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A B S T R A C T

Densely seeded probabilistic tractography yields weighted networks that are nearly fully connected, hence
containing many spurious fibers. It is thus necessary to prune spurious connections from probabilistically-
derived networks to obtain a more reliable overall estimate of the connectivity. A standard method is to
threshold by weight, keeping only the strongest edges. Here, by measuring the consistency of edge weights
across subjects, we propose a new thresholding method that aims to reduce the rate of false-positives in group-
averaged connectivity matrices. Close inspection of the relationship between consistency, weight, and distance
suggests that the most consistent edges are in fact those that are strong for their length, rather than simply
strong overall. Hence retaining the most consistent edges preserves more long-distance connections than
traditional weight-based thresholding, which penalizes long connections for being weak regardless of anatomy.
By comparing our thresholded networks to mouse and macaque tracer data, we also show that consistency-
based thresholding exhibits the species-invariant exponential decay of connection weights with distance, while
weight-based thresholding does not. We also show that consistency-based thresholding can be used to identify
highly consistent and highly inconsistent subnetworks across subjects, enabling more nuanced analyses of
group-level connectivity than just the mean connectivity.

Introduction

Tractography is a widely-used method for inferring white matter
connectivity from diffusion imaging data, and is central to the field of
connectomics (Fornito et al., 2015). Various algorithms use voxel-
based estimates of water diffusion to infer the likely paths of white
matter bundles, either deterministically or probabilistically (Behrens
et al., 2003; Descoteaux et al., 2009). Regardless of the method, there is
uncertainty over which connections are “true” connections and which
are spurious (de Reus and van den Heuvel, 2013; Girard et al., 2014;
Smith et al., 2012). In particular, while deterministic tractography has
high specificity at the cost of sensitivity to crossing fibers and hence has
a high rate of false negatives, probabilistic algorithms yield inherently
noisy connection matrices, at least at the single subject level, and hence
likely contain numerous false positives (Thomas et al., 2014).

Pooling data over subjects is a common way to reduce the signal to
noise ratio, such as by averaging connectivity matrices across subjects
(Hagmann et al., 2008; Perry et al., 2015), or determining a consensus

connectivity by selecting edges that appear in at least some fraction of
the subjects (de Reus and van den Heuvel, 2013; van den Heuvel and
Sporns, 2011). Seeking a consensus in this way is problematic for
networks derived from densely-seeded probabilistic tractography,
where all individual subject-wise networks are densely connected.
The most common method in this setting is to “threshold” networks
to some desired density by keeping only the strongest links (Rubinov
and Sporns, 2010). This method is applicable to dense networks, but it
is not at all clear that the strongest links are always the most accurate
for inferring white matter connectivity (Gigandet et al., 2008).

Besides reducing spurious connections, thresholding connectivity
matrices also plays an important role in graph-based characterization
of connection topology (Bullmore and Bassett, 2011; Van Wijk et al.,
2010). Thresholding is used to determine binary adjacency matrices
associated with weighted networks, enabling use of the full armory of
graph-theoretic tools for unweighted networks (Rubinov and Sporns,
2010). Thresholding can also be used to identify subnetworks com-
posed of the strongest (or weakest) edges, whether for analysis of these

http://dx.doi.org/10.1016/j.neuroimage.2016.09.053
Received 16 March 2016; Accepted 21 September 2016

⁎ Corresponding author at: Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
E-mail address: james.roberts@qimrberghofer.edu.au (J.A. Roberts).

NeuroImage 145 (2017) 118–129

Available online 22 September 2016
1053-8119/ © 2016 Elsevier Inc. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
http://dx.doi.org/10.1016/j.neuroimage.2016.09.053
http://dx.doi.org/10.1016/j.neuroimage.2016.09.053
http://dx.doi.org/10.1016/j.neuroimage.2016.09.053
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.09.053&domain=pdf


subnetworks or simply for ease of visualization.
In this technical note, we propose a hybrid thresholding method

that seeks a group consensus connectivity by thresholding the averaged
network to retain only those connections whose weights are the most
consistent across the group. Unlike the popular weight-based thresh-
olding, our consistency-based thresholding pays heed to the within-
group intersubject variability when deriving a group-averaged matrix.
We show that our consistency-based approach avoids the “hard
threshold edge” imposed by traditional thresholding and preserves
the role of long-range connections. We also study the influence of
thresholding strategy on the network topology of the ensuing structural
connectome.

