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SUMMARY

Microbial organisms of the human gut microbiome do not exist in isolation but form complex and

diverse interactions to maintain health and reduce risk of disease development. The organization of

the gut microbiome is assumed to be a singular assortative network, where interactions between

operational taxonomic units (OTUs) can readily be clustered into segregated and distinct commu-

nities. Here, we leverage recent methodological advances in network modeling to assess whether

communities in the human microbiome exhibit a single network structure or whether co-existing

mesoscale network architectures are present. We found evidence for core-periphery structures in

themicrobiome, supported by strong, assortative community interactions. This complex architecture,

coupled with previously reported functional roles of OTUs, provides a nuanced understanding of how

the microbiome simultaneously promotes high microbial diversity and maintains functional redun-

dancy.

INTRODUCTION

The human intestinal (gut) microbiome is a complex biological system, whose functions andmetabolic pro-

cesses are the product of multiple interactions between microbial operational taxonomic units (OTUs) (Ze-

lezniak et al., 2015). These diverse interactions can arise from direct or passive mechanisms and may result

in beneficial (commensal or mutualistic), neutral, or detrimental (competitive or parasitic) effects to all

OTUs involved (Faust and Raes, 2012). Perturbations to microbial interactions may manifest as microbial

dysbiosis and have been implicated in a number of pathologies including inflammatory bowel disease

(Halfvarson et al., 2017), metabolic dysregulation (Sanz et al., 2014), and neuropsychiatric disorders (Jiang

et al., 2015). Understanding the structure, function, and composition of the human microbiome has there-

fore become an active area of research (The HumanMicrobiome Project Consortium et al., 2012). Interest in

the microbiome has also coincided with the adoption of network science in biology, offering an armory of

conceptual and analytical tools to model microbial interactions.

Using co-occurrence and co-exclusion relationships between individual OTUs, network-based approaches

allow us to gain insight into the healthy and pathological properties of the microbiome, including organiza-

tional features that may contribute to system resilience or vulnerability (Baldassano and Bassett, 2016; Loz-

upone et al., 2012). Within the microbiome, OTUs are not expected to interact equally but to form smaller

communities characterized by dense functional associations. An emerging approach to study the structure

and function of the microbiome is therefore to define and characterize co-occurrence interactions at the

mesoscale (community level). Mesoscale defines an intermediate level between that of individual OTUs

and the whole microbiome. At themesoscale, networks can exhibit different community structures, including

assortative, disassortative, core-periphery, or mixed interactions (Betzel et al., 2018) (Figures 1A–1D). The

dominant view emerging from existing work is that the human gut microbiome exhibits segregated and

autonomous assortative communities, where OTUs sharing similar phylogenetic or functional properties

have a tendency to preferentially cluster together. Evidence for a singular assortative structure in the micro-

biome has been observed in both empirical (Jackson et al., 2018) and computational modeling work.

Although previous work has provided important insights, the algorithms and heuristic approaches used to

detect communities have certain design features such that they can detect only assortative communities.

Modularity maximization, for example, is among the more popular community detection methods used in

the field. However, this method is only capable of detecting groups of OTUs that are densely intra-con-

nected and sparsely inter-connected: an assortative or modular community structure. Consequently, it is

unclear whether the detected assortativity represents a methodological bias or is a reflection of the gut
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Figure 1. Representation of Possible Community Structures at the Mesoscale Level, Visualized as a Force-

Directed Graph Layout

(A–C) Mesoscale network structures can be (A) assortative, where the internal density of interactions (within community)

exceeds the external density of interactions (between communities); (B) core-periphery, where there is a central core

(connected to the rest of the network) and periphery (with minimal interactions); or (C) disassortative, where the external

density of interactions (between communities) exceeds the internal density of interactions (within community).

(D) Mesoscale structures can also occur simultaneously in the network, described as mixed or co-existing architectures

(Betzel et al., 2018).
microbiome community structure. The current understanding of the microbiome architecture may

therefore be too simplistic. Recent work on microbial interactions support the notion that the microbiome

exhibits not only assortative, but also cores, peripheries, and disassortative communities. That is, the mi-

crobiome may exhibit densely connected ‘‘core’’ OTUs, whose metabolic and enzymatic processes exert

a particularly beneficial role to the rest of the network, including the efficient transfer of nutrients, metab-

olites, or by-products (Ze et al., 2013). From an ecological perspective, a conserved core-periphery struc-

ture is consistent with the concept of a keystone guild. Keystone guilds—groupings of ‘‘core’’ or keystone

OTUs—have been described as highly connected structures that exert a considerable influence on the

structure and stability of the microbiome (Power et al., 1996; Banerjee et al., 2018). The ability to conform

tomultiple, co-existing network configurations may therefore reflect an ecological or evolutionary selective

advantage to the microbiome. Specifically, this ability may be critical for the human microbiome, where

environmental perturbations are frequently introduced, including dietary changes and/or antibiotic admin-

istration (Buffie et al., 2012).

Extending upon previous work, we studied the mesoscale architectures underpinning the human gut mi-

crobiome by applying the weighted stochastic block model (WSBM), a flexible generative algorithm for de-

tecting community structure (Aicher et al., 2014). Unlike modularity maximization, where a network can only

be partitioned into densely connected modular communities (Figure 1A), the WSBM also considers alter-

native patterns of connectivity that are less spatially compact (Figures 1B–1D). This provides the WSBM

the flexibility to uncover multiple network structures beyond assortativity, including disassortative and
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core-periphery interactions between communities. The approach has recently been validated to partition

and assign community network structures in models representing interactions between remote brain re-

gions (Betzel et al., 2018; Faskowitz et al., 2018). Using the WSBM framework, we sought to (1) establish

whether the human microbiome exhibits a unique or heterogeneous mesoscale network architecture; (2)

understand the patterns of microbial co-occurrence relationships within and between communities; and

(c) identify hub OTUs that may play a key role in supporting the mesoscale network structure or function.

Based on emerging research, we hypothesized that the microbiome will exhibit both assortative and non-

assortative structures, including core-periphery participation. From a taxonomic perspective, we expected

closely related OTUs to form strong, assortative co-occurrence interactions. Non-assortative communities,

however, are expected to exhibit greater taxonomic microbial diversity. Information on individual OTUs

that exhibit specific network features, including high between- or within-community interactions, may pro-

vide additional insights into the key organizational principles supporting the microbiome.

