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TO THE EDITOR:

The impact of age, NPM1mut, and FLT3ITD allelic ratio in
patients with acute myeloid leukemia
Jasmin Straube,1 Victoria Y. Ling,1 Geoffrey R. Hill,1-3 and Steven W. Lane1-3

1QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; 2School of Medicine, University of Queensland, Brisbane, QLD, Australia; and
3Department of Haematology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia

Acute myeloid leukemia (AML) is a heterogeneous disease for
which genetic profiles dictate clinical outcomes. Cytogenetic
and molecular profiling in AML is a mandatory diagnostic and
prognostic requirement, yet interpretation of these results is
becoming increasingly complex. Next generation sequencing
(NGS) technologies have enabled comprehensive characteriza-
tion of the genomic landscape of AML, revealing complex pat-
terns of clonal evolution during development and treatment.1,2

The datasets generated represent invaluable resources to in-
terrogate the genomic information from large patient cohorts and
identify clinically relevant molecular biomarkers of disease initi-
ation, progression, and response to treatment.3,4

The 2017 update of the European LeukemiaNet recommenda-
tions (ELN 2017) on genetic risk stratification provides a comprehen-
sive genomic classification and prognostication schema, updating
the European LeukemiaNet 2010 recommendations (ELN 2010).5

A key change in ELN 2017 has been to reclassify nucleophosmin
1 mutant (NPM1mut) AML with a low–allelic-ratio FLT3-internal
tandem duplication (FLT3ITD-L; allelic ratio [AR] , 0.5) mutation
as favorable risk, along with AML with NPM1mut (not containing
a FLT3-internal tandem duplication [FLT3ITD] mutation), biallelic
CEBPA mutations, and core-binding factor AMLs. The evidence

supporting NPM1mutFLT3ITD-L as favorable risk is conflicting, with
several groups showing a favorable outcome comparable with
NPM1mutFLT3 wild-type (FLT3wt) disease,6-9 and others demon-
strating an intermediate prognosis,10-12 although none of these
studies have compared survival of NPM1mutFLT3ITD-L within an
overall-risk stratification schema. The published survival differ-
ences may be explained by varying FLT3ITD AR thresholds, patient
characteristics, clinical treatment algorithms, or methods of
FLT3ITD detection and quantification (supplemental Methods; sup-
plemental Table 1; available on the Blood Web site), but in ag-
gregate, the literature does not provide a consistent message
regarding the outcome or optimal management of patients with
NPM1mutFLT3ITD-L AML. The gold standard assay to identify FLT3ITD

uses polymerase chain reaction–amplified products processed by
capillary electrophoresis13 and conventionally uses genomic DNA,
but can use complementary DNAwith good concordance.14 FLT3ITD

detection and quantification by NGS are challenging due to short
DNA sequence fragments, hence the frequency or AR may be
underestimated and poorly correlates with fragment based analysis.15