Methods

We derived estimates of whole brain structural connectivity from
diffusion images of 75 healthy subjects (aged 17–30 years, 47 females).
The structural connectivity matrices were derived in a recent study; we
briefly present the methods here but see Roberts et al. (2016) for full
details on the acquisition and tractography details.

Diffusion MRI data were acquired from all participants on a Philips
3 T Achieva Quasar Dual MRI scanner (Philips Medical System, Best,
The Netherlands) using a single-shot echo-planar imaging (EPI)
sequence (TR=7767 ms, TE=68 ms). For each diffusion scan, 32
gradient directions (b=1000 s/mm²) and a non-diffusion-weighted
acquisition (b=0 s/mm²) were acquired over a 96×96 image matrix
(field of view 240 mm×240 mm×137.5 mm), with a slice thickness of
2.5 mm and no gap, reconstructed to yield 1 mm×1 mm×2.5 mm
voxels (where the longer dimension is along the dorsoventral axis).
Two sets of diffusion scans were acquired for each subject.

We employed a probabilistic streamline algorithm (Tournier et al.,
2012) to generate high-resolution whole-brain fiber tracks. The fiber
orientation distribution (FOD) within each voxel was estimated using
MRtrix software (Tournier et al., 2012) by performing constrained
spherical deconvolution (Tournier et al., 2007) with a maximum
spherical harmonic order (lmax) of 6. As an intermediate step to
constrain the spherical deconvolution, a single-fiber response kernel
was estimated from all white matter voxels with fractional anisotropy
FA > 0.7. Streamlines were seeded using the skull-stripped brain mask
together with a restriction to voxels with FOD amplitude > 0.1.
Streamlines will not start outside this region and terminate if they
reach the boundary. Tractograms were generated using a probabilistic
streamlines algorithm (Tournier et al., 2012), which produces a set of
connection trajectories by randomly sampling from the orientation
uncertainty inherent in each FOD along the streamline paths. Although
non-isotropic voxels were used within the analysis, we subsequently
checked the resultant fiber orientations and tractograms, finding no
issue with potential biases on quality. To confirm this we repeated our
analysis in an independent dataset acquired with isotropic voxels
(Supplementary information 1).

Our connectivity matrices were reconstructed from densely seeded
tractography (108 seeds) and parcellated into a relatively fine repre-
sentation of 513 uniformly sized cortical and sub-cortical regions
(Zalesky et al., 2010). The resulting weighted, undirected matrices
were nearly fully connected in each subject. The weights are the
number of streamlines linking each pair of regions. The spatial
connection distance between all nodes was obtained using a stream-
line-based quantification of distance, in addition to the more tradi-
tionally-used Euclidean distance. In six subjects, for each pathway in
the connectome, the shortest streamline between the node pair was
found, and its length determined; these minimum lengths were then
averaged across the six subjects. The minimum streamline length per
subject was used here as streamlines are more likely to erroneously
continue beyond the length of the connecting pathway (and hence over-
estimate the actual connection length) rather than provide an erro-
neously short pathway. In previous work (Roberts et al., 2016) it was

observed that the length distribution converged after averaging over a
small number of subject streamline lengths. Indeed, the precise details
of the length distribution do not influence our results, as demonstrated
in an independent dataset where we used every individual's own set of
streamlines (Supplementary information 1).

This combination of streamline generation and anatomical parcel-
lation yields a weighted structural connectivity graph within each
subject, which we denote W, and a corresponding matrix of streamline
lengths, F. Within each W, a weighted connection wij represents the
number of streamlines from region i terminating within a 2 mm radius
of region j, with corresponding streamline length fij. The 2 mm radius
ensures that fiber terminations near the gray-matter boundary, where
the diffusion signal becomes noisier and weaker, are adequately
captured. While this could theoretically lead to streamlines being
counted twice, our 513 node parcellation is sufficiently coarse that this
occurs very infrequently. To improve signal to noise ratio, the
corresponding wij were summed across each subject’s two diffusion
scans. The non-directional nature of tractography implies that W is
symmetric – that is wij=wji. The larger number of likely random seeds
located along longer fiber bundles is well known to result in over-
defined fiber densities (Smith et al., 2013). To reduce this confounding
effect, wij were adjusted by dividing the raw count by the streamline
length fij between nodes i and j,wij→wij/fij (cf. Hagmann et al., 2008).
That is, because we seed the white matter uniformly, a tract that is
twice as long will have received twice as many seeds. Its weight
(streamline count) will thus have been biased relative to a shorter
tract with the same true fiber density.

