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ABSTRACT
As few real systems comprise indistinguishable units, diversity is a hallmark of nature.
Diversity among interacting units shapes properties of collective behavior such as
synchronization and information transmission. However, the benefits of diversity on
information processing at the edge of a phase transition, ordinarily assumed to emerge
from identical elements, remain largely unexplored. Analyzing a general model of
excitable systems with heterogeneous excitability, we find that diversity can greatly
enhance optimal performance (by two orders of magnitude) when distinguishing
incoming inputs. Heterogeneous systems possess a subset of specialized elements whose
capability greatly exceeds that of the nonspecialized elements.We also find that diversity
can yield multiple percolation, with performance optimized at tricriticality. Our results
are robust in specific and more realistic neuronal systems comprising a combination of
excitatory and inhibitory units, and indicate that diversity-induced amplification can
be harnessed by neuronal systems for evaluating stimulus intensities.

Subjects Computational Biology, Mathematical Biology, Neuroscience
Keywords Diversity, Criticality, Intensity coding, Nonlinear computation, Sensory systems

INTRODUCTION
In numerous physical (Dagotto, 2005), biological (Weng, Bhalla & Iyengar, 1999) and
social (Silverberg et al., 2014) systems, complex phenomena (including nonlinear
computations Gollo et al., 2009) emerge from the interactions of many simple units.
Such interactions in a network of simple (linear-saturating-response) units generate
nonlinear transformations that give rise to optimal intensity coding at criticality—the edge
of a phase transition (Kinouchi & Copelli, 2006; Shew et al., 2009; Chialvo, 2010). However,
optimal collective responses often require diversity (Tessone et al., 2006). Clear examples
of such optimization can be found in collective sports, business, and co-authorship in
which different positions or roles require specific sets of skills contributing to the overall
performance in their own way.

Diversity in the nervous system, for example, appears in morphological, electro-
physiological, and molecular properties across neuron types and among neurons
within a single type (Sharpee, 2014), and also in the connectome (Sporns, 2011), i.e., in
how neurons and brain regions are connected. A large body of work has been devoted
to show the role of heterogeneous connectivity and network topology in shaping the
network dynamics (Fornito, Zalesky & Breakspear, 2015;Misic et al., 2015;Gollo et al., 2015;
Gollo et al., 2014; Restrepo & Ott, 2014; Matias et al., 2014; Gollo & Breakspear, 2014;
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Larremore, Shew & Restrepo, 2011; Rubinov, Sporns & Thivierge, 2011; Honey, Thivierge
& Sporns, 2010; Rubinov et al., 2009; Honey et al., 2009; Honey et al., 2007). In particular,
for example, in the case of resonance-induced synchronization (Gollo et al., 2014), the
presence or not of a single backward connection may define whether synchronization or
incoherent neural activity is expected in cortical motifs and networks, which has also been
confirmed in a synfire chain configuration (Moldakarimov, Bazhenov & Sejnowski , 2015;
Claverol-Tinturé & Gross, 2015).

Crucially, diversity in the intrinsic dynamic behavior of neurons is also fundamental
and can shape general aspects of the network dynamics (Vladimirski et al., 2008; Mejias &
Longtin, 2012). Such intrinsic diversity reduces the correlation between neurons (Savard,
Krahe & Chacron, 2011; Burton, Ermentrout & Urban, 2012; Hunsberger, Scott & Eliasmith,
2014; Metzen & Chacron, 2015) and hence populations, enhancing the information
content (Padmanabhan & Urban, 2010) and the representation of spectral properties
of the stimuli (Tripathy, Gerkin & Urban, 2013). It also affects the reliability of the network
response (Mejias & Longtin, 2012) and its firing rate (Mejias & Longtin, 2012; Mejias &
Longtin, 2014). However, the role of the inherent diversity among nodes, which in many
systems is at least as notable as the connectivity and network topology themselves, has
comparatively remained largely unexplored. In particular, although numerous recent
works have focused on optimizing features of criticality for the different network
topologies (Haldeman & Beggs, 2005; Kinouchi & Copelli, 2006; Copelli & Campos, 2007;
Assis & Copelli, 2008; Shew et al., 2009; Chialvo, 2010; Larremore, Shew & Restrepo, 2011;
Shew et al., 2011; Yang et al., 2012; Mosqueiro & Maia, 2013; Gollo, Kinouchi & Copelli,
2013; Haimoviciet al., 2013; Plenz & Niebur, 2014), for convenience identical units are
ordinarily assumed and the role of nodal intrinsic diversity on the collective behavior thus
remains unexplored.