RESULTS

Applying the Weighted Stochastic Block Model to the Human Microbiome

We created a microbial interaction network by fitting the WSBM to a dataset of 58 healthy human intestinal

microbiomes, representing 370 nodes (OTUs). We then replicated the analyses in a large (n = 528), inde-

pendent, and publicly available dataset. Using a Bayesian model optimization method (details in Trans-

parent Methods), the microbiome network was partitioned into k = 12 communities, based on where the

mean marginal log likelihood (a measure of model fitness) begins to plateau (Figure 2A; Figure S1 for repli-

cation). Note that we also performed a control analysis at k = 13, which yielded a similar consensus partition

andmesoscale structure. At k = 12, we repeated theWSBM for 65 fits, each returning an independent parti-

tion assigning each OTU to one of 12 communities. The consistency of the community assignment was as-

sessed using normalizedmutual information (NMI) from the output of eachWSBMpartition. To test that the

consistency of 65 detected community partitions were above chance level, the results were benchmarked

against partitions that were achieved by fitting the WSBM to null networks. Microbiome community parti-

tions were highly consistent with each other (NMI, 0.70G 0.02), whereas null networks had low consistency

between each WSBM run (NMI, 0.38 G 0.02). The NMI values obtained from comparing microbiome par-

titions were significantly higher than those obtained from the null (P < 0.001) (Figure S2). To estimate the

impact of inter-subject variability in community detection, we performed a cross-validation leave-one-out

(LOO) analysis (Figure S3). Results confirm that our group-level co-occurrence network was representative

across 58 samples, with low inter-individual variability when compared with the original group-level matrix

(as assessed by one minus Mantel’s test statistic, m = 0.02 G 0.03) (Figure S3).

We subsequently reduced 65 repetitions from themicrobiome dataset to a single consensus partition using

a progressive median alignment method (Transparent Methods). The alignment algorithm detects consis-

tent assignment to communities and reduces the complexity of the model if OTU assignment to any given

community is low. Across 65 WSBM fits, three communities had low consistency in nodal assignment (i.e.,

OTUs assigned to these communities had equal preference for assignment with at least one other commu-

nity). These communities were subsequently removed from themodel, andOTUs were assigned to another

community that they were more consistently aligned to. The final number of communities was therefore 9,

ranging in size from 12 to 80 OTUs (Figure 2B). A complete list of the final consensus partition is presented

in Table S1. We visualized the overlap between computational (community assignment) and taxonomic de-

compositions of the OTUs in Figures 2B–2D. As the WSBM learns from both the presence and weight of

edges, thus far we have included both positive and negative interactions. Thus, the mesoscale analysis pre-

sents a coarse-graining of the network’s overall architecture, accounting for the polarity of microbial inter-

actions. However, given the specificity of our subsequent network-based statistics, we have opted to

restrict our analyses to positive correlations only (thresholded at 0.4). This is a common approach in micro-

biome network studies to reduce statistical noise (Poudel et al., 2016; Jackson et al., 2018), as accurately

interpreting the ecological significance of weak positive, and negative correlations is difficult in composi-

tional data (i.e., relative abundance).

Evidence for the Diversity of Mesoscale Architectures in the Microbiome

First, we sought to establish whether communities in the microbiome exhibit a single mesoscale structure

or whether we find evidence of many different types. To answer this, we used community motif participa-

tion, an approach recently developed and validated to characterize mesoscale interactions between

communities of brain regions (Betzel et al., 2018) (Transparent Methods). To estimate an OTU’s motif
382 iScience 22, 380–391, December 20, 2019
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Figure 2. Bayesian Model Selection Using the Weighted Stochastic Block Model to Define the Microbial

Interaction Network

(A) We fit theWSBM algorithm across a number of models between k = 5 to k = 18, repeated 65 times each. The consensus

partition, k = 12 (green, dashed), was achieved when mean marginal log likelihood, LogPr (blue, solid) plateaus.

(B) Co-occurrence microbial interaction network, where each node represents an OTU and edges represent pairwise

abundance relationships between them. The co-occurrence network has been reduced for visualization, representing 370

nodes and 4,854 edges at a Pearson correlation cutoff of r = 0.3. OTUs are colored according to community label.

(C) Composition (%) of each community based on taxonomic assignment of the OTUs at the family/genus level.

(D) The same co-occurrence network as seen in (B), but where OTUs have been colored according to taxonomic

assignment at the family/genus level.
participation, we first defined a community motif for every pair of communities as the average connection

weight within and between those communities. Based on these average connection weights, the commu-

nities comprising each motif could be uniquely classified as assortative, disassortative, core, or periphery.

Next, we mapped community-level classifications back onto the individual OTUs that comprise each com-

munity. Finally, for a given OTU, we calculated motif participation as the proportion of times its community

participated in a given motif.

Results showed that the healthy human microbiome exhibited a preference for assortativity, with

embedded core-periphery mesoscale architectures. No disassortative interactions were detected across

all WSBM fits. We tested this preference for assortativity by calculating a maximum assortativity score,

providing an indication of how often each community formed exclusive assortative motifs with all

communities (i.e., 100% assortative interactions). Over 65 WSBM fits, maximum assortativity therefore rep-

resents the proportion of times the minimum within-community interactions exceeded the maximum
iScience 22, 380–391, December 20, 2019 383



Community

Label

Number of

Nodes

Core

Participation

(%)

Peripheral

Participation (%)

Community

Assortativity

Strength

I 24 0.04 G 0.02 0.01 G 0.02 0.08 G 0.11 32.85 G 5.30

II 30 0.11 G 0.00 0.00 G 0.00 0.56 G 0.09f 43.99 G 3.99

III 51 0.10 G 0.04 0.01 G 0.03 0.14 G 0.07 37.10 G 5.80

IV 64 0.02 G 0.03 0.19 G 0.16c 0.02 G 0.10 17.50 G 3.55

V 68 0.00 G 0.01 0.27 G 0.13d �0.05 G 0.05 23.86 G 5.64

VI 12 0.02 G 0.03 0.44 G 0.10e �0.01 G 0.09 28.43 G 4.54

VII 80 0.35 G 0.17a 0.13 G 0.14 0.03 G 0.07 41.72 G 7.15

VIII 25 0.31 G 0.13b 0.08 G 0.13 0.35 G 0.17g 22.21 G 4.32

IX 16 0.01 G 0.01 0.03 G 0.05 0.31 G 0.10h 29.68 G 3.44

Table 1. Community-Level Network Statistics

Reported as mean G SD.
ap Value = 2.68 3 10�38.
bp Value = 1.80 3 10�08.
cp Value = 8.68 3 10�04.
dp Value = 1.80 3 10�16.
ep Value = 5.66 3 10�12.
fp Value = 5.15 3 10�40.
gp Value = 8.92 3 10�09.
hp Value = 6.33 3 10�05.
between-community interactions for any pair of communities (Figure 1). On average, each OTU’s commu-

nity exhibitedmaximum assortativity 36.94G 8.45% of the time.We then calculated the proportion of times

anOTU’s community participated in any other type of structural motif beyond assortativity (e.g., a minimum

of one pair of community interactions) and observed that as a whole network, core and peripheral interac-

tions occurred 12.56G 16.60% and 13.25G 15.87% of the time, respectively. Importantly, comparative ob-

servations of assortative, core, and periphery motif interactions were also observed in our replication

dataset (Figure S1). Replication of the above-mentioned findings in a distinct dataset (larger sample

size, different age range, and broad ethnic diversity) suggests that the co-existence of complex architec-

tures may be a ubiquitous property to the microbiome. The large variances observed between participa-

tion in core and periphery structures suggests each OTU’s community may exhibit dissimilar patterns of

mesoscale proportions, which we investigate below.

