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Key Points

• Stem cell mobilization
with G-CSF promotes
IL-17A secretion by do-
nor CD81 MAIT cells.

• Tbet and RORgt coex-
pression identifies po-
tential IL-17A–secreting
proinflammatory pop-
ulations after allogeneic
stem cell transplantation.

Introduction

Granulocyte colony-stimulating factor (G-CSF)–mobilized peripheral blood (PB) dominates as
the stem cell source in clinical transplantation and has increased the incidence of chronic graft-
versus-host disease (GVHD).1 Preclinical studies to date suggest a pathogenic role for donor-
derived interleukin-17A (IL-17A) in chronic GVHD in the skin and lung (reviewed in MacDonald
et al2), consistent with human data demonstrating elevated IL-17A levels systemically late after
stem cell transplantation (SCT).3 However, it is clear that several nonconventional cell types
can secrete IL-17A, including innate immune cells such as gd T-cells, type 3 innate lymphoid cells,
and mucosa-associated invariant T (MAIT) cells.4,5 In the SCT setting, the contribution of these
innate donor T-cell populations to IL-17A production and GVHD has yet to be elucidated.

MAIT cells are a relatively recently defined T-cell population shown to produce proinflammatory
cytokines, including interferon g (IFN-g), tumor necrosis factor, and IL-17A5-7 in response to
microbial-derived riboflavin derivatives loaded onto the nonclassical major histocompatibility
complex-I-like molecule MR1.8-10 We and others have shown that MAIT cells can have regulatory
functions via the promotion of mucosal integrity and microbiome diversity.11-17 MAIT cells are
abundant in humans, representing;5% of total PB T cells, 10% of CD8 T cells, and up to 45% of
liver T cells.5,7 Several studies report that pathogenic donor CD81 T cells18 or inflammatory
donor Tc17 subsets drive GVHD,19-21 but the distinction between IL-17–secreting MAIT cells
and the Tc17 subset has not been comprehensively examined and thus the contribution of
MAIT cells to IL-17A production in donor grafts has not been defined. We therefore undertook
studies to directly examine human MAIT cells in the PB of healthy donors and allogeneic SCT
recipients.

Methods

Human subjects, G-CSF mobilization, and blood collection

Human ethics approval was obtained from the QIMR Berghofer and Royal Brisbane Women’s
Hospital human ethics committees with voluntary written informed consent from participating
subjects in accordance with the criteria set by the Declaration of Helsinki. Donors were treated with
G-CSF (Neupogen) at 10 mg/kg per day for 4 consecutive days with PB collected before and after
G-CSF administration. Posttransplant blood samples were collected on days 130 and 1180. Donor
median age was 52 years (range, 22-65 years); 59% of donors were male and 41% were female.
Recipient clinical characteristics are detailed in Table 1.
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PBMC isolation, FACS sorting, and cell culture

PB mononuclear cells (PBMCs) were isolated by Ficoll-Paque
centrifugation. MAIT (CD31gdTCRnegCD1611Va7.2TCR1CD81

CD4neg), CD4Tcon (CD3
1gdTCRnegCD161neg/1 Va7.2TCRnegCD41

CD8neg), and CD8Tcon (CD3
1gdTCRnegCD161neg/1Va7.2TCRnegCD81

CD4neg) cells were purified from PBMCs by fluorescence-activated
cell sorter (FACS) sorting. Equal cell numbers were cultured per well
in Iscove modified Dulbecco medium with phorbol 12-myristate
13-acetate (50 ng/mL) and ionomycin (1 mg/mL) for 18 to 24 hours
(brefeldin A was added in the final 4 hours). Plasma cytokine levels
were measured using human BD CBA Flex sets as described
elsewhere.3

Flow cytometry

Fixation and permeabilization were undertaken for intracellular
cytokine staining (BD Fix/Perm kit; BD Biosciences) and nuclear
staining (Fix/Perm kit; eBioscience) according to the manufac-
turer’s instructions. Viable cells were identified using the LIVE/
DEAD Fixable aqua dead cell staining kit (Invitrogen). Human
monoclonal antibodies (mAbs) were purchased from BioLegend
(CD3 [UCHT1/HIT3a], CD8a [RPA-T8], CD161 [HP-3G10],
Va7.2TCR [3C10], gdTCR [B1], IFN-g [4S.B3], IL-17A [BL168],
tumor necrosis factor [MAb11], IL-4 [8D4-8], Tbet [4B1O]), BD

Biosciences (CD4 [RPA-T4] and CD8a [RPA-T8]), and eBio-
science (RORgt [AFKJS-9]). CD1d tetramer was kindly pro-
vided by Prof D Godfrey (University of Melbourne). Samples were
acquired on a BD LSR Fortessa using BD FACSDiva and analyzed
using FlowJo software.

