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Abstract: Healthy aging is accompanied by a constellation of changes in cognitive processes and altera-
tions in functional brain networks. The relationships between brain networks and cognition during
aging in later life are moderated by demographic and environmental factors, such as prior education,
in a poorly understood manner. Using multivariate analyses, we identified three latent patterns (or
modes) linking resting-state functional connectivity to demographic and cognitive measures in 101
cognitively normal elders. The first mode (P 5 0.00043) captures an opposing association between age
and core cognitive processes such as attention and processing speed on functional connectivity pat-
terns. The functional subnetwork expressed by this mode links bilateral sensorimotor and visual
regions through key areas such as the parietal operculum. A strong, independent association between
years of education and functional connectivity loads onto a second mode (P 5 0.012), characterized by
the involvement of key hub regions. A third mode (P 5 0.041) captures weak, residual brain–behavior
relations. Our findings suggest that circuits supporting lower level cognitive processes are most
sensitive to the influence of age in healthy older adults. Education, and to a lesser extent, executive
functions, load independently onto functional networks—suggesting that the moderating effect of edu-
cation acts upon networks distinct from those vulnerable with aging. This has important implications
in understanding the contribution of education to cognitive reserve during healthy aging. Hum Brain
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INTRODUCTION

Healthy aging in the later decades of life is associated
with progressive changes in cognition which impact upon
function and interpersonal relationships [Stuck et al., 1999;
Willis et al., 2006]. Fluid-based cognitive functions such as
processing speed, executive function, and working memory
are particularly sensitive to changes that arise from age-
related neurobiological processes [Grady, 2012; Park and
Reuter-Lorenz, 2009]. More rapid morphological changes
(indexed by volumetric size and thickness) in prefrontal,
hippocampal, and parietal cortices is thought to underpin
progressive age-related cognitive changes [Dennis and
Cabeza, 2008; Park and Reuter-Lorenz, 2009; Raz et al.,
2005]. However, investigations that have reported morpho-
metric changes associated with age-related variability in
cognitive performance are somewhat inconsistent or even
contradictory [Rodrigue and Kennedy, 2011]. It is crucial to
disambiguate the trajectory of normal age-related changes in
later life from the pathology of neurodegenerative disorders
such as Alzheimer’s disease (AD) [Dennis and Thompson,
2014].

Univariate alterations in morphological brain structures
only partially capture the complexity of neurobiological
changes associated with aging [Rodrigue and Kennedy,
2011]. Recent network conceptualizations propose that
human brain function is shaped by interactions (connections)
between its constituent elements (brain regions) through neu-
ral networks that possess a complex topological organization
[Bassett and Bullmore, 2006; Bullmore and Sporns, 2012;
Sporns, 2013]. Brain networks delicately balance the opposing
requirements for functional integration and segregation,
giving rise to complex cognitive and perceptual functions
[Friston et al., 1995; Sporns et al., 2000; Tononi et al., 1994].
Networks of whole-brain functional connectivity patterns can
be constructed from the temporal correlations of spontaneous
fluctuations in neurophysiological signals between brain
regions, and analyzed with graph-theoretical approaches
[Biswal et al., 1995; Fornito et al., 2013; Fox and Raichle, 2007].

Fluid cognitive functions require patterns of integrated and
coordinated neural interactions, suggesting age-related vari-
ability in performance may be attributable to corresponding
changes in large-scale connectivity [Andrews-Hanna et al.,
2007]. Investigations into intrinsic resting-state networks
(RSN) [Damoiseaux et al., 2006; Fox et al., 2005] have consis-
tently revealed reduced functional connectivity in core cogni-
tive systems such as the default-mode network (DMN) over
the lifespan [Damoiseaux, 2017; Damoiseaux et al., 2008]. On
the other hand, connectivity between networks has been
found to increase, indicative of decreased functional speciali-
zation with age [Betzel et al., 2014; Chan et al., 2014; Ferreira

et al., 2015; Geerligs et al., 2015; Grady et al., 2016; Ng et al.,
2016]. Such changes appear partially associated with poorer
cognitive performance [Andrews-Hanna et al., 2007; Chan
et al., 2014; Fjell et al., 2015; Ng et al., 2016; Salami et al., 2014].
However, the complete picture of whole-brain network
activity and age-related changes in cognition across multiple
domains is lacking.

The application of network measures to connectivity pat-
terns has also revealed changes to the intrinsic functional
architecture with age, namely, a decreased modularity and
segregation of RSN’s [Betzel et al., 2014; Chan et al., 2014;
Geerligs et al., 2015; Grady et al., 2016]. There also appears
to be age-related decreases in connectivity for specific sub-
networks of connections, particularly those involving long-
range communication [Cao et al., 2014; Marques et al., 2015;
Sala-Llonch et al., 2014]. These may reflect the decreased
integration of large functional brain networks with age
[Sala-Llonch et al., 2014], consistent with the corresponding
changes in structural networks [Perry et al., 2015; Zhao et al.,
2015]. Hitherto, only few investigations of intrinsic func-
tional organization in healthy elderly populations have been
undertaken [Madhyastha and Grabowski, 2014; Marques
et al., 2015; Ng et al., 2016; Sala-Llonch et al., 2014]. Although
studies of age across the whole lifespan are illuminating
and important, they typically contain relatively modest
numbers of healthy older participants. Moreover, the associ-
ation between cognitive performance and brain structural
integrity is not uniform from adulthood to elderly years
[Burzynska et al., 2012; Razlighi et al., 2016; Turner and
Spreng, 2012]. The later decades of life are also characterized
by progressive changes in the performance of everyday
functions [Ball et al., 2007]. There is hence a need to study
the influence of age on functional connectivity patterns
within a healthy elderly cohort.

Higher levels of educational attainment, intelligence, occu-
pational status, and other positive lifestyle factors contribute
protective effects against age-related cognitive changes and
the onset of AD [Deary et al., 2009; Stern, 2012; Valenzuela
and Sachdev, 2006]. Expressions of these factors are postu-
lated to contribute to an individual’s capacity to mitigate the
influence of age, which has been broadly grouped together
into the rubric term “cognitive reserve” (CR) [Stern, 2009,
2012]. The proxies of CR are associated with a relative preser-
vation of brain structure and more efficient neural activity
during cognitive demands [Bartr�es-Faz and Arenaza-Urquijo,
2011]. Increased educational attainment is also associated
with increased resting-state functional connectivity in distrib-
uted cortical networks [Marques et al., 2015, 2016]. However,
the influence of moderating factors such as education on the
cognitive networks sensitive to age-related changes are
poorly understood [Bartr�es-Faz and Arenaza-Urquijo, 2011;
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Stern, 2009; Stern et al., 2008]. Some aspects of brain functions
may be optimized with age [Moran et al., 2014], which speaks
to the potential adaptive influence of moderating factors on
large-scale network interactions in later life.