We note that the very dense seeding of our probabilistic tracto-
graphy yields connectivity matrices that are fully connected (or very
nearly fully connected) in all subjects. Whilst the biological connectome
at this level of resolution is likely not fully connected, estimates of
connection density in the field range very broadly, from < 5%
(Hagmann et al., 2008) to 13–36% for the entire brain and 32–52%
for cortico-cortical connections in the mouse (Oh et al., 2014). Seeding
probabilistic tractography densely, then setting a post-hoc threshold,
allows investigation of topology over a range of connection densities,
and not that dictated by the acquisition and reconstruction technique.

We estimated the consistency of every edge weight by measuring
the coefficient of variation across subjects. We then compared networks
thresholded by weight to networks thresholded by consistency. To
quantify differences in network topology, we calculated graph metrics
(clustering, rich club, modularity) using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010).

Results

We begin by characterizing the consistency of edge weights across
subjects. We quantify consistency by calculating the coefficient of
variation (CV) of the weights (SD/mean) across subjects. A low CV
corresponds to a high consistency. Edge CV broadly decreases with
increasing edge weight (Fig. 1), thus showing that consistency increases
with edge weight. This is the widely-assumed justification for weight-
based thresholding; here we verify that the very strongest edges are
indeed the most consistent. However, this inverse relationship between
CV and weight does not follow a simple linear trend. Rather, edges with
weights two orders of magnitude below the strongest are almost as
consistent.

This slow fall-off of consistency with weight is particularly clear
when taking the spatial dimension into account. Weights decrease
roughly exponentially with streamline length as shown previously
(Roberts et al., 2016). However, CV increases more slowly with
distance, such that some of the longest connections are in fact the
most consistent (Fig. 2A). In a sense this is unsurprising: true long
connections would be expected to have consistent weights between
subjects. Grouping the edges by quartiles in consistency (Fig. 2A–D)
shows that each quartile's cloud of points spans almost the full range of
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streamline lengths – there are both long and short consistent connec-
tions and long and short inconsistent connections. The main difference
between the quartiles is that the lower-consistency edges tend to be of
lower weight relative to the background distance effect (Fig. 2E).

These differences between weight and consistency are important for
deciding which edges one should keep when thresholding. Typical
thresholding methods select edges on the basis of weight alone
(Fig. 3A), preserving the edges with the highest weights up to a desired
network density. For very sparse connectivity ( < 1% density) the
chosen edges are indeed highly likely to correspond to true connec-
tions, but these will also be very short connections. Similarly, the very
weakest connections are also likely to be the most unreliable. But in
between these two extremes there is much more variability than is
widely appreciated. For moderate densities it is unlikely that the
strongest connections will always be the most anatomically accurate.
If we instead threshold by consistency – preserving the edges with the
lowest CV up to a desired network density – the set of retained edges

Fig. 1. Consistency of edges across subjects versus weight. Note double logarithmic
coordinates. Points with low coefficient of variation (CV) are the most consistent.

Fig. 2. Consistency of edge weights as a function of weight and streamline length. (A–D) Edges grouped by consistency in decreasing quartiles 1–4, respectively, with colored points
showing the coefficient of variation (CV) of edges in the corresponding quartile, and gray points showing the overall set of edges. Low CV=more consistent, and warmer colors overplot
cooler colors. (E) Mean weight versus streamline length for the four quartiles (red, orange, yellow, and green in decreasing order of consistency), calculated using 40 uniform bins
(plotted where these bins contain at least 50 edges). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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includes more numerous long fibers (Fig. 3B, red). This is true also for
sparser connectivity, e.g. top 10% (Fig. 3C and D). Implementation of
this consistency-based thresholding is a straightforward modification
of the standard method for weight-based thresholding (Rubinov and
Sporns, 2010), ranking edges by consistency rather than weight. We
provide MATLAB code at http://www.sng.org.au/Downloads. The code
can be trivially extended to threshold by any desired measure beyond
our chosen coefficient of variation; another example could be the
quartile coefficient of dispersion.

Inspection of the clouds of weights versus distance (Figs. 2 and 3)
shows that the consistent edges tend to be those edges that are strong
for their length; conversely, the inconsistent edges are weak for their
length. Differences between the two thresholding methods are stark in
the distributions of edge weights (Fig. 4): the standard edge threshold
yields a very sharp (and arbitrary) cut-off in the relationship between
weights and streamline lengths (Fig. 4A, red), which does not arise
when using the consistency threshold (Fig. 4A, green), which retains a
greater proportion of long edges (Fig. 4B).