We therefore sought to compare the performance of ELN 2017
with ELN2010 in 2409AMLpatients from3publicly available data
sets (German-Austrian AML Study Group1 [AMLSG], n 5 1316;
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Figure 1. ELN 2017 and ELN 2010 Kaplan-Meier OS curves for AMLSG, TCGA, and TARGET data. (A) AMLSG ELN 2017 and ELN 2010 stratification. Cox regression on
ELN 2017 revealed a significantly different HR using the Wald test statistic for all 3 risk groups (favorable vs intermediate: P 5 3 3 10212; HR, 1.7; 95% CI, 1.4-1.9; favorable vs
adverse: P , 2 3 10216; HR, 3.2; 95% CI, 2.8-3.7; intermediate vs adverse: P , 2 3 10216; HR, 2; 95% CI, 1.7-2.2). ELN 2010 was also able to stratify the cohort into risk groups
(favorable vs intermediate-I: P5 23 10214; HR, 2.2; 95% CI, 1.8-2.7; favorable vs intermediate-II: P5 33 1027; HR, 1.9; 95% CI, 1.5-2.4; favorable vs adverse: P, 23 10216; HR,
4.2; 95% CI, 3.5-5.2; intermediate-I vs adverse: P5 23 10214; HR, 2; 95% CI, 1.7-2.3; intermediate-II vs adverse: P5 23 10212; HR, 2; 95% CI, 1.8-2.8); without difference between
the intermediate-I and -II groups (P 5 .23). (B) In the TCGA cohort, ELN 2017 could stratify the favorable and intermediate risk groups from the adverse risk group (favorable vs
adverse: P5 .001; HR, 2.1; 95% CI, 1.3-3.3; intermediate vs adverse: P5 .008; HR, 2; 95% CI, 1.2-3.2), but failed to stratify the favorable from the intermediate risk groups (P5 .8).
ELN 2010 successfully stratified the favorable from the intermediate-II and adverse risk groups (P 5 .03; HR, 2.2; 95% CI, 1.1-3.8; P 5 .002; HR, 2.4; 95% CI, 1.4-4.1), but not the
favorable from the intermediate-I risk group (P 5 .2) or the intermediate-I and intermediate-II from the adverse risk group (P 5 .06; P 5 .6). (C) In the TARGET pediatric cohort, the
ELN 2017 was again able to separate the 3 risk groups (favorable vs intermediate: P 5 23 10212; HR, 2.7; 95% CI, 2.1-3.6; favorable vs adverse: P 5 33 10216; HR, 3.8; 95% CI, 2.8-5.2;
intermediate vs adverse: P 5 .008; HR, 1.4; 95% CI, 1.1-1.8). ELN 2010 was also able to stratify the favorable from the intermediate and adverse groups (favorable vs intermediate-I:
P5 33 10210; HR, 2.9; 95% CI, 2.1-4.1; favorable vs intermediate-II: P5 73 10211; HR, 2.6; 95% CI, 2-3.5; favorable vs adverse: P5 73 10212; HR, 3.8; 95% CI, 2.6-5.7; and intermediate-II
vs adverse: P 5 .02; HR, 1.5; 95% CI, 1-2), but not the intermediate-I from the adverse risk group (P 5 .14) or the intermediate-I from the intermediate-II risk group (P 5 .46).
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Figure 2. Impact of FLT3ITD-L and age in NPM1-mutated AML on OS and relapse-free survival in ELN 2017 favorable-risk patients. (A) In the AMLSG cohort, there was a
significant difference in survival between NPM1mutFLT3wt patients vs NPM1mutFLT3ITD-L patients (AR , 0.5). This difference is not seen in the TCGA and TARGET cohorts. The
AMLSG (B) and TCGA (C) cohorts were stratified by age. Younger (,60 years) patients with NPM1mutFLT3ITD-L had outcomes inferior to NPM1mutFLT3wt patients in both cohorts.
In older ($60 years) patients in both cohorts, NPM1mutFLT3wt appeared to lose its favorable influence, with both groups having similarly poor outcomes. (D) Comparison of ELN
2017 favorable NPM1mut FLT3ITD-L patients with other ELN 2017 risk groups in the AMLSG cohorts. NPM1mutFLT3ITD-L patients ,60 years showed an increased risk of death
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The Cancer Genome Atlas2 [TCGA], n 5 150, and Therapeu-
tically Applicable Research To Generate Effective Treatments15

[TARGET] pediatric AML, n 5 943) with comprehensive genomic
and clinical data. In particular, we aimed to examine the prognosis
of the NPM1mutFLT3ITD-L subgroup in the overall context of ELN
2017.

We first compared Kaplan-Meier overall survival (OS) curves
between ELN 2010 and ELN 2017. ELN 2017 stratified the
AMLSG cohort into significantly different favorable, intermedi-
ate, and adverse survival risk groups (Figure 1A). In the TCGA
cohort, ELN 2017 failed to identify a favorable-risk group, with
overlapping favorable and intermediate risk survival curves
(P 5 .8, Figure 1B). Across both adult cohorts, the favorable-risk
group had a 5% to 6% inferior 5-year OS rate in ELN 2017
compared with ELN 2010 (supplemental Table 2). Interestingly,
the TCGA cohort had inferior survival compared with AMLSG
across all risk groups, especially in the favorable category (5-year
OS, 57% [AMLSG] vs 33% [TCGA]) with the TCGA favorable
group performing similarly to the AMLSG intermediate group
(5-year OS, 33%). Given these stark differences in survival, the
2 adult cohorts were not pooled for further analysis. Although
ELN 2017 was designed for adult AML, it was able to significantly
separate 3 risk groups in the pediatric TARGET population
with only minor differences in OS between ELN 2010 and ELN
2017 (Figure 1C; supplemental Table 2). TARGET risk groups
had superior OS compared with adult counterparts. These data
validate ELN 2017 and ELN 2010 across a broad spectrum of
patient ages and AML subtypes.