Multivariate analyses allow a broad picture of
brain–behavior relationships. Using canonical correlation
analysis (CCA), Smith et al. [2015] studied the complex
inter-relationships between 158 phenotypic measures and
whole-brain functional connectivity patterns in a large cohort
of healthy younger adults [Van Essen et al., 2013]. Intriguingly,
the covariation between a full suite of phenotypic markers and
functional connectivity loaded onto a single positive–negative
axis. Positive personal traits (e.g., life satisfaction, education
years, and fluid intelligence) shared strong covariations with
connectivity patterns, while characteristically negative traits
(e.g., substance use) load negatively onto brain–behavior
associations. Related multivariate approaches such as partial
least squares (PLS) [McIntosh et al., 1996] have revealed latent
patterns of functional activations related to decreased brain
variability in older adults [Garrett et al., 2011, 2012]. Both CCA
[Tsvetanov et al., 2016] and PLS [Ferreira et al., 2015]
approaches have also recently revealed lifespan changes in
functional connectivity patterns. These findings are derived
from cohorts that span the whole lifespan and did not address
the relative influence of age on neurocognitive networks. Some
cognitive functions—such as psychomotor abilities—are more
susceptible to age-related changes in later life than others [Salt-
house, 1996]. The influence of age is likely to act most strongly
on networks supporting these functions.

Multivariate techniques have not yet been employed to
investigate these issues, nor the relative influence of both age
and CR proxies on connectivity patterns. Here we use
multivariate analysis to examine the associations between
age, education, cognitive performance (measured across a
number of domains), and whole-brain functional connectivity
patterns in 101 cognitively normal elders. In particular, we
ask whether the single positive–negative axis of associations
between behavioral indicators of cognition and functional
brain networks seen in young adults [Smith et al., 2015], per-
sists under the influence of healthy aging. We hypothesize
that connectivity patterns associated with cognitive domains
most susceptible to decline such as processing speed will
most be strongly opposed to the influence of age. We also ask
whether moderating factors such as education confer an
influence upon age-varying networks, or rather onto indepen-
dent brain–behavior modes.

MATERIALS AND METHODS

Participants

Cognitively normal individuals were drawn from a lon-
gitudinal, population-based study (the Sydney Memory
and Ageing Study (MAS) [Sachdev et al., 2010]). At the
baseline of this longitudinal study, community-dwelling
participants initially between 70 and 90 years of age were

randomly recruited from the electoral roll. Imaging and
phenotypic data for this article were acquired during the
fourth wave of this study (�6 years following study base-
line). Subjects were classified as cognitively normal at the
current wave if their performance on all neuropsychologi-
cal test measures was higher than a threshold of 1.5 SDs
below normative values. The criteria for the selection of
this cohort, and the demographic matching that was used
to establish a normative reference have been previously
published [Tsang et al., 2013]. Exclusion criteria for all study
participants at baseline included a Mini-Mental Statement
Examination (MMSE) [Folstein et al., 1975] adjusted [Ander-
son et al., 2007] score below 24, a diagnosis of dementia,
developmental disability, a history of schizophrenia, bipolar
disorder, multiple sclerosis or motor neuron disease, active
malignancy, or inadequate comprehension of English to
complete a basic assessment. One hundred and thirty-five
participants with concurrent MRI data met inclusion criteria.
The study was approved by the Ethics Committee of the
University of New South Wales and participants gave writ-
ten, informed consent.

Neuropsychological Measures

A comprehensive neuropsychological battery was admin-
istered by trained graduate psychologists to cover a broad
range of cognitive functions, including attention, processing
speed, memory, language, visuospatial ability, and execu-
tive function. Twelve tests were grouped into five broad
domains: attention/processing speed, memory, language,
visuospatial ability, and executive function (Table I). Each
domain consisted of a composite of these individual tests,
with the exception of the visuospatial domain which was
represented by a single measure. As part of the broader lon-
gitudinal study (MAS) [Kochan et al., 2010; Sachdev et al.,
2010]—the tests were grouped according to the primary cog-
nitive function they assess—based upon the extant literature
and the widespread practice used by neuropsychologists
[Lezak et al., 2004; Strauss et al., 2006; Weintraub et al.,
2009]. The groupings align with the domains of established
psychometric batteries such as the UDS (ADC) [Morris et al.,
2006; Weintraub et al., 2009], and other large epidemiologic
cognitive aging studies (Mayo study [Roberts et al., 2008];
MYHAT study [Ganguli et al., 2010]). The memory domain
composite was further subdivided into verbal memory after
exclusion of a visual retention test [Benton et al., 1996]. We
additionally study the relative weighting of each individual
neuropsychological test onto our primary results.

To further support the cognitive groupings, we performed
reliability estimates which measure the scale-item’s homoge-
neity (Supporting Information, Table I). For the full healthy
reference cohort (n 5 343; with no missing domain scores),
reliability estimates reveal acceptable (rSB> 0.70) to high
internal consistency of the composite-items—according to
psychometric convention [Cortina, 1993; Tavakol and
Dennick, 2011]. The only exception was the executive
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function composite. Tasks of executive functions (as with the
other domains) possess a multifactorial structure as they rely
on other cognitive systems/processes for their expression
[Piguet et al., 2005], and hence the lower item homogeneity
here is not surprising. For example, the Trail Making Task
(TMT) B is also associated with lower order abilities [San-
chez-Cubillo et al., 2009]. Performance on the other executive
composite, the FAS, also relates to verbal intelligence, lexical
retrieval, and processing speed [Greenaway et al., 2009].

The individual test scores for each subject were transformed
into quasi Z-scores based on the mean and standard deviation
of tests scores for a healthy, reference group (n 5 723) pheno-
typed at study baseline. Domain scores were calculated as the
average of the quasi Z-scores of tests comprising each domain.
If necessary, the signs of the Z-scores were reversed, so that
higher scores reflect better performance.

Clinical measures including the MMSE and the Bayer-
Activities of Daily Living Scale (B-ADL) [Erzigkeit et al., 2001;
Hindmarch et al., 1998] were also administered. The B-ADL
consists of 25 informant-rated items—scored on a scale of
1–10—according to the frequency of participant’s impair-
ments in everyday activities. Higher scores on the B-ADL
relate to more severe deficits in functioning. The mean values
for each participant were defined by the average score across
the B-ADL questionnaire items. These clinical ratings were
used in this study for further characterization of the current
samples cognitive and functional status. The B-ADL scores
for 17 study participants were however missing.

The National Adult Reading Test (NART IQ) [Nelson
and Willison, 1991] was administered to a subset of the
current population at study baseline. The NART estimates
premorbid intelligence levels [Bright et al., 2002].

Acquisition and Preprocessing of MRI Data

Eyes-closed resting-state fMRI (rs-fMRI) data consisting
of 208 time-points were acquired with a T2*-weighted
echo-planar imaging sequence (TE 5 30 ms, TR 5 2000 ms,
1.87 3 1.87 3 4.50 mm3 voxels) on a Philips 3 T Achieva

Quasar Dual MRI scanner (Amsterdam, the Netherlands).
Structural T1-weighted MRI were also acquired (TR 5 6.39
ms, TE 5 2.9 ms, 1 mm3 isotropic voxels). FSLView [Smith
et al., 2004] was used to visualize every MRI scan for arti-
fact inspection. Subjects were removed if their data con-
tained excessive artefact, including the presence of
complete orbitofrontal signal dropout [Weiskopf et al.,
2007], motion effects on T1-images (i.e., ringing), or severe
geometric warping. A full description of the steps
involved for the acquisition and preprocessing of these
data are provided in Supporting Information 1.1 and 1.2.