The preservation of more numerous long range edges by the
consistency-based thresholding leads to more numerous inter-hemi-
spheric connections: these are likely under-represented after weight
thresholding due to their lengths. This difference in inter-hemispheric
density is apparent in the connectivity matrices (Fig. 5). For weight-
based thresholding (to 30% overall density) the inter-hemispheric

connections (off-diagonal block in Fig. 5A) make up 13% of the edges
after thresholding, versus 32% for consistency-based thresholding
(Fig. 5B). Thus the notion of simply retaining the strongest edges
should arguably be modified to take into account the fact that the brain
is a spatial network. Longer edges are inherently weaker, partly due to
anatomy (Henderson and Robinson, 2014; Roberts et al., 2016) and
partly due to biases in tractography algorithms such as the accumula-
tion of errors that cause streamlines to veer off course (Li et al., 2012;
Zalesky, 2008; Zalesky and Fornito, 2009). Since randomly-accumu-
lated errors are unlikely to accumulate in the same away across
subjects, this suggests that consistency-based thresholding likely
mitigates the influence of distance-dependent biases.

The relationship between consistency and the connection weight-
length relationship can be further quantified by estimating the prob-
ability that a connection of a given weight and length is consistent. A
simple way to estimate consistency probability as a function of
connection weight and length is to first estimate the density of all
edges by calculating a 2-D histogram (Fig. 6A), then apply a threshold
(here 30% density) by consistency and count the number of surviving
edges (Fig. 6B). The density of the points in the full network (Fig. 6A)
shows that the apparently-uniform dense cloud of points in Figs. 2 and
3 obscures a peak ~2/3 of the way along the cloud. The density of
consistent points (Fig. 6B) exhibits a peak at short lengths (as expected
from Fig. 2) and is relatively uniform otherwise, and shifted slightly

Fig. 3. Comparison of thresholding methods. (A) Effect of weight-based thresholding on the connectome's weight-distance relationship at 30% density, showing all edges retained (red)
and discarded (black). (B) Consistency-based thresholding at 30% density. (C, D) Threshold comparison for 10% density. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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toward higher weights. The ratio of these two sets of counts is thus an
estimate of the probability of a connection being consistent (Fig. 6C).
We find that the probability of consistency increases with weight but
does not fall off with distance as quickly as weight does. This result thus
quantifies the fact that edges that are strong for their length are most
likely to be consistent between subjects.

It is important to note that all thresholding methods that depend on
the weights will depend on the definition of these weights. Another
method for estimating connection weights is the mean FA along the
connection. Analysis of this quantity using the elderly dataset
(Supplementary information 1, Figure S1.2) reveals that mean FA
increases with length. For long high-FA connections, consistency does
not depend strongly on FA or distance. For medium- and short-range
connections, higher-FA connections have higher consistency, in agree-
ment with our finding for streamline counts.

Network structure

We next studied the influence of threshold strategy on the network
structure of the ensuing group structural connectome. Weight-based
and consistency-based thresholding yield networks that share many of
the same hub regions (hubs are regions that are densely connected to
other regions), but show substantial differences in regional connectiv-
ity, largely reflecting differences in the long fibers (Fig. 7A and B). In

particular, the consistency-thresholded network includes denser inter-
hemispheric and caudal-rostral connections. Both thresholded net-
works contain high-degree hub nodes in posterior, temporal, frontal,
and midline areas, though the consistency-thresholded networks con-
tain denser clusters in these last two regions. The picture is also similar
when studying rich nodes by strength (Fig. 7C and D). Again there is
greater inter-hemispheric connectivity in the consistency-thresholded
networks than the weight-thresholded ones. In this case, however, the
positions of the hub nodes are similar for the two threshold methods.
The differences are less dramatic because the node strengths are
dominated by the strongest edges, which tend to be retained by both
thresholding methods, as compared to the binary case in which all the
edges are weighted equally.

