QIMR Berghofer

Genetic heterogeneity in self-reported depressive symptoms identified through genetic analyses of the PHQ-9.


BACKGROUND: Depression is a clinically heterogeneous disorder. Previous large-scale genetic studies of depression have explored genetic risk factors of depression case-control status or aggregated sums of depressive symptoms, ignoring possible clinical or genetic heterogeneity. METHODS: We analyse data from 148 752 subjects of white British ancestry in the UK Biobank who completed nine items of a self-rated measure of current depressive symptoms: the Patient Health Questionnaire (PHQ-9). Genome-Wide Association analyses were conducted for nine symptoms and two composite measures. LD Score Regression was used to calculate SNP-based heritability (h2SNP) and genetic correlations (rg) across symptoms and to investigate genetic correlations with 25 external phenotypes. Genomic structural equation modelling was used to test the genetic factor structure across the nine symptoms. RESULTS: We identified nine genome-wide significant genomic loci (8 novel), with no overlap in loci across symptoms. h2SNP ranged from 6% (concentration problems) to 9% (appetite changes). Genetic correlations ranged from 0.54 to 0.96 (all p < 1.39 × 10-3) with 30 of 36 correlations being significantly smaller than one. A two-factor model provided the best fit to the genetic covariance matrix, with factors representing 'psychological' and 'somatic' symptoms. The genetic correlations with external phenotypes showed large variation across the nine symptoms. CONCLUSIONS: Patterns of SNP associations and genetic correlations differ across the nine symptoms, suggesting that current depressive symptoms are genetically heterogeneous. Our study highlights the value of symptom-level analyses in understanding the genetic architecture of a psychiatric trait. Future studies should investigate whether genetic heterogeneity is recapitulated in clinical symptoms of major depression.

Authors Thorp, Jackson G; Marees, Andries T; Ong, Jue-Sheng; An, Jiyuan; MacGregor, Stuart; Derks, Eske M
Pages 1-12
Date 1/09/2019
Grant ID
Funding Body
URL http://www.ncbi.nlm.nih.gov/pubmed/?term=10.1017/S0033291719002526