Data preprocessing was performed using the Data Process-
ing Assistant for Resting-State fMRI (DPARSF, v3.2 advanced
edition) software package [Yan and Zang, 2010], which calls
functions from SPM8 (http://www.fil.ion.ucl.ac.uk/spm/).
Basic preprocessing steps included slice-timing, realignment
to mean functional image, co-registration of the structural
image, linear detrending, and nuisance regression of head
motion (24 parameters) [Friston et al., 1996] and segmented
WM/CSF signals [Ashburner and Friston, 2005]. Native func-
tional images were transformed into an average population-
based T1 template (i.e., DARTEL) [Ashburner, 2007] and then
Montreal Neurological Institute (MNI) space (3 mm3 voxels).
fMRI images were smoothed (at 8 mm) and temporal band-
pass filtering applied (0.01–0.08 Hz). Global signal regression
was not performed.

Of the initial subject population (n 5 135), 15 were
removed due to severe signal loss (13 within fMRI scans),
10 had incomplete cognitive information, while 9 failed
adequate co-registration between their T1-weighted and
mean functional image. Data from 101 subjects were hence
included in the primary analysis (Table II).

Construction of Functional Brain Networks

In brief, the Pearson’s correlation coefficient of the mean
BOLD signals between all pairs of 512 uniformly-sized
regions (Supporting Information 2) [Perry et al., 2015;
Zalesky et al., 2010] was calculated to construct the

TABLE I. Neuropsychological tests administered to measure the cognitive grouping scores

Neuropsychological test Cognitive grouping

� Digit Symbol-Coding (Wechsler, 1997a)
� Trail Making Test (TMT) A (Strauss et al., 2006)

Attention/processing speed

� Logical Memory Story A delayed recall (Wechsler, 1997b)
� Rey Auditory Verbal Learning Test (RAVLT) (Strauss et al., 2006):

� RAVLT total learning; sum of trials 1–5
� RAVLT short-term delayed recall; trial 6
� RAVLT long-term delayed recall; trial 7

� Benton Visual Retention Test recognition (Benton et al., 1996)

Memory

� As above, but not including the Benton Visual Retention Test. Verbal memory
� Boston Naming Test – 30 items (Kaplan, 2001)
� Semantic Fluency (Animals) (Strauss et al., 2006)

Language

� Block Design (Wechsler, 1981) Visuospatial ability
� Controlled Oral Word Association Test (Strauss et al., 2006)
� TMT B (Strauss et al., 2006)

Executive function

r Functional Brain Networks in Healthy Older Adults r

r 5097 r

http://www.fil.ion.ucl.ac.uk/spm


functional connectivity matrix M. Fisher’s transformation
was applied to M, and subsequent upper-triangle values
were concatenated across all subjects, forming a matrix N1.
Full description of the steps involved for the construction
and normalization of functional brain networks are pro-
vided in Supporting Information 1.3 and 1.4.

Normalization, Demeaning, and Head-Motion

Regression of Connectivity Matrices

The connectivity matrices N1 were normalized and
demeaned according to the procedure of [Smith et al., 2015]
(also available online at http://fsl.fmrib.ox.ac.uk/analysis/
HCP-CCA/hcp_cca.m), resulting in a matrix N2 for subse-
quent analyses. The mean frame-wise displacement (FD)
[Power et al., 2012] was calculated and potential confound-
ing effects of head motion were regressed from N2 to yield
N3. Notably, there was no significant relationship between
age and FD (P> 0.39, r 5 20.09).

Functional Connectivity Decomposition

Principal components analysis (PCA) was implemented
via the FSLNets toolbox [Smith et al., 2014] to reduce the
dimensionality of the functional connectivity edges (N3) to
eight eigenvectors. Given that eight nonimaging measures
were selected in the CCA (see below), the data were reduced
to this resolution to keep the methodological steps similar to
Smith et al. [2015]. In their study, the greatest fit (correlation)
between the connectivity and nonimaging weights was
obtained by the CCA which used the same number of brain
and phenotypic components. However, no gold standard
exists for component number selection [Abdi and Williams,
2010]. We note that the first eight functional components
explain 20.3% of the total proportion of variance (Supporting
Information, Fig. 1, red bars).

Canonical Correlation Analysis (CCA)

Eight subject measures were chosen for inclusion in the
CCA: age, education years, and the composite scores for
language, executive function, visuospatial ability, memory,
verbal memory, and attention/processing speed. NART IQ
scores were administered only to a subset of the current
cohort (n 5 91) at wave 1.

CCA was then applied to these nonimaging measures
and functional eigenvectors, yielding eight modes which
constitute weighted linear combinations of orthogonalized
subject measures and functional connectivity patterns.
Each mode represents canonical correlations which corre-
spond to the maximum residual co-variation between the
two variate sets in decreasing rank order. The vectors Um

and Vm represent the individual subject weights for subject
measures and connectivity matrices within mode m,
respectively:

� Um is the extent to which each subject is (positively or
negatively) correlated to population variation in subject
measures within mode m.
� Vm is the extent to which each subject is correlated to pop-

ulation variation in brain connectivity within mode m.

The correlation of Um and Vm yields rm, the strength of
the population covariation in mode m shared between
brain connectivity and subject measures.

To assess the reliability of the loading of cognitive and
demographic measures onto each mode m, a bootstrapping
procedure (sampling with replacement) was performed
over 5000 subsamples. The phenotypic loadings within each
mode m were considered reliable if the 95% confidence
bounds of the bootstrapped distribution of correlations did
not overlap with zero [Ferreira et al., 2015; McIntosh et al.,
2004].

Association of Connectivity Edges

Within Each Mode

We next assessed which connectivity edges were most
strongly expressed by population variations in connectivity
captured within mode m. First, to obtain the relative weight
(and directional signs) of each edges association with the con-
nectivity patterns within mode m, we correlated Vm with the
original connectivity estimates in N3, resulting in a vector
AFm. The connectivity edges identified most strongly associ-
ated with either positive or negative covariations between Um

and Vm were chosen as the top 250 strongest connections (rep-
resenting 0.002% of all network edges) with positive and neg-
ative signs within AFm, respectively.

Publicly Available Code

The MatLab codes implemented for the normalization
and PCA of the connectivity edges—as well as the steps
involved in the CCA—are stored in a publicly available
repository (https://github.com/AlistairPerry/CCA). The
repository additionally contains further information for the

TABLE II. Basic demographic, cognitive, and clinical

information for included participants

Cohort All subjects (n 5 101)

NESB (n) 10
M/F (n) 44/57

Mean (6SD)
Age (years) 82.7 (3.8)
Education (years) 12.7 (3.6)
MMSE 29.5 (0.9)
B-ADLa 1.44 (0.59)

NESB, non-English-speaking background; M, male; F, female; B-ADL,
Bayer-activities of daily living scale.
an 5 17 participants were missing data.
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brain parcellation templates used in functional network
construction.