Statistical analysis

Data were analyzed using the paired Wilcoxon signed rank test or
the Mann-Whitney U test, where appropriate. P , .05 was consid-
ered statistically significant.

Results and discussion

G-CSF mobilization of donors promotes IL-17A

secretion from MAIT cells

Given our previous findings, which showed elevated levels of
plasma IL-17A in SCT recipients late posttransplant,3 we
hypothesized that the progeny of lymphoid subsets within the
donor PB graft were the likely source of this cytokine. Initially,
we examined the IL-17A levels in plasma isolated from the PB
of donors administered with G-CSF. While no differences in
IL-17A levels were noted with G-CSF administration (Figure 1A),
systemic levels were low. We next examined the frequency of
IL-17A– and IFN-g–expressing conventional T cells (Tcon) in
stimulated PBMCs isolated from the same donors. In this setting,
the proportion of the Th1 subset (here defined as CD31

CD8negIFN-g1, since CD4 expression was lost on restimulation)
was reduced with G-CSF mobilization (Figure 1B-C), while the
proportion of the Th17 subset was equivalent (Figure 1B-C).
There was no difference in the proportion of Tc1 (CD31CD81

IFN-g1) or Tc17 (CD31CD81IL-17A1) subsets with G-CSF
mobilization (Figure 1B-C). Interestingly, stem cell mobilization
with G-CSF resulted in an increase in the total number of CD31

T cells in the PB (Figure 1D), an effect that directly influences
the numbers of T-cell subsets collected in the graft following
apheresis.22 Importantly, when the total numbers of T cells
were analyzed, only the Tc17 subset was altered and increased
significantly (Figure 1E). No differences in the proportion or
number of IL-4– and IL-10–producing T cells were observed
(data not shown). It is important to note that the proportion of
CD8 T cells in whole PB secreting IL-17A was very low (,1%),
confirming that the lineage involved was a minor proportion of
circulating cells.

We next undertook experiments to directly examine the proin-
flammatory cytokine expression by MAIT cells. Given the small
starting population, and to exclude any potential stimulatory/
inhibitory contributions by myeloid populations present in PBMCs
during ex vivo culture, we FACS-sorted MAIT cells, CD4Tcon, and
CD8Tcon populations and cultured these individually. Strikingly,
this revealed MAIT cells were the only CD81 IL-17A–secreting
T-cell subset following G-CSF mobilization (Figure 1F-G), and
IL-17A1 MAIT cells coexpressed IFN-g. Importantly, the pro-
portion of IFN-g1/IL-17A1

–expressing MAIT cells and total
IL-17A1

–expressing MAIT cells was significantly increased
after G-CSF mobilization (Figure 1G). Consistently, analysis
of RORgt and Tbet expression in unfractionated PBMCs
revealed the proportion of RORgt-expressing MAIT cells was
dramatically greater than that of CD4Tcon or CD8Tcon, and this

Table 1. Patient characteristics

Recipients (n 5 15)

Enrollment period January 2013 to March 2014

Age, median (range), y 52 (27-68)

Sex

Male 11 (73.3)

Female 4 (26.7)

Disease

AML 6 (40)

ALL 4 (26.7)

MDS 1 (6.7)

LPD 3 (20)

PCM 1 (6.7)

Donor source

Unrelated PBSCs 15 (100)

Conditioning

Cy/TBI 3 (20)

Flu/Mel 12 (80)

CMV status

R1/D1 6 (40)

R1/D2 5 (33.3)

R2/D1 2 (13.3)

R2/D2 2 (13.3)

Values are presented as n (%) of patients unless otherwise indicated.
ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CMV, cytomegalovirus;

Cy, cyclophosphamide; D, donor; Flu, fludarabine; LPD, lymphoproliferative disorder
(chronic lymphocytic leukemia, Hodgkin disease, non-Hodgkin lymphoma); MDS, myelodys-
plastic syndrome; Mel, melphalan; PBSC, peripheral blood stem cells; PCM, plasma cell
myeloma; R, recipient; TBI, total body irradiation.
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was enhanced further with G-CSF mobilization (Figure 1H-I).
Concomitantly, the mean fluorescence intensity (MFI) of RORgt
expression in MAIT cells was also elevated after G-CSF mobilization
(Figure 1J).