The recategorization of NPM1mutFLT3ITD-L as favorable in ELN
2017, compared with intermediate-I risk in ELN 2010 likely
explains the inferior survival for favorable-risk adults in ELN 2017.
In the AMLSG ELN 2017 favorable-risk cohort (n 5 564), 159
patients (28%) had NPM1mutFLT3ITD-L and 207 (38%) had
NPM1mut alone. NPM1mutFLT3ITD-L patients overall exhibited
high-risk features, including raised lactate dehydrogenase, white
blood cell (WBC) counts, and peripheral blood and bonemarrow
(BM) blast percentage. In general, WBC counts were FLT3ITD AR
dependent, increasing from FLT3wt to high–allelic ratio FLT3ITD

(supplemental Figure 1). In the TCGA ELN 2017 favorable-risk
cohort, 26 patients (17%) had NPM1mut and 20 (13%) had
NPM1mutFLT3ITD-L. Patients were generally older in the TCGA
cohort compared with the AMLSG cohort. NPM1mutFLT3ITD-L
patients had higher WBC counts and BM blasts, although this
differencewas not statistically significant. Interestingly, themedian
WBC count in the TCGA cohort was unexpectedly high in the
NPM1mutFLT3ITD-L subgroup at 643 109/L (supplemental Figure 1).
Concomitant DNMT3A mutations were found in approximately
half of both NPM1mutFLT3ITD-L and NPM1mut patients from each
cohort. Mutations resulting in activation of signaling pathways

(NRAS, PTPN11, and FLT3 tyrosine kinase domain) were enriched in
NPM1mut compared with NPM1mutFLT3ITD-L in both cohorts
(AMLSG, P 5 2.7 3 10210, TCGA, P 5 .003). The pediatric cohort
included 44 (4.7%) patients with the NPM1mut alone and 17 (1.8%)
NPM1mutFLT3ITD-Lpatients.Differences in leukemiaburdenwerenot
apparent between the 2 groups. Patients with NPM1mutFLT3ITD-L
were significantly older (median age, 15.9 vs 12.8 years, P 5 .023).
Consistently, we observed an age-related increase in the incidence
of NPM1 and FLT3ITD mutations, and patients with both mutations
were the oldest (supplemental Figure 2), confirming findings in other
cohorts.16,17 The characteristics of each cohort are further de-
scribed in supplemental Tables 3 and 4.

We examined OS and relapse risk (RR) of patients with
NPM1mutFLT3ITD-L and NPM1mut alone. The presence of
NPM1mutFLT3ITD-L was associated with inferior OS (Figure 2A)
and increased RR (supplemental Figure 3) in the AMLSG cohort,
but not in the TCGA or TARGET cohorts. This was confirmed in a
multivariate analysis (adjusted P 5 .005; hazard ratio [HR] 5 1.7;
95% confidence interval [CI], 1.2-2.3; supplemental Figure 4). In
the TCGA cohort, the outcomes were unexpectedly poor in both
groups with median survival ,2 years and, together with the
higher WBC counts, suggests the selection of AML patients with
relatively high biological risk. NPM1mut and FLT3ITD are found at
a lower frequency in childhood (range, 5%-8%) compared with
adults with AML.18,19 In the TARGET cohort, both NPM1mut and
NPM1mutFLT3ITD-L patients had equally good prognoses. Other
significant adverse risk factors identified in multivariate analy-
sis of AMLSG included increasing age and WBC count in
intermediate–cytogenetic risk patients and DNMT3A mutations
specifically within the NPM1mutFLT3ITD-L group, with the latter
finding confirmed in survival analyses (supplemental Figure 5).
Lower numbers limited the power of multivariate analysis in the
TCGA and TARGET cohorts.

