T cells were sorted to high purity using dual magnetic bead-based and flow cytometry-based methodologies. Proteins were trypsin-digested and analysed using label-free data-dependent acquisition mass spectrometry (DDA-MS) followed by label free quantitation (LFQ) proteomics analysis using MaxQuant software. Approximately 4,000 T cell proteins were identified with a 1% false discovery rate, of which approximately 2,800 proteins were consistently identified and quantified in all the samples. Finally, flow cytometry with a monoclonal antibody was used to validate the elevated abundance of the protein phosphatase CD148 in Tregs. This proteomic dataset serves as a reference point for future mechanistic and clinical T cell immunology and identifies receptors, processes, and pathways distinct to Tregs. Collectively, these data will lead to a better understanding of Treg immunophysiology and potentially reveal novel leads for therapeutics seeking Treg regulation.
Authors | Weerakoon, Harshi; Miles, John J; Lepletier, Ailin; Hill, Michelle M |
---|---|
Journal | Data in brief |
Pages | 107687 |
Volume | 40 |
Date | 1/01/2021 |
Grant ID | |
Funding Body | |
URL | http://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016/j.dib.2021.107687 |