We	performed	secondary	GWAS	focusing	on	three	clinically	recognized	subtypes	of	bipolar	11	

disorder:	BD1	(n=14,879	cases),	BD2	(n=3,421	cases),	and	SAB	(n=977	cases)	(Supplementary	12	

Note,	Supplementary	Tables	1A	&	8,	Supplementary	Figure	5).	We	observed	variants	in	14	loci	13	

with	genome-wide	significance	for	BD1,	10	of	which	were	in	genome-wide	significant	loci	in	the	14	

combined	BD	GWAS	analysis.	Not	surprisingly	given	the	sample	overlap,	3	of	the	4	remaining	loci	15	

genome-wide	significant	for	BD1	have	P	<	10-6	in	either	our	GWAS	or	combined	analysis.	The	16	

remaining	locus	(MAD1L1,	chr7:1.9Mb,	GWAS	P	=	2.4x10-6)	was	recently	published	in	two	BD	17	

GWAS	that	included	Asian	samples	42,43.	We	did	not	observe	genome-wide	significant	results	for	18	

the	smaller	BD2	and	SAB	analyses.	BD1,	BD2	and	SAB	all	have	significant	common	variant	19	

heritabilities	(BD1	h2snp	=	0.25,	se	=	0.014,	P	=	3.2x10-77;	BD2	h2snp		=	0.11,	se	=	0.028,	P	=	5.8x10-5;	20	

SAB	h2
snp	=	0.25,	se	=	0.10,	P	=	0.0071).	Genetic	correlations	among	BD	subtypes	show	that	these	21	

represent	closely	related,	yet	partially	distinct,	phenotypes	(Supplementary	Table	9).		22	

Polygenic	risk	scores	and	genetic	correlations	provide	support	for	a	continuum	of	SCZ-23	

BD1-BD2-DEPR	genetic	effects,	with	significantly	greater	genetic	SCZ	polygenic	risk	scores	(PRS)	24	
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in	BD1	cases	than	in	BD2	cases	(min	P=5.6x10-17,	P	threshold	=	0.1),	and	greater	DEPR	PRS	in	BD2	1	

cases	than	in	BD1	cases	(min	P=8.5x10-10,	P	threshold	=	0.01)	(Figure	2,	Supplementary	Table	2	

10).	Genetic	correlations	from	LD-score	regression	support	these	results;	genetic	correlations	3	

were	greater	for	SCZ	with	BD1	(rg	=	0.71,	se	=	0.025)	than	with	BD2		(rg	=	0.51,	se	=	0.072),	with		4	

Pdiff	=	0.0056,	and	were	greater	for	DEPR	with	BD2	(rg	=	0.69,	se	=	0.093)	than	with	BD1	(rg	=	5	

0.30,	se	=	0.028),	with	Pdiff	=	2.9x10-5	(Supplementary	Table	9).		6	

	7	

		8	

Figure	2.	Association	of	BD1	and	BD2	subtypes	with	schizophrenia	(SCZ)	and	major	
depression	(DEPR)	polygenic	risk	scores	(PRS).	Shown	are	mean	PRS	values	(1	s.e.	error	
bars),	adjusted	for	study	and	ancestry	covariates	and	scaled	to	the	PRS	mean	and	sd	in	
control	subjects,	in	BD1	(red)	and	BD2	(blue)	cases,	for	increasing	source	GWAS	P-value	
thresholds	(increasing	grey)	as	indicated.	P-values	(italics)	test	BD1	vs	BD2	mean	PRS,	in	
logistic	regression	of	case	subtype	on	PRS	with	covariates.	Results	are	detailed	in	
Supplementary	Table	10.	

	9	

	 	10	
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Systems	biology	and	in	silico	functional	analyses	of	BD	GWAS	results	1	

To	identify	genes	with	functional	variation	in	gene	expression	that	might	explain	the	2	

associations,	we	used	summary	Mendelian	randomization	(SMR)	44	to	integrate	our	BD	discovery	3	

GWAS	with	eQTL	data	from	brain	dorsolateral	prefrontal	cortex	45	as	well	as	a	large-sample	4	

whole	blood	eQTL	dataset	46	(Supplemental	Table	11).	SMR	identified	six	transcriptome-wide	5	

significant	genes	without	signs	of	heterogeneity	between	GWAS	and	eQTL	association	signals.	6	