Since IL-17A is not a stable phenotypic marker of Th17/Tc17
cells after SCT, we used RORgt expression, where this is
the case.20,23 Analysis of RORgt expression in T-cell subsets
(CD4Tcon, CD8Tcon, MAIT cells, natural killer T, and gdT, as
detailed in Figure 2A) revealed that conventional CD8 T cells
included a Tbet/RORgthi population that was similar to the previ-
ously described inflammatory Tc17 cell20 (Figure 2B). Importantly,
unlike other T-cell subsets, MAIT cells were predominantly RORgt
positive after transplant, with the frequency of RORgt expression
remaining unaltered between day 130 and day 1180, as was
also the case for the other T-cell subsets (Figure 2C). In-
terestingly, comparison of the MFI of RORgt expression within
the total CD81 T-cell compartment posttransplant showed
that MAIT cells (red) displayed an MFI similar to the putative
Tbet1RORgt1 Tc17 subset (blue), suggesting a potential capacity
for high IL-17A and IFN-g secretion posttransplant that is known
to be a pathogenic signature (Figure 2D). Moreover, Tc17 cells
accumulated after SCT in the period when chronic GVHD
manifests, while MAIT cells did not (Figure 2E). Unfortunately,

we did not have sufficient numbers to adequately power any interroga-
tion of IL-17A–secreting populations relative to chronic GVHD.

In summary, we show that MAIT cells are the major IL-17A–
secreting population within the CD81 T-cell compartment in
humans and that a putative Tc17 population accumulates
after SCT. Importantly, we demonstrate that IFN-g/IL-17A–
coexpressing MAIT cells, a phenotype associated with chronic
GVHD,19,24 are increased following G-CSF mobilization. Thus
MAIT cells are likely mobilized from mucosal tissue by mecha-
nisms similar to stem cells from marrow with enhanced IL-17A
secretion in response to expanded myeloid populations secreting
permissive cytokines (eg, IL-12/IL-6–secreting monocytes). This
would be consistent with recent findings showing human MAIT
cells recirculate via lymph by tissue egress.25 Our findings
highlight the effects of G-CSF mobilization on MAIT-cell frequency
and function. A recent study has demonstrated a correlation
between donor MAIT cell numbers in the blood and gastrointes-
tinal tract microbiome constituents known to be associated with
protection from acute GVHD.17 We thus suggest that large,
adequately powered, clinical studies are needed to correlate
known IL-17A–secreting cellular populations within donor grafts
and in blood and tissue after SCT, with the subsequent develop-
ment of GVHD.
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Figure 1. Blood MAIT cells are modified by G-CSF mobilization. (A) Plasma IL-17A levels before and after G-CSF administration (n 5 20 donors). (B-C) Frequency and

representative FACS plots of Th17 (CD31CD8negIL-17A1), Th1 (CD31CD8negIFN-g1), Tc17 (CD31CD81IL-17A1), and Tc1 (CD31CD81IFN-g1) subsets in PBMCs (n 5 18

donors). (D) Number of CD31 T cells per milliliter PB (n 5 20 donors); ***P 5 .0002. (E) Number of Th17 (CD31CD8negIL-17A1), Th1 (CD31CD8negIFN-g1), Tc17 (CD31

CD81IL-17A1), and Tc1 (CD31CD81IFN-g1) subsets per milliliter PB (n 5 18 donors); **P 5 .0056, Tc17 number before vs after G-CSF. Data were analyzed using the

paired Wilcoxon signed rank test and are presented using box-and-whisker plots showing the median with 25th percentiles (whiskers represent minimum to maximum values).

PBMC were cultured with phorbol 12-myristate 13-acetate/ionomycin for 24 hours prior to intracellular cytokine staining. (F) Representative FACS plots depicting IFN-g

and IL-17 expression in sorted donor MAIT, CD4Tcon, and CD8Tcon populations stimulated ex vivo with phorbol 12-myristate 13-acetate/ionomycin for 18 hours prior to

intracellular cytokine staining. (G) Frequency of IFN-g–, IFN-g/IL-17A–, and total IL-17A–expressing MAIT, CD4Tcon, and CD8Tcon populations (n 5 5-8 donors); **P 5 .004, frequency

of IFN-g/IL-17A–expressing MAIT cells before vs after G-CSF; *P 5 .03, frequency of total IL-17A–expressing MAIT cells before vs after G-CSF. (H) Representative FACS plots showing

Tbet and RORgt expression by donor MAIT, CD4Tcon, and CD8Tcon populations in unfractionated PBMCs. (I) Frequency of RORgt-expressing MAIT, CD4Tcon, and CD8Tcon populations

(n 5 17 donors); *P 5 .04. (J) Geometric MFI of RORgt expression in donor MAIT cells; **P 5 .006. Data are presented as mean 6 standard error of the mean.
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