Microbial Communities Exhibit Unique Mesoscale Signatures

The above findings corroborate previous analyses of microbiome mesoscale structure, identifying a mostly

assortative organization (Baldassano and Bassett, 2016). Using the common community detection algo-

rithm, modularity maximization, we further support the existence of a dominant assortative structure in

this dataset (Figure S4). However, we also find evidence of non-assortative (primarily core-periphery) inter-

actions. This suggests that a strictly assortative description may not fully characterize the diversity of meso-

scale communities. We next sought to establish whether core-periphery interactions occurred uniformly

between all nine communities (with each exhibiting a small degree of core-periphery interactions with at

least one other community) or whether these observations are driven by a small subset of non-assortative

interactions. We calculated the average number of times (over 65 WSBM fits) each community (Figure 2B)

participated with other communities in a core or peripheral motif (Table 1). Results showed that most com-

munities exhibited some degree of participation in non-assortative motifs (as shown by the participation in

core and peripheral motifs) but were not uniformly distributed. To establish the significance of core and

periphery mesoscale interactions, we used a permutation-based null model to create distributions repre-

senting the size and number of each community observed in the empirical dataset (Figure S5). When

benchmarked against random community assignments, core motif participation was significantly higher

in communities VII and VIII, whereas communities IV, V, and VI exhibited significantly higher participation
384 iScience 22, 380–391, December 20, 2019



in peripheral mesoscale motifs (Table 1, Figure 2B) (P < 0.05). These communities are characterized by a

range of different OTUs classified at broader (phylum) and finer (family/genus) taxonomic levels, including

four dominant bacterial phyla: Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria (Figure 2C).

To gain a more nuanced understanding of the mesoscale interactions between OTU communities, we addi-

tionally calculated nodal assortativity (normalized to the size of each community) (Faskowitz et al., 2018) and

nodal strength (Rubinov and Sporns, 2010) (Transparent Methods) and mapped these onto community-level

patterns (Table 1). In this context, positive assortativity coefficients (>0) should therefore be interpreted as ex-

hibiting assortative interactions, whereas negative coefficients (<0) suggest this community may participate in

disassortative interactions. Communities with assortativity coefficients of�0 do not exhibit strong assortative

interactions as detected using theWSBM. As the WSBM algorithm can detect simultaneous mesoscale struc-

tures, it is important to note that a high assortativity coefficient does not preclude the existence of core or

periphery participation (Table 1). Communities II, VIII, and IX exhibited the strongest preference for commu-

nity assortativity, significantly higher than what would be expected based on the size of these communities

(P < 0.05). These communities are characterized by robust co-occurrence interactions between taxonomically

related OTUs: Community II and IX exclusively consisted of the OTUs related to the Bacteroides genus (Fig-

ure 2C). Although results have thus far suggested that assortative structures coincided with low microbial di-

versity, there are notable exceptions. Community VIII exhibited both assortative and core motifs and is

composed of higher taxonomic microbial diversity at the genus level (Figure. 2C). The simultaneous existence

of mesoscale architectures may suggest that assortativity is not a simple derivative of taxonomic relatedness.

This hypothesis is further confirmed by an additional analysis assessing community assortativity as a product

of taxonomic lineage. When OTUs were forced into communities based on their taxonomic classification at

the phylum and family/genus levels (as per Figure 2D), we observed that mean nodal assortativity was lower

compared with the WSBM-derived results.

Determining the Functional Contribution of Communities

To gain insight into the functional contribution of each community, we used PICRUSt (Phylogenetic Inves-

tigation of Communities by Reconstruction of Unobserved States) Langille et al., 2013, a validated compu-

tational modeling approach that predicts a microbial community’s metagenome from its 16S profile. An

estimated functional contribution (i.e., to determine the degree to which OTUs contribute to specific meta-

genomic processes, %) was attributed at the OTU level. This information was used to estimate the func-

tional contribution of each WSBM community. Results suggest that each community performs a broad

repertoire of functional processes (Figure S6). Communities II and IX (composed exclusively of Bacteroides)

exhibited the largest total functional contribution (%) and were particularly enriched for metabolic and ge-

netic information processing. Results also highlight that some distinct functions were supported by specific

communities. For example, processes facilitating cell motility (under Cellular Processes) are almost exclu-

sively supported by community V (with a small contribution from community IV).

Identification of Hubs

Insights into the functional role of individual OTUs in the mesoscale network were then assessed by

comparing interactions within (within-community Z score, Zi) and outside (participation coefficient, PC)

WSBM-derived community labels (Figure 2B) (Guimerà and Amaral, 2005) (Transparent Methods). We

used previously validated cutoffs as a broad guideline (Guimerà and Amaral, 2005) and subsequently as-

signed each OTU into one of the two broad classifications: non-hubs nodes and community hubs (Figures

3A, 3B, and 4A). At this stage, the classification of community hubs does not take into account the total

abundance of the OTU within the microbiome. For example, a prevalent OTU might share many co-occur-

rences within the system exclusively by virtue of their sheer abundance (Banerjee et al., 2018). To make the

distinction between dominant and true connector/provincial hubs, we assessed each candidate hub in

terms of the relative abundance (%) of its corresponding genus (or family, where required). OTUs whose

genus/family had a total relative abundance greater than 5%were re-classified as dominant hubs (Figure 3).

Candidate OTUs with less than 5% total relative abundance in the microbiome were referred to as ‘‘true’’

provincial or connector hubs. We then visualized the proportion of ‘‘true’’ provincial and connector hubs,

dominant hubs, and non-hub OTUs within each community (Figure 4B), as well as the proportion within

each genus/family classification (Figure 4C). As the dichotomy between provincial and connector

classifications within dominant hubs is informative, we also visualize the decomposition of provincial

and connector hubs for the three dominant genera before they were re-classified as dominant hubs

(Figures 4D–4F).
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Figure 3. Classification of Individual OTUs Based on Within-and Between-Community Interactions and Relative

Abundance

(A) The classification of community hubs (provincial and connector) was based on high within-community Z score (>0).