Among	these,	four	genes	were	present	in	four	different	loci	from	our	combined	BD	GWAS	and	7	

follow-up	sample	meta-analysis:	LMAN2L	(blood),	FADS1	(brain),	NMB	(blood)	and	C17ORF65	8	

(blood).		9	

	 We	tested	for	functional	genomic	enrichment	in	our	BD	GWAS	using	partitioned	LD-10	

score	regression	47	(Supplementary	Note,	Supplementary	Table	12).	Annotations	tested	11	

included	open	chromatin	DHS	peaks	in	a	range	of	tissues	48,	genic	annotations,	conservation,	12	

and	a	number	of	functional	genomic	annotations	across	tissues.	SNP-based	BD	heritability	was	13	

most	substantially	enriched	in	open	chromatin	annotations	in	central	nervous	system	14	

(proportion	SNPs	=	0.14,	proportion	h2
snp	=	0.60,	enrichment	=3.8,	P	=	4.2	x	10-17)	.	We	also	used	15	

DEPICT	49	to	test	for	expression	of	BD	associated	genes	across	tissues,	and	found	significant	16	

enrichment	of	central	nervous	system	(P	<=	1.3x10-3,	FDR	<	0.01)	and	neurosecretory	system	(P	17	

<=	2.0x10-6,	FDR	<	0.01)	genes	(Supplementary	Table	13).		18	

	 Finally,	we	used	MAGMA	50	to	conduct	a	gene-wise	BD	GWAS	and	to	test	for	enrichment	19	

of	pathways	curated	from	multiple	sources	(see	Supplementary	Note).	We	note	that	20	

significance	levels	were	assigned	to	genes	by	physical	proximity	of	SNPs,	and	do	not	imply	that	21	

significant	genes	are	causal	for	BD.	Genic	association	results	included	154	Bonferroni	significant	22	

genes	(MAGMA	P_JOINT	<	2.8x10-6),	including	82	genes	in	20	genome-wide	significant	loci,	and	23	

73	genes	in	27	additional	loci	that	did	not	reach	genome-wide	significance	in	either	our	GWAS	or	24	
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combined	analysis	(Supplementary	Table	14).	Nine	related	pathways	were	significantly	enriched	1	

for	genes	with	stronger	BD	associations	(P	<	7.0x10-5,	FDR	<	0.05),	including	abnormal	motor	2	

coordination/balance	pathways	(from	mice),	regulation	of	insulin	secretion	and	3	

endocannabinoid	signaling	pathways	(Supplementary	Table	15,	Supplementary	Figure	6).		4	

DISCUSSION	5	

We	carried	out	the	largest	bipolar	disorder	(BD)	GWAS	to	date	and	identified	30	6	

genome-wide	significant	loci,	including	20	novel	BD	risk	loci.		Previous	BD	GWAS	have	reported	a	7	

total	of	20	loci	significantly	associated	with	BD9–23 ;	twelve	of	these	previously	reported	loci	were	8	

not	genome-wide	significant	in	our	GWAS	meta	analysis	but	had	PGWAS	≤	1.3x10-5.	Of	the	19	loci	9	

identified	in	our	discovery	GWAS,	only	11	were	genome-wide	significant	in	meta-analysis	of	our	10	

GWAS	and	follow-up	samples.	Although	these	results	are	not	unexpected	given	small	effect	sizes	11	

and	the	winner’s	curse	27,51	(Supplementary	Note	and	Supplementary	Figure	4),	genetic	12	

heterogeneity	has	been	shown	between	BD	GWAS	cohorts8.	We	observed	variable	polygenic	13	

effects	between	BD	subtypes	and	between	cohorts	in	our	study	(Figure	2,	Supplementary	Figure	14	

2,	Supplementary	Tables	2	&	10)	and	acknowledge	a	diversity	of	clinical	case	phenotypic	criteria	15	

among	cohorts	in	our	study	(Supplementary	Note).	Remarkably,	our	strongest	association	16	

signal,	observed	at	the	TRANK1	locus	(rs9834970;	Pcombined	=	5.7E-12,	OR	=	0.93),	exhibited	17	

significant	heterogeneity	among	discovery	GWAS	cohorts	(Cochran’s	Q	P	=	1.9x10-4,	and	did	not	18	

replicate	in	the	follow-up	sample	(1-tailed	Pfollowup	=	0.3)	(Supplementary	Figure	3B	&	3C,	fifth	19	

and	first	plots	respectively).	This	locus	has	been	observed	in	recent	11,12,17,18	but	not	earlier	BD	20	