To further elucidate the similarities and differences between these
networks we partitioned edges into three subsets: strong-consistent,
strong-inconsistent, and weak-consistent. This analysis also demon-
strates how consistency-based thresholding can be combined with
other thresholding methods to uncover subtle features of connectivity.
We focus on those edges that are strong (top 5% by weight), consistent
(top 5% by consistency), weak (bottom 87% by weight), and incon-
sistent (bottom 87% by consistency) – these values are chosen such
that the intersections strong-consistent, weak-consistent, and strong-
inconsistent all have density 2%. The strong-consistent network
(Fig. 8A) consists of nodes and edges that are primarily at superficial

Fig. 4. (A) Distributions of weights for unthresholded (blue), weight-thresholded (red), and consistency-thresholded (green) networks. (B) Corresponding streamline length
distributions. Networks thresholded to 30% density. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Connectivity matrices at 30% density. (A) Weight-based thresholding. (B) Consistency-based thresholding.
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sites away from the center of the brain. Most of the inter-hemispheric
edges of this subnetwork interconnect frontal areas. The weak-con-
sistent network (Fig. 8B) differs strikingly from the strong ones: it is
primarily composed of inter-hemispheric connections, with connec-
tions primarily involving midline nodes. This network has the same
density as the strong-consistent network but appears denser because its
mean wiring length is much longer: 131 mm vs 48 mm. The strong-
inconsistent network (Fig. 8C) has similar wiring length (53 mm) to the
strong-consistent network, and predominantly makes short-range
intra-hemispheric connections among parietal and inferior temporal
areas.

Topological properties

We next compared the topology of the consistency-thresholded
networks to the weight-thresholded networks. Following from the
visualization of hub connectivity (Fig. 7), it is natural to ask
whether hubs belong to a rich club – that is, are hub-to-hub
connections denser than expected by chance (van den Heuvel and
Sporns, 2011)? We calculated the binary rich club coefficient
(Rubinov and Sporns, 2010) for both thresholded networks, and
compared each to degree-preserving random surrogate networks.
Both weight-based (Fig. 9A) and consistency-based (Fig. 9B) thre-
sholded networks have rich clubs, as evidenced by rich club
coefficients higher than the surrogate values for a wide range of
node degrees. However, the networks thresholded by consistency
are substantially richer than those thresholded by weight, and are
topologically enriched over a wider range of degrees (Fig. 9C).

Consistency-thresholded networks also have lower mean node
strength and lower clustering than weight-thresholded networks
(Fig. 9D and E). Lower mean node strength is due to the lower mean
weight (as is clear from the weight distributions in Fig. 4A), and occurs
despite the fact that equal threshold densities impose the same mean
degree on both methods, and despite consistency-based thresholding
giving higher maximum degree for the most well-connected hubs
(Fig. 9B). The lower clustering is primarily due to consistency-based
threshold retaining a greater proportion of long-range fibers, making
these networks less lattice-like than the weight-based thresholded
networks. The thresholding strategy does not exert an influence on
network modularity index (Fig. 9F).

Repeated analysis without rescaling the weights by distance

The decrease in weights with distance and the interaction between
the weights-vs-distance trends with consistency could conceivably be
affected by the 1/d rescaling of the weights. To verify that our results do
not derive from this rescaling, we repeated our entire analysis without
the 1/d rescaling (Supplementary information 2). All of our findings
hold. The reason for this is that the main distance effect on the weights

is a roughly exponential decay; an additional polynomial factor is only a
(relatively) small change to the weight-vs-distance relationship.

Repeated analysis in an independent dataset

To verify that our consistency-based thresholding method is
applicable to other data sets, we analyzed intersubject consistency on
an independent dataset: the elderly connectome (Perry et al., 2015;
Sachdev et al., 2010; Tsang et al., 2013). Reproducing our results
regarding the dependence of intersubject-consistency on edge weight
and distance would show that they generalize to other datasets, and are
not due to idiosyncrasies in our dataset. For details on the acquisition
and tractography analysis of the elderly connectome, we direct the
reader to Perry et al. (2015). The only differences between that paper
and the elderly dataset used in this paper is that here we have seeded
more densely (100 million seeds, as in our main younger adult dataset),
used a slightly newer MRtrix version (v3-12 versus v3-9; cf. v2 for our
younger adult dataset), and have used 94 subjects (aged 76–93 years,
55 females) rather than the original 115 subjects (including only those
who meet strict criteria for classification as “cognitively normal”). As in
Fig. 2, the relationship between weights and distances is again roughly
exponential (Supplementary information 1, Supplementary Fig. S1.1).
This reproduces the finding of our previous study (Roberts et al., 2016).
Grouping the connections by consistency again shows that both
consistent and inconsistent edges span almost the full range of
streamline lengths. Crucially, our main finding, that the most consis-
tent connections are those that are strong for their length, holds in the
elderly connectome (Supplementary information 1).