Statistical Analyses

To determine the significance of interdependence between
the variates sets within each mode m, Wilk’s Lambda was
first calculated and transformed into Rao’s approximation
F-statistic [Rao, 1952]. Shared variances captured between
the respective variate sets of mode m were determined as
significant if P< 0.05, thus rejecting the null hypothesis (H0)
that subject measures and functional components are inde-
pendent of each other within mode m.

RESULTS

Our cohort of 101 cognitively normal healthy elders
span the later decades of life. Raw performance on the
neuropsychological tests and cognitive grouping scores are
provided in Supporting Information, Tables II and III,
respectively. The clinical rating scores of the current popu-
lation are within the range of values for previously pub-
lished data of healthy older adults (Table II) [Erzigkeit
et al., 2001; Reppermund et al., 2011; Roalf et al., 2013]. A
clear association between age and cognitive performance
is demonstrated, particularly for attention/processing
speed scores (Fig. 1A, top-left panel; P< 0.001, FDR-cor-
rected). In the full sample, we also assessed the complex
relationships between age, sex (males coded as 1), educa-
tion, and six cognitive groupings: verbal memory, mem-
ory, visuospatial ability, executive function, language, and
attention/processing speed. Performance across these cog-
nitive groupings is highly correlated (Fig. 1B). Performance
in visuospatial, executive function, and language domains
is positively correlated with years of education (P< 0.05;
FDR-corrected). As expected, memory and verbal memory
(being largely redundant) correlate very strongly. Memory
performance is significantly correlated with female sex
(Fig. 1B; P< 0.001, FDR-corrected), while males demon-
strate greater visuospatial abilities (P< 0.05, FDR-cor-
rected). For the subset who received NART IQ assessment
at study baseline, we also examined relations with IQ
(Supporting Information, Fig. 2). There are no significant
differences (P< 0.05, two-tailed, FDR-corrected) between
the full study cohort and this subset population across the
phenotypic variables (Supporting Information, Table III).

We next used CCA to examine the primary modes that
relate these (correlated) demographic and cognitive varia-
bles to functional connectivity patterns. CCA identified
three significant canonical modes (P< 0.05) of interdepen-
dence between these nonimaging measures and functional
connectivity (Table III).

Each CCA mode consists of a set of weights that reflect the
loading of the cognitive and demographic variables onto the
corresponding functional connectivity patterns (Fig. 2). The
first mode (P< 0.00043) is characterized by a split between

all cognitive domains (particularly memory and attention/
processing speed) which load along a positive axis, and age
which loads strongly and negatively (Fig. 2A, left panel).
Language and education have close to zero loading and are
not reliably represented within this mode (i.e., the confi-
dence bounds of the bootstrapped distributions cross zero;
Fig. 2A, grey text). The opposing pull of attention and proc-
essing speed versus age can be seen by plotting the subject
specific measure weights versus the corresponding connec-
tivity weights, colored according to age (Fig. 2D) or atten-
tion/processing speed (Fig. 2E). Younger subjects (Fig. 2D,
blue circles) cluster in the top right corner of the panel, indi-
cating how they weigh positively with the corresponding
connectivity–behavior relations. Similarly, fast and attentive
performers (Fig. 2E, green to dark red) also load positively
on the first CCA mode. These plots show that faster, atten-
tive, younger performers weight positively with functional
connectivity patterns within this mode, whereas poorer,
older performers contribute to negative associations.

In contrast, the second mode (P< 0.012) is characterized
by an independent positive association of education years
with connectivity patterns (Fig. 2B,F). Although executive
function loads moderately on this mode, all other variables
load very weakly (in both directions). While age and mem-
ory load negatively, their contributions are weak.

There also exists a weakly significant third mode
(P< 0.041). This mode splits cognitive measures into mod-
erately positive visuospatial and memory weights versus
weakly negative attention and processing speed (Fig. 2C).
Age and education weigh close to zero.

The contribution of each of the individual cognitive tests
onto these modal structures can be seen by correlating individ-
ual subject test scores to the expressed functional connectivity
patterns (Vm; Supporting Information, Fig. 3). This shows some
disambiguation among individual tests from each of the cogni-
tive groupings. The two tests constituting the scores for atten-
tion and processing speed—the Digit Symbol-Coding (DSym)
and Trail Making Task (TMT) A—both load strongly onto the
first mode (Supporting Information, Fig. 3A). Similar associa-
tions with the first mode’s functional connectivity patterns are
also identified for the individual assessments of memory func-
tioning. The Controlled Oral Word Association (FAS) test and
the TMT B show weak covariation with each other in their
loading onto the first mode (Supporting Information, Fig. 3A).
These tests—grouped into executive functions—project almost
identically onto the second mode (Supporting Information,
Fig. 3B).

Each of the three CCA modes also loads onto patterns
of functional brain connectivity. To study these, we calcu-
lated the 250 edges most strongly associated with each
mode in both the positive and negative directions. The
functional connectivity edges most strongly expressed by
positive associations in the first mode (mean r 5 0.64,
SD 5 0.02) primarily involve bilateral connections between
occipital, temporal (inferior and medial portions), superior
parietal, and pre-/post-central gyral regions (Fig. 3A).
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Functional connections between occipital areas and pre-/
post-central regions within the right hemisphere are also
evident. Of note is the convergence of connections upon
bilateral parietal operculum/posterior insular areas. To
disentangle the functional basis of this network of strongly
associated connections, we assigned regions in our

parcellation to broader functional network clusters;
default-mode, cognitive-control, somatomotor, dorsal
attention, salience ventral attention, visual, and limbic net-
works [Yeo et al., 2011]. This demonstrates that positive
edges in the first mode are predominately clustered among
visual, somatomotor, and to a lesser extent, dorsal atten-
tion networks (Fig. 3A,B).

We then identified the functional connectivity edges most
negatively expressed by the first mode (mean 5 20.27,
SD 5 0.03). These connections form two distinct clusters.
The first cluster interconnects premotor, pre/post central
gyri, and superior medial frontal areas (supplementary
motor area, presupplementary, and superior frontal gyri)
(Fig. 3C). A second cluster involves interhemispheric con-
nections between inferior parietal areas, and additional con-
nections between these areas and left superior parietal
regions. On a coarser scale, these edges connect DMN and
cognitive-control network areas to regions affiliated with all
other networks except for limbic areas, particularly default-

Figure 1.

Associations between the phenotypic information of the healthy

older adults. (A) Cognitive functioning across the groupings as a

function of age. Solid red lines show the best-fitting linear regression

of age, while dashed red lines indicate the 95% confidence intervals

for the linear fit. (B) Strength and direction of associations between

all phenotypic measures. aFDR-corrected; *P< 0.05, **P< 0.01,

***P< 0.001; FDR-corrected. N.B: Males coded as 1. [Color figure

can be viewed at wileyonlinelibrary.com]

TABLE III. CCA modes (P < 0.05) in the primary analysis

CCA mode One Two Three

df1 64 49 36
df2 496.76 441.03 384.80
F 1.77 1.55 1.48
K 0.30 0.45 0.57
r2 0.32 0.21 0.20
RI 0.072 0.030 0.023
P 0.00043 0.012 0.041

k 5 Wilk’s lambda; RI 5 redundancy index.
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mode connectivity with both the somatomotor and dorsal
attention networks (Fig. 3D).