(B) The classification of non-module hubs (ultra-peripheral, peripheral, and non-hub connectors) was based on low within-

community Z score (<0).

(C) Provincial and connector hubs were further assessed in terms of their relative abundance (%) at the genus level. OTUs

whose genus had >5% relative abundance in the microbiome were classified as ‘‘Dominant’’ hubs. The proportion of

dominant, connector, and provincial hubs were finally visualized for each mesoscale community (Figure 4).
Dominant hubs including Faecalibacterium, Bacteroides, and Lachnospiraceae were ubiquitous to all com-

munities (red in Figures 4B and 4C) but particularly enriched within communities I, II, and IX (54%, 50%, and

69%, respectively). Specifically, community IX had a high prevalence of dominant hubs that, before re-clas-

sification, exhibited characteristics of provincial hubs. True provincial hubs, characterized by high within-

and low between-community interactions, were proportionately higher in communities IV and V (23%

and 13%, respectively) (green in Figure 4A). For OTUs classified as connector hubs, a high proportion

originated from core and peripheral communities VI and VII, exhibiting both strong within- and be-

tween-community interactions (Figure 4C) (Rubinov and Sporns, 2010). Community VIII exhibited both

core and assortative mesoscale motifs but showed a low prevalence of provincial and connector hubs.

This suggests that the ability of this community to participate in core-periphery structures may largely

be driven by dominant hubs. Ultra-peripheral (mauve in Figure 4A) and peripheral (red in Figure 4A)

OTUs were uniformly present across all communities.

DISCUSSION

This study highlights the co-existence of diverse mesoscale network architectures in the healthy human gut

microbiome. Our results provided an alternative interpretation of the microbiome’s network organization,

in which it exhibited a principal mesoscale structure of assortativity, alongside the existence of clearly

delineated cores and peripheries. Our innovative use of advanced network modeling methods provides

significant advances to the understanding of the human microbiome, which, until now, has been concep-

tualized as a singular assortative community structure (Jackson et al., 2018).

The detection of both assortative and core-periphery architectures in the microbiome raises questions

about the ecological and evolutionary selection processes that shaped this mesoscale formation. We first
386 iScience 22, 380–391, December 20, 2019
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Figure 4. Role of Individual OTUs Based on Within- and Between-Community Co-occurrences

(A) OTUs were partitioned into non-community hubs (Z < 0) or community hubs (Z > 0) based on their within-community Z

score (Guimerà and Amaral, 2005). Non-community hubs were then grouped into ultra-peripheral (PC z 0, mauve),

peripheral (PC < 0.625, red), non-hub connectors (0.625 < PC : 0.8, yellow), and non-hub kinless nodes (PC > 0.8, dark

purple). Non-community hubs were then grouped into ultra-peripheral (PCz 0, mauve), peripheral (PC < 0.625, red), non-

hub connectors (0.625 < PC < 0.8, yellow) and non-hub kinless nodes (PC > 0.8, no detectedOTUs). Community hubs were

grouped into provincial hubs (0 < PC < 0.3, green), connector hubs (PC < 0.75, blue), or kinless hubs (PC > 0.75, no

detected OTUs).
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Figure 4. Continued

(B–F) (B) Relative proportion (%) of provincial hubs (green), connector hubs (blue), dominant hubs (red), and non-hubs

(gray) within each community and (C) when OTUs are assigned to their genus/family level, using the classification pipeline

described in Figure 3. Relative proportion of provincial, connector, and non-hub nodes within each community for the

dominant hubs (before reclassification), including all OTUs belonging to (D) Bacteroides, (E) Lachnospiraceae, and (F)

Faecalibacterium.
consider the notion that assortativity is an important feature for microbiome structure and function. Under-

standing the advantage of an assortative topology has long been a focus in the study of biological net-

works, including brain networks (Sporns and Betzel, 2016), protein interactions (Zhang et al., 2010), and

complex systems in general (Noldus and Van Mieghem, 2015). Several studies support the notion that as-

sortative communities emerge through environmental filtering (Levy and Borenstein, 2013), whereas others

suggest that assortativity represents a selective advantage to increase network robustness and functional

redundancy. However, the view that microbial communities exclusively function as independent modules is

at odds with findings supporting the existence of integrative core-periphery assemblages in biological sys-

tems. This evidence supports the existence of ‘‘spatially distinct and highly connected’’ (core) structures as

a means of facilitating efficient interactions between communities (Baldassano and Bassett, 2016; Banerjee

et al., 2018; Mouquet et al., 2013). In the context of the human gut microbiome, these interactions may arise

from complementary resource acquiring strategies, niche partitioning, or the transfer of resources,

including metabolites. Groupings of highly connected hubs, analogous to a keystone guild, may therefore

decrease the distance between disparate communities comprising the network and support greater micro-

bial diversity and species survival (Sugihara and Ye, 2009). Although core-periphery structures promote in-

teractions between spatially disparate communities, a network largely dependent on structures increases

the risk of ecosystem collapse (Sugihara and Ye, 2009). For example, when a core community or hub is per-

turbed, significant downstream effects to the wider network may ensue, potentially resulting in microbial

dysbiosis. The vulnerability of core-periphery structures is supported by computational work, demon-

strating widespread perturbation of the healthy microbiome network following the simulated removal of

few hub species (Baldassano and Bassett, 2016). That is, the co-existence of core-periphery and assortative

mesoscale structures allow optimal interactions between OTUs while maintaining functional redundancy,

respectively (Otokura et al., 2016).

The detection of diverse and co-existing network architectures is critical to understand the broad reper-

toire of biological phenomena underpinning OTU interactions. A prominent feature of the detected

network architecture is the development of strong assortative co-occurrence interactions among closely

related OTUs, a finding consistent with previous work (Chaffron et al., 2010; Jackson et al., 2018). This

observation is in line with two converging hypotheses regarding the functional organization of the micro-

biome. The first hypothesis postulates that the assortative grouping of closely relatedOTUsmay be a prod-

uct of environmental filtering (Stuart, 2018), where challenges including nutrition availability and substrate

conditions have favored specific microbial traits. These traits are likely shared among genetically related

OTUs, explaining their co-occurrence in the network. It has also been suggested that closely related

OTUs have overlapping functional roles, supporting a high degree of compensation or degeneracy (For-

nito et al., 2015). However, individual OTUs will still need to maintain minimal niche differentiation, as

competitive exclusion remains a dominant driver of co-occurrence patterns (Stuart, 2018). In our WSBM

analysis, we observed two assortative communities (II and IX) characterized by strong within-community

co-occurrences between OTUs of the abundant genus Bacteroides. Specifically, community IX was en-

riched with provincial hubs above what would be expected in a random null network, suggesting this com-

munity exhibits high local integration. Bacteroides are known to exhibit a high degree of functional

flexibility in response to changing substrate conditions in the microbiome (Rios-Covian et al., 2017). This

is supported in our predictedmetagenomics assessment at both theOTU and community level, suggesting

that Bacteroides indeed exhibits a diverse repertoire of functional capacity, alongside the largest overall

contribution to microbiome processes (Figure S6).