Comparison with mouse and macaque tract tracing data

There is currently no ground truth whole-brain human connectome.
Tracer-based connectomes from other species remain the widely
accepted ground truth for dMRI-based validation. We thus compared
the weight-vs-distance relationship in our data to tracer-based con-
nectomes compiled from mouse and macaque (Horvát et al., 2016). In
that recent work, Horvát et al. found a species-invariant exponential
distance rule governing the organization of cortical wiring, such that
connection weights decay exponentially with distance, falling by several
orders of magnitude over the range of connection lengths. To test
whether our consistency-based thresholded data exhibit an exponential
distance rule, and whether the decay rates show quantitative agreement
with tracer data from other mammals, we fitted the exponential decay
of connection weights for the mouse, macaque, and human connec-
tomes. For the human data we compared weight-based and consis-
tency-based thresholding. We find that consistency-based thresholding
is in excellent agreement with the exponential decay rates in the tracer-
derived mouse and macaque data, while weight-based thresholding
decays far too slowly (Fig. 10A–D). Thresholding by weight removes

Fig. 6. Probability of consistency for a given weight and length. A: Histogram of log-weights versus streamline lengths, using 50 bins in each dimension. B: Histogram of consistent
edges after discarding all but the top 30% most consistent. C: Fraction of edges that are consistent as a function of log-weight and streamline length.
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Fig. 7. Comparison of threshold methods for topology of hubs. (A) Brain connectivity after weight-based thresholding, showing the top 75 nodes by degree (large circles) and their
connectivity to each other (green lines) and to all other nodes (gray lines, small circles). Nodes are colored by degree (red=high, blue=low). Networks shown after thresholding to 30%
density and viewed from the top, side, and back (columns 1–3). (B) High-degree hubs after consistency-based thresholding. (C) Brain connectivity after weight-based thresholding,
showing the top 75 nodes by strength. (D) High-strength hubs after consistency-based thresholding. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

J.A. Roberts et al. NeuroImage 145 (2017) 118–129

124



too many weak connections to exhibit a substantial exponential decay
with distance (falling only ~2 orders of magnitude, Fig. 10D). To study
the convergence to this rule as a function of the numbers of subjects,
we performed a bootstrap resampling on ensembles of subjects drawn
from our sample (Fig. 10E). Exemplar plots of weight-vs-distance for
smaller samples are shown in Inline Supplementary Figure 1. For
moderate (and larger) ensemble sizes, the consistency-based thre-
sholded networks exhibit an exponential distance rule that is strikingly
close to the macaque and mouse data. Weight-based thresholding is
relatively insensitive to sample size (except for very small samples), but
yields consistently-low decay rates. This quantitative match with mouse
and macaque tracer data supports the use of consistency-based thresh-
olding and also provides an intriguing further insight into species-
invariant principles governing the organization of cortical wiring.

Dependence on sample size

As shown in the previous section, it is possible to explore the
dependence of sample size on the thresholded networks. This analysis
shows that weight-based thresholding converges relatively quickly, but
to a very shallow decay rate that shows a poor qualitative fit to the data
and is in disagreement with exponents from tracer-based data. While
consistency-based thresholding converges quickly to an exponential
form of decay (Inline Supp. Fig. 1E), the numerical exponent only
converges to these independent estimates for samples of N > ~25.

Discussion

Thresholding is a widely-used method for pruning weighted net-
works with the aim of eliminating spurious edges and facilitating
analysis and visualization. Connections are most commonly discarded
according to their weights, on the assumption that weaker connections
are more likely to be spurious. We systematically investigated thresh-
olding probabilistic tractography-derived connectivity by consistency of

weights across a group of networks, on the basis that the edges that are
most consistent are the least likely to be spurious false positives arising
in noisy, subject specific data. We found that thresholding by weight
strength alone biases networks toward shorter connections, discarding
weaker long connections that are more consistent across subjects. Our
results suggest that thresholding by consistency preserves connections
that are strong for their length, rather than simply strong overall.
Moreover, consistent edges exhibit the exponential decay of connection
weight with distance seen in tracer-derived connectomes, which is not
obtained when retaining only the strongest edges.

The central idea of estimating the edges that are most consistent
across an ensemble of networks is by no means restricted to structural
brain networks derived from probabilistic tractography. For example,
this approach would be useful for identifying the consistent core across
a group of functional connectivity matrices. Indeed, quantifying and
improving the reliability and reproducibility of functional connectomes
from resting-state fMRI is a major challenge facing neuroimaging (Zuo
et al., 2014; Zuo and Xing, 2014). Functional connectivity data also
shows a strong distance-dependence on weight (Lord et al., 2012;
Salvador et al., 2005). Future work will aim to validate our method
against functional data. In fact our method can be used to address
problems involving groups of networks in network science more
broadly, such as the identification of gene regulatory networks
(Marbach et al., 2012).