The edges most strongly expressed within the second
mode are quite distinct from those demonstrating positive
associations with the first mode, mirroring the divergent
loading of phenotypic measures. The edges exhibiting the
strongest positive associations (mean 5 0.73, SD 5 0.01) with
the second mode stretch between visual cortices and dorso-
lateral prefrontal areas, while connections from superior
parietal (dorsal attention) and pre-/post-central gyri (soma-
tomotor) converge at both dorsolateral and ventrolateral
regions, within default and control networks (Fig. 4A).
Assigning regions to their respective functional affiliation
shows that edges from the default and control networks
interconnect preferentially with visual, somatomotor, and
dorsal attention networks (Fig. 4B).

The edges exhibiting the strongest positive associations
(mean 5 0.64, SD 5 0.02) with the third mode also com-
prise networks that are distinct from the other two modes.
Functional connections predominately cluster around ven-
trolateral and orbitofrontal divisions of left prefrontal
nodes encompassing default-mode, cognitive control, and
limbic areas (Supporting Information, Fig. 4A). Edges
stretch between these areas and bilateral frontomedial
regions (anterior cingulate and superior portions), the left
cingulate (middle and posterior portions), and left inferior
parietal lobe. Assigning these networks to functional sub-
divisions of the brain shows they are predominately dis-
tributed within-and-between default-mode and control
network areas, with additional connections between all
other networks (except for visual) (Supporting Informa-
tion, Fig. 4B).

Figure 2.

Weighting of cognitive and demographic measures captured by

the CCA modes. (A–C) Correlation between subject measures

and functional connectivity captured by the mode (Vm), with the

strength and direction indicated by the vertical position and font

size. Grey text depicts phenotypic loadings where the confi-

dence intervals of bootstrapped distributions overlap with zero.

(D–F) Scatter plots showing for each subject (data points) their

weighting toward nonimaging measures (Um, x-axis) and func-

tional connectivity patterns (Vm, y-axis), captured for the first

(D, E) and second modes (F). Color is scaled according to sub-

jects age (D), attention/processing speed performance (E), and

education level (F). [Color figure can be viewed at wileyonlineli-

brary.com]
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The Influence of Sex and Intelligence

Given the strong correlations between sex and cognitive
performance across specific domains (Fig. 1), we undertook
an additional CCA with sex (males coded as 1) included

(hence now with nine functional components). Two signifi-
cant CCA modes were identified (P< 0.05, Supporting
Information, Table IV), showing subtle differences to the prin-
cipal modes explored above (Supporting Information, Fig. 5).

Figure 3.

Connectivity edges most positively and negatively expressed by

the first CCA mode. (A and C) Connectivity edges exhibiting

the strongest positive and negative associations with functional

connectivity patterns (V1), respectively. Line width indexes

strength of correlation. Circle size is scaled to the number of

connections each region shares within the network. Node color

denotes the functional network affiliation (Yeo et al., 2011). The

brain meshes are presented from axial (bottom middle panel),

coronal (bottom left), and customized perspectives of the left

(top right; elevation 5 0, azimuth 5 2120) and right hemisphere

(top left; azimuth 5 2240). Connectivity edges and surface

meshes were visualized using BrainNet Viewer (Xia et al., 2013).

(B and D) Connectivity distributions across the functional clus-

ters for the edges most positively and negatively expressed.

Warmer colors indicate greater number of connections [Color

figure can be viewed at wileyonlinelibrary.com]
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In the first mode (Supporting Information, Fig. 5A), cognitive
domains are again spread along the positive axis, with (male)
sex loading most strongly on the negative axis followed by
age and education years. The strong independent association
of education with connectivity remains in the second mode
(Supporting Information, Fig. 5B), where sex and the cogni-
tive domains demonstrate weak-to-moderate associations.
The functional connections most strongly expressed by the
first mode when including sex in the CCA are spatially con-
sistent with those identified within the primary analysis (Fig.
5A,B; red lines indicate edges that are strongly expressed
regardless of whether sex is included in, or excluded from the
CCA model). Analysis of the second mode, however, reveals
edges that are predominantly expressed only when including
sex within the model (Fig. 5C; grey lines).

Education and intelligence (as estimated by NART IQ
scores) are highly correlated (Supporting Information, Fig.
2), and both considered central to cognitive reserve [Stern,
2009]. The positive covariation between years of education
and increased connectivity captured by the second mode in
the main analyses thus raises an interesting question regard-
ing the contribution of intelligence. We thus performed
CCA (again with nine functional components) using the full
cohort of subjects whom received NART IQ assessment at

study baseline (n 5 91). This analysis yielded two significant
modes (P< 0.05; Supporting Information, Table V). The
modes capture latent relations that are similar to the primary
analysis, although interesting differences between education
and intelligence emerge (Fig. 6A,B). Within the first mode,
NART IQ loads positively and of similar magnitude to mem-
ory and visuospatial ability. Although NART IQ scores also
bear a moderate positive association with connectivity cap-
tured by the second mode, the strength of this loading is
weaker than education. Thus NART IQ splits across both
modes, with some weighting in opposition to age and some
loading independently with education.

The strong influence of education when also including IQ in
the CCA model, also raises an interesting question regarding
the functional connectivity patterns that are captured here. The
edges exhibiting the strongest positive associations (mean-
5 0.74, SD 5 0.015) are distributed throughout the cortex (Fig.
7). Several key features are evident: Connections converge
(larger circles) upon parietal default-mode areas of the right-
hemisphere, including inferior and medial portions, in addi-
tion to superior (dorsal attention) and paracentral areas (soma-
tomotor). Edges connect these areas to dorso- and ventrolateral
prefrontal areas and also lateral pre- and postcentral gyri. Only
a small proportion of function connections (24/250

Figure 4.

Connectivity edges most positively expressed by the second

CCA mode. (A) Connectivity edges exhibiting strongest positive

associations with functional connectivity patterns (V2), hence

representing connections expressed by the increased education

level. Line width indexes strength of correlation. Circle size is

scaled to the number of connections each region shares within

the network, while colored to their functional network

affiliation. The brain meshes are presented from axial (bottom

middle panel), posterior (bottom left), and angular perspectives

of the left (top right) and right hemisphere (top left). (B) Con-

nectivity distribution across the functional networks, with

warmer colors indicating greater number of connections. [Color

figure can be viewed at wileyonlinelibrary.com]
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edges 5 9.6%) also occur within the corresponding mode of
the primary analysis (Supporting Information, Fig. 12). Visual-
izing this network with a connectivity heat map (Fig. 7B) and
edge bundling connectogram (Fig. 7C) (https://cran.r-project.
org/web/packages/edgebundleR/index.html) which acts to

cluster hierarchical relationships, shows that edges predomi-
nately cluster between default-mode (red circles) and control-
network (orange) areas to all other networks except for limbic
regions. Notably, the edges cluster around key DMN and
control-network regions (larger circles).