The above-mentioned results are consistent with previous community detection methods, including those

undertaken by modularity maximization algorithms (Jackson et al., 2018). However, our WSBM analyses

have also detected coexisting mesoscale structures. Communities IV to VIII exhibited significant assorta-

tive, core, and/or periphery interactions and were further characterized by high taxonomic microbial diver-

sity (Figures 2C and 2D). Evidence for ‘‘true’’ (those characterized by low relative abundance in the system)

connector and provincial hubs suggest they have a central role in facilitating network integration (Fornito
388 iScience 22, 380–391, December 20, 2019



et al., 2015). This is in line with previous work (Ze et al., 2013) demonstrating that the growth and survival of

many OTUs may rely on interactions with a few core OTUs. The existence of connector hubs in a core-pe-

riphery architecture also presents some risks, as perturbation to these nodes may result in whole-network

destabilization.

Our mesoscale assessment thus far has distilled important organizational principles of the gut microbiome.

Just as important, however, is to understand how network topological properties inform function. We per-

formed a metagenomics assessment to discern generalizable functional patterns both within and between

our WSBM-derived communities (Figure S6). Although we observed some evidence for a mono-functional

system (i.e., distinct functions performed by single or few communities), the microbiome can be better

described as a multi-functional system (Moya and Ferrer, 2016). That is, irrespective of taxonomic compo-

sition or diversity, each community contributes to a broad number of overlapping functions. Our findings

are consistent with recent work (Heintz-Buschart and Wilmes, 2018; Zhu et al., 2015) and supports the gut

microbiome’s preference to maintain high functional redundancy and stability.

Limitations of the Study

Community detection algorithms, like theWSBM, can offer powerful exploratory tools to elicit insights into

the macroscopic (large-scale) and microscopic (e.g., microbe-microbe) patterns underpinning ecological

networks. However, it is important to note that no algorithm can capture ground truth mesoscale architec-

ture (Peel et al., 2017). Thus, the insights gained via our approach must be complemented with empirical

data to allow a more direct assessment of the posited patterns of interactions and their functional roles.

While the community partitions achieved by the WSBM draws parallels with known biological mechanisms,

we have balanced the interpretation of the results to reflect these limitations. It is also important to

consider the limitations associated with 16S rRNA datasets. Although OTUs were clustered based on

the standard 97% similarity thresholds, compared with deeper sequencing techniques (i.e., shotgun meta-

genomics sequencing), our taxonomic classification lacks the sensitivity to detect all bacterial species. In

addition, owing to the bias introduced by the PCR amplification step during the 16S rRNA gene procedure,

not all microbes may be represented in the dataset. Therefore, potentially significant co-occurrence inter-

actions between individual species or strains may not have been captured through 16S rRNA gene analysis.

Future work adopting metagenomics shotgun sequencing (Almeida et al., 2019) is required to confirm our

findings. Such analysis may also achieve a more nuanced level of specificity, as well as facilitate the analysis

of directed networks. Directed networks may provide a more complete picture of biological interactions,

including the directionality of trophic, metabolic, and signaling pathways of bacteria, fungi, and archaea.

In summary, our study highlights the importance of characterizing heterogeneous and co-existing meso-

scale architectures to understand the ecology and functions of the human gut microbiome. We reported

two independent microbial co-occurrence networks exhibiting core-periphery structures, supported by a

backbone of strong assortative community interactions. These findings represent an advance over the cur-

rent view of a modular and segregated microbial environment, presenting opportunities for research and

clinical endeavors on the gut microbiome.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Guimerà, R., and Amaral, L. (2005). Cartography
of complex networks: modules and universal
roles. J. Stat. Mech. 2005, P02001-1–P02001-13,
nihpa35573.

Halfvarson, J., Brislawn, C.J., Lamendella, R.,
Vazquez-Baeza, Y., Walters, W.A., Bramer, L.M.,
390 iScience 22, 380–391, December 20, 2019
D’amato, M., Bonfiglio, F., Mcdonald, D.,
Gonzalez, A., et al. (2017). Dynamics of the human
gut microbiome in inflammatory bowel disease.
Nat. Microbiol. 2, 17004.

Heintz-Buschart, A., and Wilmes, P. (2018).
Human gut microbiome: function matters. Trends
Microbiol. 26, 563–574.

Jackson, M.A., Bonder, M.J., Kuncheva, Z., Zierer,
J., Fu, J., Kurilshikov, A., Wijmenga, C.,
Zhernakova, A., Bell, J.T., Spector, T.D., and
Steves, C.J. (2018). Detection of stable
community structures within gut microbiota co-
occurrence networks from different human
populations. PeerJ 6, e4303.

Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin,
Y., Wang, W., Tang, W., Tan, Z., Shi, J., et al.
(2015). Altered fecal microbiota composition in
patients with major depressive disorder. Brain
Behav. Immun. 48, 186–194.

Langille, M., Zaneveld, J., Caporaso, J., and
Mcdonald, D. (2013). Predictive functional
profiling of microbial communities using 16S
rRNA marker gene sequences. Nat. Biotechnol.
31, 814–821.

Levy, R., and Borenstein, E. (2013). Metabolic
modeling of species interaction in the human
microbiome elucidates community-level
assembly rules. Proc. Natl. Acad. Sci. U S A 110,
12804.

Lozupone, C.A., Stombaugh, J.I., Gordon, J.I.,
Jansson, J.K., and Knight, R. (2012). Diversity,
stability and resilience of the human gut
microbiota. Nature 489, 220–230.

Mouquet, N., Gravel, D., Massol, F., and
Calcagno, V. (2013). Extending the concept of
keystone species to communities and
ecosystems. Ecol. Lett. 16, 1–8.

Moya, A., and Ferrer, M. (2016). Functional
redundancy-induced stability of gut microbiota
subjected to disturbance. Trends Microbiol. 24,
402–413.

Noldus, R., and Van Mieghem, P. (2015).
Assortativity in complex networks. J. Complex
Netw. 3, 507–542.

Otokura, M., Leibnitz, K., Shimokawa, T., and
Murata, M. (2016). Evolutionary core-periphery
structure and its application to network function
virtualization. Nonlinear Theory Appl. IEICE 7,
202–216.
Peel, L., Larremore, D.B., and Clauset, A. (2017).
The ground truth about metadata and
community detection in networks. Sci. Adv. 3,
e1602548.