Delineation of a network ensemble into those edges that are
consistent and those edges that are inconsistent across subjects
serves two main purposes. First, this delineation identifies the
consistent core that is conserved across the group. This is useful for
reducing noise (whether from the analysis or processing pipelines)
and for identifying nodes that are presumably more “fundamental”
to the group (Hagmann et al., 2008). Identification of such core
nodes is a central aim of network science, with many methods
targeting this within a single network, such as backbones using the
“disparity filter” (Foti et al., 2011; Serrano et al., 2009), k- and s-

Fig. 8. Subnetworks identified by using both weight-based and consistency-based thresholding together, viewed from the top (top row) and back (bottom row). (A) Strong-consistent
network. (B) Weak-consistent network. (C) Strong-inconsistent network. Isolated nodes with no edges in the subnetwork (i.e., with degree=0) are not plotted; the three networks in A–C
involve 91%, 83%, and 99% of the nodes, respectively.
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cores (Dorogovtsev et al., 2006), rich clubs (Colizza et al., 2006),
core-periphery structure (Bassett et al., 2013), multi-resolution
window-based thresholding (Lohse et al., 2014), and minimum
spanning tree approaches (Alexander-Bloch et al., 2010). These
methods are sensitive to various features of network topology, and
offer various possibilities for identifying prominent subnetworks.
The consistent subnetwork across a group of networks is thus a
simple cross-subject method within this broad class. This idea has
also been used to identify consistent motif structures (Iakovidou
et al., 2013). Second, finding inconsistent edges reveals which parts
of the network are most susceptible to noise, which could aid the
development of tractography methods to better deal with these
regions. Inconsistent edges are also potentially informative for
identifying network correlates of inter-subject differences mea-
sured in any modality. For a set of networks whose edges are known
with high confidence, it may be that those edges that differ most
between individuals carry the greatest potential to co-vary with

specific physiological differences (Bassett et al., 2011).
Our method is complementary to the consensus-based thresholding

that has been used on networks derived from deterministic tractogra-
phy (de Reus and van den Heuvel, 2013). For example, van den Heuvel
and Sporns (2011) selected edges on the basis of their appearance in at
least 75% (for 82 nodes) or 50% (for 1170 nodes) of subjects. Seeking a
consensus in the adjacency matrices requires that the individual
subject matrices be reasonably sparse – this is not feasible for densely
connected weighted matrices such as the ones used here, which were
derived from probabilistic tractography. The consensus approach has
also recently been used in a distance-preserving manner by first
binning by distance then retaining the most commonly-occurring edges
within each bin (Mišić et al., 2015). Although binning heuristics are
somewhat arbitrary, our findings provide a principled justification for
distance-preserving thresholds due to the fact that highly consistent
edges occur across the entire length distribution. Indeed our finding
that edges that are strong for their length are more consistent could be

Fig. 9. Rich club effect and node statistics. Left column: Binary unnormalized rich club coefficients Rraw versus degree k for (A) weight-based thresholding (red) and (B) consistency-
based thresholding (green), with corresponding Rraw curves for 1000 degree-preserving random surrogate networks. (C) Normalized rich club coefficients Rnorm for weight-based
thresholding (red) and consistency-based thresholding (green), with dark colors denoting values of k where Rraw differed significantly from the surrogate ensemble (by being ranked in
the top or bottom 2.5% of the ensemble; i.e., a two-sided test at the p=0.05 level). Right column: Comparison of network measures for weight-based thresholding (red) and consistency-
based thresholding (green). (D) Mean node strength < s > . (E) Mean binary clustering coefficient < C > . (F) Modularity index Q. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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used to (at least partly) justify other methods for applying distance-
preserving thresholds. If one’s goal was to reduce biases against long
connections, one example could be to threshold by weight× length (or
some other function of length), which could be interpreted as retaining
edges with high wiring cost.

One limitation of our results is that consistent edges could be biased
by the specifics of data acquisition, pre-processing, and tractography
algorithms (Bastiani et al., 2012; Girard et al., 2014). This is a difficult
matter to resolve because there is as yet no ground truth human
connectome. We have compared our thresholded networks to rodent
and non-human primate tractography, for which in situ tracing data is
available, showing that a species-invariant exponential decay of con-
nection weights is reproduced by consistency-based thresholding.
Future work could extend this analysis to other graph metrics. The
lack of ground truth also makes it difficult to verify whether weight-
based thresholding yields the most accurate connections. Comparison
of the consistent subnetworks obtained from different analysis methods
may reveal biases inherent to specific methods, thereby helping to
resolve their respective strengths and weaknesses. Also, here we have
restricted attention to intersubject consistency for networks defined on
a fixed set of nodes based on subject-specific parcellations. A more
general approach would be to analyze the interaction between con-
sistency of edge weights with the consistency of node locations, which
depends on the individual-subject parcellations. Indeed individual-
level anatomy has recently been used to inform estimates of group-level
connectivity (Lefranc et al., 2016; Roca et al., 2010).