GWAS	9,13,20,	surprisingly	given	its	relatively	large	apparent	effect	size.	Thus,	complex	polygenic	21	

architecture	as	well	as	phenotypic	heterogeneity	among	BD	GWAS	cohorts	may	contribute	to	22	

the	inconsistency	of	genome-wide	significant	findings	within	and	across	BD	GWAS	studies.	The	23	
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observed	heterogeneity	is	a	major	challenge	for	GWAS	of	psychiatric	disorders	and	calls	for	1	

careful	and	systematic	clinical	assessment	of	cases	and	controls	in	addition	to	continued	efforts	2	

to	collect	larger	sample	sizes.	3	

Of	the	30	BD	associated	loci,	8	also	harbor	associations	29–31	with	schizophrenia	(SCZ);	4	

however,	conditional	analyses	suggest	that	the	BD	and	SCZ	associations	at	3	of	the	8	shared	loci	5	

(in	the	NCAN,	TRANK1	and	chr7q22.3	[105Mb]	loci)	may	be	independent	(Supplementary	Table	6	

6).	Differential	BD	and	SCZ	associations	may	represent	opportunities	to	understand	the	genetic	7	

distinctions	between	these	closely	related	and	sometimes	clinically	difficult	to	distinguish	8	

disorders.	We	did	not	find	BD	loci	that	overlap	with	those	associated	with	major	depression32.		9	

The	confirmed	association	within	loci	containing		CACNA1C	and	other	voltage-gated	10	

calcium	channels	supports	the	rekindled	interest	in	calcium	channel	antagonists	as	potential	11	

treatments	for	BD	with	similar	examination	ongoing	for	other	genes	implicated	by	current	12	

GWAS	52.	These	processes	are	important	in	neuronal	hyperexcitability53,	an	excess	of	which	has	13	

been	reported	in	iPSC	derived	neurons	from	BD	patients,	and	which	has	been	shown	to	be	14	

affected	by	the	classic	mood	stabilizing	drug	lithium54.	Other	genes	within	novel	associated	loci	15	

include	those	coding	for	neurotransmitter	channels	(GRIN2A),	ion	channels	and	transporters	16	

(SCN2A,	SLC4A1)	and	synaptic	components	(RIMS1,	ANK3).	Further	study	will	confirm	whether	17	

or	not	these	are	the	causal	genes	in	these	loci.	18	

The	estimated	variance	explained	by	polygenic	risk	scores	(PRS)	based	on	our	BD	GWAS	19	

data	is	~8%	(observed	scale;	4%	on	the	liability	scale	55),	an	increase	from	2.8%	from	our	20	

previous	study	9.	Using	PRS,	we	found	that	BD1	cases	have	significantly	greater	schizophrenia	21	

genetic	risk	than	BD2	cases,	while	BD2	cases	have	significantly	greater	major	depression	genetic	22	

risk	than	BD1	cases,	consistent	with	a	spectrum	of	related	psychiatric	diagnoses7,56.	We	observe	23	

significant	positive	genetic	correlations	with	educational	attainment,	but	not	with	either	adult	or	24	
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childhood	IQ,	suggesting	that	the	role	of	BD	genetics	in	increased	educational	attainment	may	1	

be	independent	of	general	intelligence.	This	result	is	inconsistent	with	suggestions	from	2	

epidemiological	studies	57,	but	in	agreement	with	a	recent	clinical	study	58.		3	

In	summary,	findings	from	the	largest	genome-wide	analysis	of	BD	reveal	an	extensive	4	

polygenic	genetic	architecture	of	the	disease,	implicate	brain	calcium	channels	and	5	

neurotransmitter	function	in	BD	etiology,	and	confirm	that	BD	is	part	of	a	spectrum	of	highly	6	

correlated	psychiatric	and	mood	disorders.	7	

	8	

ONLINE	METHODS	9	

Methods	10	

GWAS	and	follow-up	cohorts.		Our	discovery	GWAS	sample	was	comprised	of		32	cohorts	from	11	

14	countries	in	Europe,	North	America	and	Australia	(Supplementary	Table	1A),	totaling	20,352	12	

cases	and	31,358	controls	of	European	descent.	A	selected	set	of	variants	(see	below)	were	13	

tested	in	7	follow-up	cohorts	of	European	descent	(Supplementary	Table	1B),	totalling	9,025	14	

cases	and	142,824	controls	(Neff	=	23,991).	The	Supplementary	Note	summarizes	the	source	and	15	

inclusion/exclusion	criteria	for	cases	and	controls	for	each	cohort.	All	cohorts	in	the	initial	PGC	16	