Poudel, R., Jumpponen, A., Schlatter, D.C.,
Paulitz, T.C., Gardener, B.B.M., Kinkel, L.L.,
and Garrett, K.A. (2016). Microbiome
networks: a systems framework for identifying
candidate microbial assemblages for disease
management. Phytopathology 106, 1083–
1096.

Power, M.E., Tilman, D., Estes, J.A., Menge,
B.A., Bond, W.J., Mills, L.S., Daily, G., Castilla,
J.C., Lubchenco, J., and Paine, R.T. (1996).
Challenges in the Quest for Keystones:
identifying keystone species is difficult—but
essential to understanding how loss of
species will affect ecosystems. BioScience 46,
609–620.

Rios-Covian, D., Salazar, N., Gueimonde, M., and
De Los Reyes-Gavilan, C.G. (2017). Shaping the
metabolism of intestinal Bacteroides population
through diet to improve human health. Front.
Microbiol. 8, 376.

Rubinov, M., and Sporns, O. (2010). Complex
network measures of brain connectivity: uses
and interpretations. Neuroimage 52, 1059–
1069.

Sanz, Y., Olivares, M., Moya-Pérez, Á., and
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Supplemental Material 1 
Transparent Methods 2 

3 
Human microbiome datasets 4 
The study was approved by the Human Research Ethics Committees of the Royal Brisbane and Women’s 5 
Hospital (RBWH), Brisbane, Australia, and QIMR Berghofer Medical Research Institute, Brisbane, Australia. 6 
Written informed consent was obtained for all study participants in accordance with the Helsinki Declaration. 7 
The first dataset was generated from gut mucosal biopsies from 58 healthy Australian adults (53% female; 8 
mean age 52.3 ±12.5 years) who were attending the RBWH Department of Gastroenterology for a routine 9 
colonoscopy as part of a colorectal cancer family history screening (Zakrzewski et al., 2019). Gut mucosal 10 
biopsies were collected during the endoscope, transported on dry ice to the coordinating site, and stored at 11 
-80oC until analyses.  Exclusion criteria included previous diagnosis of a gastrointestinal disease or disorder,12 
complex chronic illness, or pregnancy. In the event that a participant presented with abnormal colonoscopy 13 
or biopsy results, they were subsequently excluded. For the replication analysis, we accessed an 14 
independent and publicly available dataset, generated from 528 human fecal samples (Yatsunenko et al., 15 
2012). The replication dataset included 326 individuals aged 0-17 years, and 202 adults aged 18-70 years, 16 
representing healthy Amerindians from the Amazonas of Venezuela, rural Malawians, and residents from 17 
USA metropolitan areas. 18 

19 
DNA extraction and 16S rRNA analysis 20 
Following tissue homogenisation using tubes containing 1.4mm ceramic beads (Precellys Lysing Kit), DNA 21 
was extracted from samples using DNeasy Blood and Tissue Kit (QIAGEN). DNA was quantitated using 22 
Nanodrop 2000 (Thermo Scientific). PCR amplification was performed on the V3-V4 hypervariable region of 23 
the 16S rRNA gene, and sequenced on a MiSeq sequencer (Australian Genome Research Facility (AGRF), 24 
Brisbane, Australia). Sequence data were processed using Quantitative Insights Into Microbial Ecology 25 
(QIIME) software suite v1.9.1 using default settings. Low quality reads were filtered and removed, and 26 
remaining sequences were de-multiplexed using a custom script to reduce the possibility of a mismatch. 27 
Clustering occurred in a two-step process. Firstly, sequences were clustered into operational taxonomic 28 
units (OTUs) based on existing sequences in the Greengenes database v13.5 (97% identity threshold). 29 
Secondly, unclustered reads were clustered de-novo (97% identify threshold). The USEARCH package 30 
(UCLUST v8.0.1623) was used to assign the representative OTUs to taxonomic lineage, using the 31 
Greengenes database as a reference. Chimeric seed sequences as identified by UCHIME were removed, 32 
and singleton OTUs were discarded for all downstream analyses. Metagenomics functions were predicted 33 
using the PICRUSt algorithm (Langille et al., 2013), following the tutorial steps outlined elsewhere 34 
(http://picrust.github.io/picrust/). The functional profiles for each subject were deconvolved into OTU-specific 35 
functional profiles, which provides an estimation of how each OTU contributes to the sum of functional 36 
processes performed by a given community. The data analysis pipeline for the replication dataset, also using 37 
the Greengenes database for OTU clustering, has been described elsewhere [see Methods section of 38 
(Yatsunenko et al., 2012)]. 39 

40 
Co-occurrence network construction 41 
We prepared our microbial interaction network in accordance with Berry and Widder’s (Berry and Widder, 42 
2014) best practices for co-occurrence network construction. As OTU abundance tables are sparse (with 43 
values of 0 representing an absence of an OTU in a sample), we applied a threshold to filter out infrequent 44 
OTUs and included only those with the largest relative abundances (top 20%) across all 58 samples. For 45 
each pair of OTUs, we then computed the Pearson correlation coefficient across individuals to generate an 46 
undirected, weighted co-occurrence network between all pairs of OTUs. Accordingly, the matrix represented 47 
weighted pairwise interactions for 370 OTUs. The replication dataset (n = 528) was thresholded to include 48 
OTUs in the top 10% with the largest absolute abundances and subsequently represented weighted pairwise 49 
interactions for 1225 OTUs. The different threshold adopted for the replication dataset was selected to: (i) 50 
maintain a comparable number and microbial diversity as seen in the original dataset, and (ii) strike a balance 51 
between scientific rigor and computational limitations.  52 

53 
Applying the WSBM to the microbiome 54 
The WSBM is a generative modelling approach used to detect and partition a network’s nodes into a number 55 
of latent communities, k. The WSBM described here extends upon the classical stochastic block model by 56 
allowing the inclusion of weighted edges in sparse networks. This model eliminates the need to threshold a 57 

http://picrust.github.io/picrust/


matrix before input to the WSBM and thus, preserves information about the weights of co-occurrence and 58 
co-exclusion relationships. MATLAB (The Mathworks, USA) codes for the WSBM were sourced via 59 
http://tuvalu.santafe.edu/~aaronc/wsbm/. We applied the WSBM to create a weighted network of the human 60 
intestinal microbiome, using steps described in detail elsewhere (Aicher et al., 2014). 61 