Figure 5.

Connectivity edges most strongly expressed by the significant

modes when including sex in the CCA model. (A and B) Con-

nectivity edges exhibiting the strongest positive and negative

associations with the functional connectivity patterns of the first

mode (V1), respectively. (C) Connectivity edges exhibiting the

strongest positive associations with the second mode (V2). Red

lines indicate edges which are strongly expressed by CCA mod-

els with and without sex included, while grey lines are those

uniquely expressed by the CCA with sex included. Line width

indexes strength of correlation. Node size is scaled to the num-

ber of connections each region shares within the network.

Node color denotes their functional network affiliation. The

images are presented from axial (left panel) and angular perspec-

tives of the left (right) and right hemisphere (middle). [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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Auxiliary Analyses: Removing Verbal Memory,

Head Motion Confounds, Functional

Eigenvectors, Parcellation Scheme, and

Smoothing Kernel

The construct of memory in the primary analysis
includes verbal memory and is hence partly redundant
(and thus strongly correlated) when verbal memory is also
coded separately. However, two significant CCA modes
(Supporting Information, Table VI) were also identified
with the removal of verbal memory scores with almost
identical loading distributions to those in the original anal-
ysis (Supporting Information, Fig. 6).

The potential confounds of head motion were already
regressed from the analysis. Nonetheless, further validations
were also performed. Subject motion (i.e., mean FD) shows

no significant association with functional connectivity varia-
tion (i.e., Vm) captured across all three modes (P> 0.95, FDR-
corrected; Supporting Information, Fig. 7A–C), nor does it
influence brain–behavior relations (Supporting Information,
Fig. 7D–F).

To determine that the captured brain–behavior relations
are not dependent on the amount of functional connectivity
information which is fed into the CCA, we reperformed the
analysis with four functional components; A shoulder in the
variance contribution is apparent close to the fourth eigen-
vector (Supporting Information, Fig. 1)—which according to
the subjective scree/elbow test [Abdi and Williams, 2010;
Cattell, 1966]—represents sufficient variation captured from
the connectivity data: Two significant CCA modes were
identified (Supporting Information, Table VII), with
almost identical loadings (Supporting Information, Fig. 8) to

Figure 6.

Weighting of cognitive and demographic measures captured by

the CCA modes including intelligence scores. (A and B) Corre-

lation between subject measures and functional connectivity var-

iation (Vm), with the strength and direction indicated by vertical

position and font size. (C and D) Scatter plots showing for each

subject (data points) their weighting toward nonimaging mea-

sures (U2, x-axis) and functional connectivity patterns (V2, y-

axis), captured for the second modes. Color is scaled according

to subjects education level (C) and NART IQ scores (D). [Color

figure can be viewed at wileyonlinelibrary.com]
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the primary analysis. The additional significant mode when
using the eight modes likely captures some residual covari-
ance adjusting the main two modes to the residual variance.

To check the dependence of our findings on the parcel-
lation scheme employed, the analysis was repeated, using
a coarser brain template of 200 regions (including cerebel-
lar and brain stem areas) derived by spatial-clustering of
functional connectivity patterns in an independent data

set [Craddock et al., 2012]. The positive–negative split of
cognitive domains and age remains present within the first
modes albeit the significance is slightly reduced (Support-
ing Information, Table IX and Fig. 9A). The independent
loading of education on the second mode also remained,
although this was again slightly reduced (Supporting
Information, Fig. 9B). Visual inspection of the connectivity
edges that are most strongly expressed with

Figure 7.

Connectivity edges most positively expressed by the second

CCA mode including intelligence scores. (A) Connectivity edges

exhibiting strongest positive associations with functional connec-

tivity patterns (V2). Line width indexes strength of correlation.

The brain meshes are presented from axial (bottom-left panel),

posterior (middle-left), and customized superior (top-middle;

elevation 5 55, azimuth 5 18) and lateral (top-right; ele-

vation 5 40, azimuth 5 2100) perspectives. (B) Connectivity dis-

tribution across the functional clusters, with warmer colors

indicating greater number of connections. (C) Edge-bundling

connectogram which clusters the hierarchical relationships

between these set of connections. Positions of regions are

according to their network affiliation. Edges are colored by their

respective affiliation if they link to either default-mode or

control-network regions. All other possible interactions are col-

ored grey. For both (A) and (C), circle size is scaled to the num-

ber of connections each region shares within the network and

circle color denotes their functional network affiliation. [Color

figure can be viewed at wileyonlinelibrary.com]
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implementation of a coarser template reveals a spatial dis-
tribution that is consistent to that identified within the
fine-grained parcellation (Supporting Information, Fig. 10).
Two significant modes were also identified when a 6 mm
smoothing kernel was applied to our rs-fMRI data (Sup-
porting Information, Table X and Fig. 11).

DISCUSSION

We used a multivariate approach to reveal the complex
relationships between demographic factors, cognitive per-
formance, and functional brain networks in a cohort of
cognitively normal older adults. Whereas a single mode
was previously reported to link cognitive and behavioral
traits to functional connectivity patterns within healthy
adults [Smith et al., 2015], we identified three modes cap-
turing significant interdependencies between phenotypic
measures, age, and functional connectivity in our older
cohort. The first mode comprises an opposition between
cognitive performance and age on connectivity patterns.
The second mode accounts for an independent and posi-
tive association of education with functional connectivity,
while the third mode captures weak relations. Including
age in a multivariate model of brain–behavior relations in
a healthy elder cohort thus appears to split the single
mode expressed in younger adults into three separate
modes, with age and education loading orthogonally.

All cognitive domains in the first mode load along a posi-
tive axis, mirroring positive traits within healthy adults
[Smith et al., 2015]. Age, on the other hand, is positioned on
the negative pole. This mode thus captures the opposing
pull between cognitive performance and age in their covari-
ation with connectivity patterns. The influence of age-
related changes most strongly opposes the connectivity pat-
terns associated with greater attention and processing speed
scores. The spread of other cognitive domains captured by
this mode converges with the previous aging literature.
Across the lifespan, tasks assessing attention and processing
speed are the most sensitive to age-related reductions in per-
formance. Furthermore, age-related changes in lower level
abilities (i.e., perceptual speed, psychomotor abilities) are
proposed to account for the reduced performance in other
abilities such as memory and executive functioning [Baltes
and Lindenberger, 1997; Lee et al., 2012; Park and Reuter-
Lorenz, 2009; Salthouse, 1996]. The sensitivity of such senso-
rimotor processes is consistent with the observable slowing
of daily activities in older individuals, as exemplified by
mobility and driving abilities [Ball et al., 2007]. Indeed, the
functional connections most positively expressed by this
mode are lower order systems linking visual and somato-
sensory cortices, with additional involvement of parietal
association areas. These regions are connected by bi-lateral
insular (posterior) and operculum (parietal) areas—whose
functions are associated with not only the simple sensorimo-
tor tasks but also the functional integration of sensorimotor
areas [Sepulcre, 2014; Sepulcre et al., 2012]. Age-related

changes observed here also build upon previously reported
reductions in resting-state connectivity with age within
sensorimotor systems [Betzel et al., 2014; Chan et al., 2014;
Geerligs et al., 2015], and for connectivity of the parietal
operculum itself [Cao et al., 2014; Tomasi and Volkow,
2012].