BD	paper	were	included	9.	Cases	were	required	to	meet	international	consensus	criteria	(DSM-17	

IV,	ICD-9,	or	ICD-10)	for	a	lifetime	diagnosis	of	BD	established	using	structured	diagnostic	18	

instruments	from	assessments	by	trained	interviewers,	clinician-administered	checklists,	or	19	

medical	record	review.	In	most	cohorts,	controls	were	screened	for	the	absence	of	lifetime	20	

psychiatric	disorders	and	randomly	selected	from	the	population.		21	

GWAS	cohort	analysis	We	tested	20	principal	components	for	association	with	BD	using	logistic	22	

regression;	seven	were	significantly	associated	with	phenotype	and	used	in	GWAS	association	23	
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analysis	(PCs	1-6,	19).	In	each	cohort,	we	performed	logistic	regression	association	tests	for	BD	1	

with	imputed	marker	dosages	including	7	principal	components	to	control	for	population	2	

stratification.	For	all	GWAS	cohorts,	X-chromosome	association	analyses	were	conducted	3	

separately	by	sex,	and	then	meta-analyzed	across	sexes.	We	also	conducted	BD1,	BD2,	and	SAB	4	

GWAS,	retaining	only	cohorts	with	at	least	35	subtype	cases	and	filtering	SNPs	for	MAF	>	0.02.	5	

Results	were	combined	across	cohorts	using	an	inverse	variance-weighted	fixed	effects	meta-6	

analysis	59.	We	used	Plink	‘clumping’	60,61	to	identify	an	LD-pruned	set	of	discovery	GWAS	meta-7	

analysis	BD-associated	variants	(P	<	0.0001,	and	distance	>500kb	or	LD	r2	<	0.1,	n	variants	=822)	8	

for	analysis	in	the	follow-up	cohorts.	Conditional	analyses	were	conducted	within	each	GWAS	9	

cohort	and	meta-analyzed	as	above.		10	

Follow-up	cohort	analysis.	In	each	follow-up	cohort	we	performed	BD	association	analysis	of	the	11	

822	selected	GWAS	variants	(when	available)	including	genetic	ancestry	covariates,	following	QC	12	

and	analysis	methods	of	the	individual	study	contributors.	We	performed	inverse	variance-13	

weighted	fixed-effects	meta-analyses	of	the	association	results	from	the	follow-up	cohorts,	and	14	

of	the	discovery	GWAS	and	follow-up	analyses.		15	

Polygenic	risk	score	(PRS)	analyses.	We	tested	PRS	for	our	primary	GWAS	on	each	GWAS	cohort	16	

as	a	target	set,	using	a	GWAS	where	the	target	cohort	was	left	out	of	the	meta-analysis	17	

(Supplementary	Table	2).	To	test	genetic	overlaps	with	other	psychiatric	diseases,	we	calculated	18	

PRS	for	DEPR	and	SCZ	in	our	GWAS	cohort	BD	cases	62.	In	pairwise	case	subtype	analyses	(Figure	19	

2,	Supplementary	Table	10),	we	regressed	subtype	case	status	(BD1	n=8044,	BD2	n=3,365,	SAB	20	

n=977)	on	the	PRS	adjusting	for	ancestry	principal	components	and	a	cohort	indicator	using	21	

logistic	regression,	and	visualized	covariate-adjusted	PRS	in	BD1	and	BD2	subtypes	(Figure	2).		22	

Linkage	disequilibrium	(LD)	score	regression.	LD	score	regression	25,63	was	used	to	conduct	SNP-23	

heritability	analyses	from	GWAS	summary	statistics.	LD	score	regression	bivariate	genetic	24	
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correlations	attributable	to	genome-wide	common	variants	were	estimated	between	the	full	BD	1	

GWAS,	BD	subtype	GWASs,	and	other	traits	and	disorders	with	LD-Hub	63.	We	also	used	LD	score	2	

regression	to	partition	heritability	by	genomic	features	47.		3	

Relation	of	BD	GWA	findings	to	tissue	and	cellular	gene	expression.	We	used	partitioned	LD	4	

score	regression	to	evaluate	which	somatic	tissues	and	brain	tissues	were	enriched	for	BD	5	

heritability.	64	We	used	summary-data-based	Mendelian	randomization	(SMR)	44	to	identify	loci	6	

with	strong	evidence	of	causality	via	gene	expression	(Supplementary	Table	9).	Since	the	aim	of	7	