62 
To infer community structure from the WSBM, the user is required to input k, a free parameter representing 63 
the total number of communities. The model selection technique we describe here optimizes k based on a 64 
value that maximizes the marginal log-likelihood and penalizes model complexity (Aicher et al., 2014). To 65 
achieve a representative partition from the WSBM, we varied the number of communities from k = 5 to k = 66 
18 and repeated the algorithm 65 times. We inferred k by determining where the mean and maximum 67 
marginal log-likelihood plateaus. For values greater than k = 12, we observed a clear plateau, and selected 68 
the simplest model (Figure. 2A). Given the stochastic nature of the WSBM, we assessed the consistency 69 
of the resulting outputs using NMI (Cover, 2012). Specifically, we fit the WSBM to the same dataset for 65 70 
additional independent repetitions at our selected model, k = 12, to create a new frequency prior. Our 71 
marginal log-likelihood values (50 internal trials over 65 fits) were highly consistent with the original fits, with 72 
an NMI of 0.99. These findings were replicated in our supplemental dataset, where we observed a plateau 73 
betwen k =12 and k = 13 (P = 0.52) (Supplemental Material, Figure. S1). 74 

75 
Consistency of community assignments 76 
Each stochastic repetition of the WSBM returns a subdivision of non-overlapping groups of OTUs to one of 77 
12 distinct communities. To assess if our detected partitions (n = 65) were significantly more consistent 78 
across trials to those obtained from a random network, we employed the randmio_und function from the 79 
BCT toolbox (Rubinov and Sporns, 2010), permuting the strength of connections while preserving the signed 80 
degree distribution. This resulted in 10 independent null networks. For each null, we then applied the WSBM 81 
for 65 fits, each with 5 internal trials (established as sufficient to ascertain consistent outputs for the null). 82 
The consistency between community assignments within each null was assessed using NMI. We then 83 
compared the consistency of the mean NMI scores (n = 650) with our mean MNI observed in our microbiome 84 
data. 85 

86 
Creating a consensus partition from WSBM fits 87 
Due to the stochastic nature of the WSBM, the community assignment designated to each OTU may differ 88 
between runs. To ensure that each community was represented by a consistent identifier across all runs, 89 
we applied a progressive median alignment method using the software language R. This algorithm was 90 
developed in house and adapted from previous work (Lord et al., 2012). With our predefined k, the alignment 91 
script relabels communities to maximize consistency of community labels within each OTU across all runs. 92 
As such, the community structure within each subject is preserved, while consistency between labeling 93 
between runs is increased. After alignment, a single consensus partition that most accurately represents the 94 
65 WSBM fits can be derived. We observed that, on average, OTUs at the individual level were assigned to 95 
the same cluster as the community consensus cluster 57% of the time (chance level 8.3%). 96 

97 
Visualization of the microbial network 98 
The interactive platform Gephi (Version 0.9.2) was used to visualize the co-occurrence network, using the 99 
force atlas template (Bastian M., 2009). The network was reduced for visualization, using a cut-off of 0.3. 100 
This resulted in a network representing 370 nodes (OTUs) and 4854 edges (co-occurrence interactions). 101 
OTUs were colored according to community label, and taxonomic grouping at the family/genus level. 102 

103 
Community Motif Participation 104 
We applied community morphospace analysis (Betzel et al., 2018) to classify community interactions into 105 
one of four motifs: assortative, disassortative, core, or periphery interactions. The community-level structures 106 
generated from 65 WSBM fits yielded a mesoscale description that mapped onto individual nodes (total n = 107 
370, for the first dataset). Therefore, node i’s overall participation in each mesoscale structure was calculated 108 
as the number of times that an individual OTU’s community interacted with other communities to form an 109 
interaction motif. Motif participation was averaged over 65 WSBM fits and expressed at the node (OTU), and 110 
community level. The significance of the detected mesoscale community structures was determined using 111 
permutation testing. For each community (n = 10), 650 null community partitions were created, comprising 112 
the same number and size of communities in the empirical dataset. A two-tailed test of the null hypothesis 113 
was performed with the resulting null distributions. 114 

115 
116 
117 
118 



Nodal Assortativity 119 
To determine nodal assortativity (Faskowitz et al., 2018), the weighted connectivity of node 𝑖𝑖 (𝑎𝑎𝑖𝑖) based on 120 
its assigned community (𝑧𝑧) is compared to the maximum weighted connectivity to other communities. For 121 
each node, the weighted connection density to community 𝑚𝑚 is defined as: 122 

𝑎𝑎𝑖𝑖(𝑚𝑚) =  
1
𝑛𝑛𝑟𝑟

 � 𝐴𝐴𝑖𝑖𝑖𝑖
𝑗𝑗∈𝑟𝑟

 , 123 

from which the nodal assortativity can be computed, as below: 124 
𝑎𝑎𝑖𝑖 =  𝑎𝑎𝑖𝑖(𝑧𝑧𝑖𝑖) −  max

𝑚𝑚≠𝑧𝑧𝑖𝑖
𝑎𝑎𝑖𝑖(𝑚𝑚). 125 

126 
Participation coefficient 127 
The co-occurrence matrix was thresholded at 0.4, and network measures in the BCT toolbox (Rubinov and 128 
Sporns, 2010) were calculated to achieve insights at the global, mesoscale, and local scale. The participation 129 
coefficient (PC) measures the diversity of inter-community connections of node 𝑖𝑖, weighted by the 130 
importance of connections, and is defined as: 131 

𝑃𝑃𝑃𝑃𝑖𝑖 = 1− � �
𝑘𝑘𝑖𝑖(𝑚𝑚)
𝑘𝑘𝑖𝑖

�
2

𝑚𝑚∈𝑀𝑀

, 132 

where 𝑀𝑀 is the number of communities, and 𝑘𝑘𝑖𝑖  (𝑚𝑚) is the total connections between node i and all nodes in 133 
community m. A high value of P indicates that node 𝑖𝑖 has strong connections with nodes outside its 134 
community, relative to connections within the community. 135 

136 
Within-community degree z-score 137 
The within-community degree z-score, 𝑍𝑍𝑖𝑖, measures the degree of intra-community connectivity of node 𝑖𝑖 138 
relative to other nodes in the community, and is defined as: 139 

𝑍𝑍𝑖𝑖 =
𝑘𝑘𝑖𝑖(𝑚𝑚𝑖𝑖) −  𝑘𝑘� (𝑚𝑚𝑖𝑖)

𝜎𝜎𝑘𝑘(𝑚𝑚𝑖𝑖)
 , 140 

where 𝑚𝑚𝑖𝑖 is the community containing node 𝑖𝑖, 𝑘𝑘𝑖𝑖(𝑚𝑚𝑖𝑖) is the within-community degrees between node 𝑖𝑖 and 141 
all other nodes,  𝑘𝑘�(𝑚𝑚𝑖𝑖) and 𝜎𝜎𝑘𝑘(𝑚𝑚𝑖𝑖) are the mean and standard deviation of the within-community degrees 142 
distribution. Higher values of 𝑍𝑍𝑖𝑖 (> 0) indicates node 𝑖𝑖 has strong connectivity within its own community. 143 