Given the older age and relative poor survival of the favorable
group in the TCGA cohort, we performed separate analyses for
patients $60 years of age and patients ,60 years of age in the
AMLSG and TCGA cohorts (Figure 2B-C). In patients ,60 years,
NPM1mutFLT3ITD-L conferred a poorer prognosis in both the
AMLSG (P 5 .0003) and the TCGA cohort (P 5 .023), similar to
or worse than ELN 2017 intermediate-risk patients in the re-
spective cohorts (Figure 2D-E). Conversely, for patients$60 years,
NPM1mutFLT3ITD-L and NPM1mut alone groups had similar, poor
outcomes. The poor outcome in NPM1mutFLT3wt patients
$60 years highlights the absence of an absolute favorable-risk
cohort and is consistent with other cohorts.20 There were limited
numbers of adolescent and young adult (AYA; age, 18-30 years)
patients with AML available for review, and results did not reach
statistical significance, however, there was a trend toward inferior
outcomes in AYA patients with NPM1mutFLT3ITD-L compared

Figure 2 (continued) comparedwith other favorably classifiedpatients (P5 8.73 1028; HR, 2.5; 95%CI, 1.8-3.5), whereas there was no difference comparedwith the intermediate
risk group (P 5 .76). NPM1mutFLT3wt patients showed no difference from other favorably classified patients (P 5 .07), but a significantly decreased risk compared with the
intermediate risk group (P5 8.83 1025; HR, 0.6; 95%CI, .4-.8). In patients$60 years, no statistical difference was observed between favorable, intermediate, NPM1mutFLT3wt, and
NPM1mutFLT3ITD subgroups. (E) Similar trends were observed for the TCGA cohort in patients ,60 years, with NPM1mutFLT3ITD-L patients having a significantly poorer survival
compared with the favorable (P5 .004; HR5 6.9; 95% CI, 1.9-25.7) and intermediate groups (P5 .03; HR, 2.8; 95%CI, 1.1-7). In this cohort, survival of NPM1mutFLT3wt patients was
not statistically different to favorable (P 5 .3) or intermediate risk groups (P 5 .8). In patients $60 years, there were also no significant differences between the favorable,
intermediate, and NPM1mutFLT3wt and NPM1mutFLT3ITD-L subgroups. (F) Conversely, in the TARGET pediatric cohort, NPM1mutFLT3wt (P 5 .98) and NPM1mutFLT3ITD-L (P 5 .87)
patients had similar survival to other favorably classified patients. Although the NPM1mutFLT3wt group had a significantly decreased risk of death compared with intermediate-
classified patients (P5 .006; HR, 0.37; 95% CI, 0.28-0.5), the difference between the intermediate and NPM1mutFLT3ITD-L groups did not reach significance (P5 .06). All P values
displayed in the graphs are the result of a log rank test statistic to assess the global statistical significance of the model.
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with NPM1mutFLT3wt AML (data not shown). In pediatric AML, we
observed that NPM1mutFLT3ITD-L did not confer adverse prog-
nosis compared with other favorable genotypes (Figure 2F).
Although this may reflect the high rate of allogeneic stem cell
transplantation (SCT) in the NPM1mutFLT3ITD-L group (52.9%
in TARGET vs 11.4% in NPM1mutFLT3wt, P 5 .0017), the fa-
vorable prognosis of the FLT3ITD-L subgroup even without
NPM1mut in pediatric cohorts, but not in adults, requires further
study to determine whether this reflects disease biology or
treatment.

Targeted inhibitors of FLT3 have been developed in an attempt
to overcome the negative prognostic impact of FLT3ITD in AML.
Despite substantial single-agent activity, early randomized
studies of FLT3 inhibitors together with chemotherapy in elderly
patients failed to demonstrate a survival advantage of this ap-
proach.21 The recent RATIFY study22 combined the multikinase
inhibitor midostaurin with intensive induction and consolidation
chemotherapy in FLT3mut AML, and followed this with#12months
of maintenance midostaurin treatment. In this cohort (age
,60 years), midostaurin led to a survival benefit in FLT3ITD AML,
leading to the international registration of midostaurin for the
treatment of FLT3mut AML in combination with intensive che-
motherapy and maintenance.

Altogether, these data raise important considerations regarding
the application of ELN 2017 that have significant implications for
patient selection for allogeneic SCT or alternative novel thera-
pies. Adults with NPM1mutFLT3ITD-L have inferior survival to other
favorable-risk patients, and concurrent DNMT3A mutations, as a
potential risk modifier in this group, should be prospectively
examined. Furthermore, patients $60 years of age with NPM1
mutations, with or without FLT3ITD, have adverse outcomes
and should not be considered favorable risk. More broadly,
this study demonstrates the power of using publicly available
datasets, strengthening the call for increased responsible data
sharing.
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