There conversely exists a network of functional connec-
tions negatively expressed by this mode involving links
between premotor, precentral, and postcentral gyri and
superior medial frontal areas—regions involved in planning
and performing motor output [Hu et al., 2015; Nachev et al.,
2008; Tremblay and Gracco, 2010]. Whereas motor perfor-
mance generally decreases with age [Ketcham and Stelmach,
2001; Seidler et al., 2010], paradoxically increased functional
activations in these areas occur during motor tasks in older
subjects [Carp et al., 2011; Heuninckx et al., 2008; Kleer-
ekooper et al., 2016; Seidler et al., 2010]. Increased activation
may act to compensate for changes in neural integrity
[Cabeza et al., 2002], and the decreased functional speciali-
zation of brain regions [Seidler et al., 2010], as reflected by
the increases in between-network connectivity with age
[Betzel et al., 2014; Chan et al., 2014; Ferreira et al., 2015;
Geerligs et al., 2015; Grady et al., 2016; Ng et al., 2016]. Inter-
estingly, a longitudinal study revealed from ages between
65 and 70 years, an increase over time (2-year interval)
for functional connectivity between the default-mode
and executive networks [Ng et al., 2016]. Increases in
between-network connectivity over time in their study were
further associated with reductions in processing speed
performance: The functional connections most negatively
expressed by the first mode in this study also largely
involve the between-network interactions of default-mode
and control-related areas. Hence, the first mode may capture
the dynamic changes to brain connections with age [Moran
et al., 2014], whereby patterns of more efficient connectivity
(relatively lower connectivity) are also associated with better
(and younger) performers.

Of interest, education loads only weakly on to the net-
works expressed by the age-related changes in cognitive
performance (i.e., mode one). The circuits supporting sen-
sorimotor functions in older adults may thus be resistant
to moderating factors such as years of education. This is in
apparent contradiction to the mitigation of age-related cog-
nitive-changes and relative maintenance of volumetric
brain structure observed with CR proxies in healthy older
individuals [Bartr�es-Faz and Arenaza-Urquijo, 2011; Stern,
2002; Stern, 2016]. Years of education is a frequently
employed proxy of CR, and correlates highly with inde-
pendently derived measures of brain maintenance and CR
[Habeck et al., 2016; Steffener et al., 2016]. In our data,
education instead loads upon a second mode, whose func-
tional connections are distinct from the first mode. Con-
nections occur between visual, salience, superior parietal,
and somatomotor regions, and converge upon the lateral
prefrontal areas—circuitry (especially frontoparietal links)
consistently implicated in cognitive control and other
higher order functions [Cocchi et al., 2013; Hearne et al.,
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2015; Koechlin et al., 2003; Spreng et al., 2010]. Indeed,
executive function partially loads onto the connectivity
patterns expressed by this mode, revealing increased edu-
cation may at least provide partial neuroprotection for
tasks comprising this domain. We note that executive
functions represent heterogeneous cognitive processes, as
reflected by the additional components that are tapped
into by the domain composites (i.e., TMT B and FAS
tasks). The unique variance captured by the connectivity
patterns of the first mode presumably reflects the diverse
aspects of the functions they assess (and hence lower inter-
nal consistency) [Greenaway et al., 2009; Sanchez-Cubillo
et al., 2009]. However, the two tasks do project almost
identically onto the second mode. As noted, the expressed
connections of this mode are consistent with those sup-
porting executive/control-related processes.

A third mode links relatively weak positive associations
between connectivity patterns to memory and visuospatial
abilities. This third mode may capture cognitive correlates
relatively independent of subject’s age and education. How-
ever, this mode was only weakly significant in our primary
analysis and did not generalize to auxiliary analyses.

We observed that NART IQ scores loads with other cogni-
tive domains in opposition to age on the first mode, while edu-
cation remains independently captured by the second. This
divergent loading of intelligence and education on the first
mode is interesting given both measures represent typical
proxies of CR [Xu et al., 2015], are highly correlated, and share
similar covariation with functional connectivity patterns
observed in younger adults [Smith et al., 2015]. However, CR
proxies have previously been shown to mitigate age-related
changes independent of each other [Richards and Sacker, 2003;
Stern et al., 1995; Suo et al., 2012]. The functional connections
expressed within the second mode of this CCA are predomi-
nately between default-mode (inferior and medial parietal
regions) and control-network hub-areas (middle frontal gyrus)
to other task-affiliated networks. Previous research has estab-
lished that higher order cognitive functions are dependent on
by these transmodal hub areas [Cole and Schneider, 2007;
Raichle, 2015; Seghier, 2013; Utevsky et al., 2014]. The predomi-
nance of between-network interactions loading with increased
education is salient given that the integration of functional sub-
systems is critical upon cognitively demanding tasks [Bassett
et al., 2011; Braun et al., 2015; Cocchi et al., 2013]. In our data,
intelligence loads moderately upon the age-related networks
of the first mode, while the influence of education is relatively
strongest for nonspecific between-network interactions.
Despite these CR proxies being highly interwoven, this diver-
gence could be attributed to intelligence representing innate
contributions toward normal aging [Deary et al., 2010; Plomin
and Deary, 2015], while educational attainment is perhaps
more reflective of modifying factors. Further investigations
exploring the rich spatiotemporal structure of resting-state
[Madhyastha and Grabowski, 2014; Zalesky et al., 2014] and
task-based fMRI patterns within this older cohort may disen-
tangle the benefits of increased education upon these nonspe-
cific between-network interactions.

We did not include sex in our primary analyses, as we
sought to elucidate general age-related changes across our
cohort. Including participants’ sex within the CCA model
allows a nested investigation of the influence of sex on age-
related brain–behavior correlates. This analysis revealed a
similar latent structure of phenotypic inter-relations to the
first and second mode of the original analysis. Within the
first mode, sex (males) loaded onto negative associations
with functional connectivity patterns, hence with age and in
opposition to better cognitive performance. Here, males
demonstrate poorer performance on memory-based tasks,
which is consistent with the cognitive styles of males from
both young and older adult populations [Gur et al., 2012;
Hoogendam et al., 2014; Kimura, 2004]. Sexual dimorphisms
in brain connectivity and structure are also consistently
observed across both young and older adults [Feis et al.,
2013; Ingalhalikar et al., 2014; Joel et al., 2015; Perry et al.,
2015]. The inclusion of sex within the CCA has only minimal
impact spatially on the functional edges most strongly
expressed by both positive and negative associations within
the first mode. Our data thus suggest that sexual dimor-
phisms in later life load on top of background age-related
changes, particularly for the circuits supporting memory
functions. In contrast, the connections most strongly
expressed in the second mode are substantially influenced
when including sex. We note that performance in visuospa-
tial ability, executive functioning, and male sex share similar
covariations here with functional connectivity patterns. In
the current sample, males demonstrate greater education
years, and hence these uniquely expressed connectivity pat-
terns may reflect the benefits of their educational attainment
for such cognitive processes [Gur et al., 2012; Hoogendam
et al., 2014; Kimura, 2004].