144 
Nodal Strength 145 
Nodal strength is defined as the sum of weighted edges connected to that node: 146 

𝑠𝑠𝑖𝑖 = � 𝑤𝑤𝑖𝑖𝑖𝑖
𝑗𝑗

 , 147 

where 𝑤𝑤𝑖𝑖𝑖𝑖 is the weight of edges between i and j. 148 
149 

Functional cartography measures 150 
We broadly classified each node (OTU) into one of seven possible roles according to their participation 151 
coefficient and within-community Z scores, using previously validated cut-offs as a guideline (Guimerà and 152 
Amaral, 2005). This was achieved in a two-step process, involving: 153 

1. Classification of non-hub nodes (Zi<0):154 
a) Ultra-peripheral nodes, characterized by exclusive intra-community connections (P ≈ 0);155 
b) Peripheral nodes, characterized by moderately high intra- and low inter-community156 

connections (PC <0.625);157 
c) Non-hub connectors, where 62.5 – 80% of connections are within the community (0.625 <158 

PC < 0.8);159 
d) Non-hub kinless nodes, nodes that cannot be associated with any single community160 

(PC >0.8).161 
2. Classification of community hubs (Zi>0)162 

e) Provincial hubs, characterized by high intra- and low inter-community connections (0 < PC163 
< 0.30)164 

f) Connector hubs, characterized by moderately high inter- and high intra-community165 
connections (PC < 0.75)166 

                  g)    Kinless hubs, similar to non-hub kinless nodes, are not clearly associated with any single 
                         community (PC > 0.75).

167 
 168 



Supplemental Figure Legends 169 
 170 
Figure S1. Bayesian model selection using the WSBM on a replication dataset, Related to Figure 2A. 171 
We repeated the WSBM algorithm for our replication dataset (n = 528), across a number of models between 172 
k = 10 to k = 16 (repeated 10 times each). Using the Bayesian model optimization method (details in 173 
Transparent Methods), the replication dataset was partitioned into k = 12 communities (green, dashed), 174 
given that the mean marginal log-likelihood first plateaued at this point (Figure. S1.). As observed in the 175 
main text, assortativity was the dominant mesoscale community structure detected, alongside observations 176 
of core and peripheries. Again, no disassortative mesoscale structures were detected in the replication 177 
dataset. In the main text, we demonstrated maximum assortativity was evident 37% of the time across 370 178 
OTUs. We reproduced this analyses and found that the results corroborate those of the main text. We 179 
observed maximum assortativity 27% of the time across 1225 OTUs. When calculating the proportion of 180 
times a node participated in non-assortative motifs, we observed core and peripheral interactions 3.84 ± 4.0, 181 
and 2.00 ± 3.40 percent of the time, respectively. These supplementary findings bolster the findings from 182 
the main text, and suggest that our results can be observed in two, independent microbial co-occurrence 183 
datasets. The replication dataset demonstrated that the human microbiome can be described as an 184 
assortative network with co-existing and nested non-assortative mesoscale architectures, as detected by 185 
the WSBM.  186 
 187 
Figure S2. Consistency of detected communities as benchmarked against null models, Related to 188 
Table 1. The consistency of each community detection partition was assessed by calculating the NMI 189 
between each possible combination of partitions (total = 65), and benchmarked against 10 null models (each 190 
with 65 null partitions) generated from randomized networks. The community partitions observed in the 191 
microbiome were highly consistent (0.70 ± 0.02, red dashed line), and significantly different when compared 192 
to 650 random partitions generated from rewired null networks (NMI, 0.38 ± 0.02, blue). 193 
 194 
Figure S3. Individual contribution to the group-level co-occurrence network, Related to Figure 2B&D. 195 
To derive information about single-subject community variability and confirm that our WSBM analyses is 196 
representative of the group, we performed a cross-validation analysis based on the leave-one-out (LOO) 197 
approach. In the LOO strategy, each subject’s contribution to the resultant network structure is estimated by 198 
leaving that subject out and re-estimating group-level co-occurrence coefficients. To assess the similarity 199 
between the original and the n-1 networks, we used Mantel’s test statistic, where a value of 1 indicates high 200 
similarity between networks (Mantel, 1967). We then assessed the average variability of each subject’s 201 
contribution (µ) for each pairwise OTU interaction by subtracting the subject with the group-level correlation 202 
matrix. To test that our LOO strategy did not result in changes to WSBM-derived mesoscale architectures, 203 
we selected subjects with the greatest variability (>1 STD from the mean, subjects 13, 22, 33, 40, and 45) 204 
and re-fit these matrices to the WSBM 65 times at k = 12. The resultant consensus partition obtained from 205 
each of the networks (mean NMI = 0.90) were highly consistent with the original group-level analyses. 206 
 207 
Figure S4. Comparing WSBM with an alternative community detection approach, Related to Figure 208 
2B&D. To assess the validity of our findings, we assessed the putative modular structure using an alternative 209 
algorithm: The deterministic spectral modularity maximization algorithm (sites.google.com/site/bctnet/; 210 
function modularity_und). Modularity maximization detected five assortative communities that overlapped 211 
with the nine detected via the WSBM. Moreover, the mean nodal assortativity was highly consistent between 212 
algorithms (R = 0.83, P <0.001). These results are consistent with previous work comparing the WSBM to 213 
modularity maximization (Faskowitz et al., 2018). We here iterate that, contrary to the WSBM, modularity 214 
maximization can only detect assortative structures. Our comparative results suggest that the WSBM 215 
provides greater sensitivity to the detection of structures that do not conform to the strict assortative 216 
description required by other methods. 217 
 218 
Figure S5. Proportions of mesoscale motif participation (%) under a permutation-based null model, 219 
Related to Table 1. To test that our detected assortative, core, and peripheral mesoscale motif interactions 220 
were greater than chance, we created 650 random partitions of community assignment (blue) and re-221 
calculated the percentage of motif participation for a community of the same size and number. We 222 
benchmarked our observed community motif interactions (red, dashed) against the null community partitions 223 
(blue) and determined significance at P < 0.05. (A) Significant core motif interactions were observed within 224 
communities VII, and VIII. (B) Significant periphery motif interactions were observed within communities IV, 225 
V, and VI. (C) Significant assortative motif interactions were observed within communities II, VIII, and IX. 226 
 227 



Figure S6. Predicted functional contributions for each community based on PICRUSt (Phylogenetic 228 
Investigation of Communities by Reconstruction of Unobserved States) (Langille et al., 2013), 229 
Related to Figure 2. Results showed that each community has the ability to perform a broad repertoire of 230 
functions. 231 
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