Another limitation is that consistency-based thresholding is pri-
marily aimed at analyzing group-averaged connectivity, so its ability to
threshold individual-subject networks is limited to identifying the
weighted individual subnetworks with the same (consistent) adjacency
matrix. It is possible to relax this restriction in some cases. As one
possibility, the probabilistic threshold derived from the group-level
probability of consistency (Fig. 6C) could be applied to other con-
nectivity matrices. This would enable, for example, the thresholding of
random matrices to yield surrogate networks drawn from a population
with the same consistency profile. Such random consistent networks
would also preserve, on average, the post-thresholded relationship
between weight and distance, so could be considered a form of
geometric surrogate network (Roberts et al., 2016; Samu et al.,
2014). This idea of modeling (in a statistical sense) the population
ensemble from which the subject networks are assumed to be drawn
has also been used to argue for approaches that go beyond taking only
the group mean as the representative group network (Simpson et al.,
2012). Instead of seeking to compare networks at the individual level,
another potential use for our method is to apply the consistency
threshold to each group and compare the group-level networks. Such
a procedure would need to be supplemented with a method to allow
statistical testing of between group effects, such as permutation testing
(e.g., by permuting the group labels).

A potential application for consistency-based thresholding is to
understand the dependence of graph metrics on group size. Such an
analysis could compare different thresholding methods and different
methods for identifying the group-level network (e.g. mean vs median).
We presented such an analysis in this direction in Fig. 10E. Using
consistency-based thresholding, we find rapid convergence (even for
small samples of N~5) to a connectome that shows a clear exponential
distance effect (Inline Supp. Fig. 1E). Convergence of the exponent to
the value estimated in tracer studies is slower, requiring approximately
N=25 data sets. The rate of convergence likely depends on the
acquisition details, and so may occur more quickly using more
advanced diffusion sequences and longer acquisition times. Although
weight-based thresholding on small samples (or even single subjects)
may be precise we caution that it is likely inaccurate, biasing the
network toward strong short-range connectivity.

As tractography methods progress, the need for post-hoc thresh-
olding to overcome technical limitations will diminish. For example,

Fig. 10. Exponential decay in connection weights across species. (A) Fraction of labeled
neurons (FLN) versus normalized connection distance for tracer-derived mouse con-
nectome of Oh et al. (2014) and Zingg et al. (2014), as collated by Horvát et al. (2016).
Dots correspond to individual connections; line is a linear least-squares fit. (B) Tracer-
derived macaque connectome of Markov et al. (2012), as collated by Horvát et al. (2016).
(C) Consistency-based thresholding of probabilistic tractography-derived human con-
nectome data. Gray dots correspond to the fully-connected network; red dots to the 10%
most consistent edges. (D) Weight-based thresholding, yellow dots correspond to the
10% strongest edges. In panels C and D, weights are rescaled by the maximum weight
and distances are rescaled by the means of the post-threshold distributions. (E)
Exponential decay rates for consistency-based (red) and weight-based (yellow) thresh-
olding as a function of number of subjects, with mouse (green) and macaque (blue) decay
rates for comparison. Dots correspond to fitted exponents from 100 bootstrap ensembles
for each ensemble size, red and yellow lines correspond to ensemble means. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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filtering algorithms such as Spherical-deconvolution Informed Filtering
of Tractograms (SIFT) (Smith et al., 2015) can be used to reduce the
probability of spurious edges for data imaged using appropriate
acquisition parameters (this was not the case for the networks studied
here). Residual noisy edges that survive the streamline filtering could
again be pruned by consistency. The further development of metrics for
analyzing weighted networks will also reduce (but not eliminate) the
need for thresholding techniques. Methods for reducing the influence
of false positives will still be useful for bringing the estimated networks
closer to the assumed ground truth. Sparse networks are currently
widely used in the literature, so more principled identification of these
reduced-density networks is crucial. We contend that a systematic
approach to intersubject consistency offers an important step toward
solving this problem.
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