The relatively large cohort and the multivariate nature of
CCA bring new insights into the relationship between age,
cognition, and functional brain networks. However, these
findings should be interpreted in light of a number of limita-
tions. The cross-sectional and association-based nature of
the study design precludes causal inferences. A formal anal-
ysis of the influence of age and the relative preservation of
age-related changes with greater educational attainment
would mandate a longitudinal within-subjects design [Stern,
2016]. CR itself represents an inherently complex construct
[Stern, 2016], with an individual’s innate ability and
neuroplastic experiences contributing to the slowing of age-
related changes in similar [Habeck et al., 2016; Steffener
et al., 2016] and independent forms [Richards and Sacker,
2003; Suo et al., 2012]. Nonetheless, education years remains
one of the most widely implemented CR proxies [Bartr�es-
Faz and Arenaza-Urquijo, 2011; Xu et al., 2015], and is also
inextricably intertwined with the enriching lifestyle choices
that individuals pursue [Ross and Wu, 1996; Valenzuela and
Sachdev, 2007; Xu et al., 2015].

The individual tests were partitioned into cognitive
groupings as part of the broader longitudinal study (MAS).
This was done to facilitate the longitudinal assessment of the
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current study participants, and to compare our findings
with widely adopted theoretical constructs. While there is
no complete consensus regarding which cognitive domain
particular tests should be allocated to, our choice was
guided by a review of the extant literature and accorded
with the widespread practice used among neuropsycholo-
gists [Lezak et al., 2004; Strauss et al., 2006; Weintraub et al.,
2009]. We acknowledge that neuropsychological tests are
multifactorial in structure and even though a test may pri-
marily focus on one aspect of cognition, domain perfor-
mance here is indeed highly correlated, and is thus
potentially influenced by shared cognitive processes. As
noted, this is particularly the case for the executive compos-
ite. The verbal abilities also assessed by the FAS (Controlled
Oral Word Association Test) are closely related to those
tapped into by the semantic fluency task, grouped within
the language domain. The extant literature, however, from
both healthy and clinical populations supports grouping the
FAS and semantic fluency tasks into separate domains
[Henry and Crawford, 2004; Schmidt et al., 2017]. FAS per-
formance requires the suppression of semantically or asso-
ciatively related words [Katzev et al., 2013; Luo et al., 2010;
Shao et al., 2014], and is hence typically thought to involve
executive processes such as strategy, initiation, and self-
monitoring [Henry and Crawford, 2004]. Categorical fluency
tasks (i.e., the FAS) require more cognitively demanding
resources than semantic fluency tasks [Schmidt et al., 2017],
as individuals within the latter can rely on pre-existing (sub-
)categorical links to retrieve responses [Schmidt et al., 2017].
Distinct functional profiles are implicated during categorical
and semantic fluency tasks [Birn et al., 2010; Katzev et al.,
2013], along with differences in their expression with clinical
populations and focal brain lesions [Henry and Crawford,
2004; Shao et al., 2014]. Semantic and categorical fluency
tasks do share overlapping cognitive and neurobiological
profiles, and hence cannot be considered pure assessments
of a cognitive process [Henry and Crawford, 2004; Shao
et al., 2014]. Nonetheless, both the TMT B and FAS primarily
serve similar executive functions [Lezak et al., 2004; Strauss
et al., 2006], and are thus grouped together here.

We additionally report the internal consistency of the
domain scale-items, which provide support for our a priori
groupings. The executive composite reports a relatively
lower scale item homogeneity—which again is not surpris-
ing—given the multifactorial structure of such processes.
We note that the use of consistency measures for two-item
scales is highly contested, as they underestimate the reli-
ability of scale items [Eisinga et al., 2013; Tavakol and
Dennick, 2011]. The alternative approach to allocating tests
to domains would be to use factor analysis to form empiri-
cally based domains based on study data. We chose not to
take this approach as factors formed this way are more
idiosyncratic to the cohort studied and the range of tests
put into the factor analysis.

The presence of three modes in our analyses contrasts to
the single mode reported in the seminal paper by Smith

et al. [2015]. Given the older age of our cohort and the
inclusion of age as a factor in our CCA, we propose that
this difference reflects the influence of age on brain–behav-
ior correlations in later life, such that age acts independent
to the potential mitigating effect of earlier education. This
interpretation needs to be mindful of other differences
between the studies, such as the very broad range of cog-
nitive, lifestyle, and behavioral factors in Smith et al. First,
this study inferred significance by parametric methods
(i.e., Rao’s F), while Smith et al. implemented nonparamet-
ric permutations. The issue of parametric versus nonpara-
metric model testing remains an active area of debate,
with the former considered more sensitive when valid and
the latter more adaptive to data set size and the nature of
the distribution of the variability [Bzdok and Yeo, 2017].
The current sample size is considerably smaller than the
cohort of HCP participants employed by Smith et al. In
our opinion, parametric inference was appropriate to
ensure stable and robust linear model fits [Bzdok and Yeo,
2017; Ghahramani, 2015]. In some cases, parametric mod-
els may be more sensitive and stable than their nonpara-
metric counterparts [Eklund et al., 2016; Friston, 2012]. It is
worth noting that nonparametric models have an increas-
ing role in multivariate fMRI analyses [Nichols and
Holmes, 2002]. Such models are data-driven, and unlike
parametric inferences, can flexibly adapt to large data sets
[Bzdok and Yeo, 2017; Ghahramani, 2015; Miller et al.,
2016].

Other study differences in Smith et al. include the use of
high-temporal resolution rs-fMRI data and a high-
dimensional ICA-based approach for denoising and corti-
cal parcellation. The availability of a more modestly size
cohort in our study and differences in the characterization
of our cohort precluded the application of an identical
pipeline. However, the connectivity patterns expressed by
the positive individual traits and behaviors of the younger
population in Smith et al. are those primarily those of
default-mode, control-network, and sensory-related corti-
ces. The large-scale interactions between these areas are
also particularly expressed by the higher intelligence and
education levels (i.e., the second mode) of the older adults
in this study, which hence speaks to the continued contri-
bution of positive phenotypic traits to healthy brain
functioning.

In conclusion, this study expands upon a recent multi-
variate analysis of behavior and functional brain networks
in young adults through extension into cognitively normal
elders. When modelling age in our elderly cohort, we find
that brain–cognition relations spilt into more than one
mode, with age and education loading onto separate
modes of functional connectivity patterns. Age-related
changes in later life are most strongly exerted upon senso-
rimotor networks subserving core cognitive processes such
as attention and processing speed. We find that changes
within these lower level circuits are independent to mod-
erating factors such as higher education attainment, which
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confer their influence independent of age-related effects.
The influence of age and education here can provide an
important benchmark for the study of neurodegenerative
disease and furthermore has implications for behavioral
interventions in elderly populations. Whereas effects of
education and sex are often controlled for within aging
investigations, the present multivariate approach further
highlights the rich and complex phenotypic interinfluence
on functional connectivity patterns.
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