SMR	is	to	prioritize	variants	and	genes	for	subsequent	studies,	a	test	for	heterogeneity	excludes	8	

regions	that	may	harbor	multiple	causal	loci	(pHET	<	0.05).		9	

Gene-wise	and	pathway	analysis.	Guided	by	rigorous	method	comparisons	conducted	by	PGC	10	

members	50,65,	p-values	quantifying	the	degree	of	association	of	genes	and	gene	sets	with	BD	11	

were	generated	using	MAGMA	(v1.06)	50.	We	used	ENSEMBL	gene	coordinates	for	18,172	genes	12	

giving	a	Bonferroni	corrected	P-value	threshold	of	2.8x10-6.	Joint	multi-SNP	LD-adjusted	gene-13	

level	p-values	were	calculated	using	SNPs	35	kb	upstream	to	10	kb	downstream,	adjusting	for	LD	14	

using	1,000	Genomes	Project	(Phase	3	v5a,	MAF	≥	0.01,	European-ancestry	subjects)	66.	Gene	15	

sets	were	compiled	from	multiple	sources.	Competitive	gene	set	tests	were	conducted	16	

correcting	for	gene	size,	variant	density,	and	LD	within	and	between	genes.	The	pathway	map	17	

(Supplementary	Figure	6)	was	constructed	using	the	kernel	generative	topographic	mapping	18	

algorithm	(k-GTM)	as	described	by	67.	See	Supplementary	Note	for	further	details.	19	

Genome	build.	All	genomic	coordinates	are	given	in	NCBI	Build	37/UCSC	hg19.	20	

Availability	of	results.	The	PGC’s	policy	is	to	make	genome-wide	summary	results	public.	21	

Summary	statistics	for	our	meta-analysis	of	the	GWAS	cohort	samples	are	available	through	the	22	

PGC	(URLs).		23	
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URLs	1	

Psychiatric	Genomics	Consortium,	PGC,	https://med.unc.edu/pgc		2	

PGC	“ricopili”	GWA	pipeline,	https://github.com/Nealelab/ricopili	3	

1000	Genomes	Project	multi-ancestry	imputation	panel,	4	

https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html	5	

LD-Hub,	http://ldsc.broadinstitute.org	6	

GTEx,	http://www.gtexportal.org/home/datasets	7	

CommonMind	Consortium,	http://commonmind.org		8	

	9	

	 	10	
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Figure	1.	Manhattan	plot	for	our	primary	genomewide	association	analysis	of	20,352	cases	and	2	

31,358	controls.	GWAS	-log10P-values	are	plotted	for	all	SNPs	across	chromosomes	1-22	3	

(diamonds,	green	for	loci	with	lead	SNP	GWAS	P	<	10-6).	Combined	GWAS+followup	-log10P-4	

values	for	lead	SNPs	reaching	genome-wide	significance	in	either	GWAS	or	combined	analysis	5	

(triangles,	inverted	if	GWAS+followup	-log10P	>	GWAS	-log10P).	Labels	correspond	to	gene	6	

symbols	previously	reported	for	published	loci	(black)	and	the	nearest	genes	for	novel	loci	7	

(blue),	at	top	if	GWAS+followup	P	<	5x10-8.		8	

Table	1.	Genome-wide	significant	bipolar	disorder	risk	loci.		9	

Figure	2.	Association	of	BD1	and	BD2	subtypes	with	schizophrenia	(SCZ)	and	major	depression	10	

(DEPR)	polygenic	risk	scores	(PRS).	Shown	are	mean	PRS	values	(1	s.e.	error	bars),	adjusted	for	11	

study	and	ancestry	covariates	and	scaled	to	the	PRS	mean	and	sd	in	control	subjects,	in	BD1	12	

(red)	and	BD2	(blue)	cases,	for	increasing	source	GWAS	P-value	thresholds	(increasing	grey)	as	13	

indicated.	P-values	(italics)	test	BD1	vs	BD2	mean	PRS,	in	logistic	regression	of	case	subtype	on	14	

PRS	with	covariates.	Results	are	detailed	in	Supplementary	Table	10.	15	
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