Here for the first time we analyze the collective behavior at criticality (transition point
between active/inactive states) in the presence of diversity in the excitability, which proves
to be a crucial factor for the network performance: we show that the task of distinguishing
the amount of external input, quantified by the dynamic range, can be substantially
improved in the presence of heterogeneity. The influence of non-specialized units improves
performance by enhancing the capabilities of both the whole network and of specialized
subpopulations. We find that enhanced network response is associated with the proximity
to a tricritical regime (critical coupling strength and critical density of integrators—the
control parameter for diversity). Away from this tricritcal regime, double and multiple
percolation may exist in which the dynamics of the subpopulations can be divided based
on the nodal excitability. We show the constructive effects of diversity in excitability given
by simple bimodal and uniform distributions, more realistic gamma distributions (see
Fig. 1), and the robustness in networks combining excitatory and inhibitory units.

METHODS
Excitable networks with heterogeneous excitability
Employing a general excitable model [susceptible-infected-refractory-susceptible (SIRS)],
we characterize the dynamics and identify the constructive role of diversity in excitable
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Figure 1 Threshold distributions in random networks. Threshold θ indicates the minimal number of
coincident excitatory contributions required to excite a quiescent unit. (A) Bimodal distribution with 80%
integrators (θ = 2). (B) Uniform distribution with θmax = 5. (C) Gamma distribution with shape parame-
ter a= 2, and scale parameter b= 1.

networks and neuronal systems. Node dynamics are given by cellular automata with
discrete time and states [0 (quiescent or susceptible), 1 (active or infected), 2 (refractory
or recovered)]. Synchronous update occurs at each time step (of 1 ms) obeying the
rules: an active node j becomes refractory with probability 1, a refractory node becomes
quiescent with probability γ = 0.5, and a quiescent node becomes active either by receiving
external input (modeled by a Poisson process with rate h), or by receiving at least θ j

contributions from active neighbors each transmitted with a probability λ. We considered
the stochastic refractory period because it accounts for variations and fluctuations in the
recovery dynamics; however, similar results are obtained with a deterministic refractory
period with a duration of 2 ms. Diversity is introduced in the threshold variable θ j of each
node j such that nodes with low threshold require fewer coincidental stimuli, being thus
easily and more often excited by active neighbors than nodes with higher thresholds. For
concreteness, we used Erdős-Rényi random networks with size N = 5000 and mean degree
K = 50 independently generated at each trial. Although each network exhibits its own
distinct dynamics, the ensemble average responses are very similar across trials.

Network response
The initial condition for computing the firing rate corresponds to the active state. Nodes
receive a strong input (h= 200 Hz) for 0.5 s, followed by a transient period of 0.5 s with
the chosen input level (h) before computing the average firing rate of each subpopulation
over a period of 5 s. The reported firing rate corresponds to the average over five trials each
one utilizing an independent random network.

Mean-field approximation
In the presence of diversity the mean-field map is given by a set of equations for each
subpopulation, exhibiting a particular sensitivity to inputs from neighbors (Gollo,
Mirasso & Eguíluz, 2012). The dynamics of subpopulations are characterized at the
ensemble average level. This mean-field approach represents a substantial reduction
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in the dimensionality of the system whose dynamics is estimated at the subpopulation
level. For each subpopulation with threshold θ , the density of refractory units Rθ at time
t+1 is given by Rθt+1= F θt +(1−γ )R

θ
t , where F

θ
t denotes the density of active units, and γ

the recovery dynamics from the refractory state. The evolution of the density of active units
follows F θt+1=Qθt [1−(1−h)(1−3t

θ )], where Qθt is the density of quiescent units, h is the

rate of the Poissonian external driving; 3t
θ
=
∑θ−1

i=0

(
K
i

)
(λFt )i(1−λFt )K−i represents the

probability of not receiving at least θ neighboring contributions at time t , where Ft is the
weighted average of the density dθ of active units in each subpopulation Ft =

∑
θ d

θF θt ,
K is the network average degree, and λ is the synaptic efficacy. Adding to the previous
equations the normalizing condition that nodes must be one of the three states at all times,
F θt +Q

θ
t +R

θ
t = 1, we obtain the complete mean-field map:

Rθt+1= F θt + (1−γ )R
θ
t , (1)

F θt+1=Qθt [1− (1−h)(1−3t
θ )], (2)

Qθt+1= 1−Rθt+1−F
θ
t+1. (3)

Integrating this map (Gollo, Kinouchi & Copelli, 2012), we find the stationary distributions
(F θ ) for each subpopulation, which are compared with the simulation results.

Gamma distribution
The discrete gamma distribution of thresholds is given by the smallest following integers
drawn from the probability density function f (θ)= θa−1e−θ/b(ba0(a))−1, where a and b
are shape and scale parameters, respectively.

RESULTS
Mix of specialized and nonspecialized nodes outperforms either alone
To understand the role of diversity in the excitability of nodes we start with the simplest
case, a discrete bimodal distribution, in which half the units are so-called integrators with
θ = 2, and the other half are nonintegrators with θ = 1. In the presence of weak external
driving (h= 10−2 Hz), the most excitable units (in red with θ = 1) fire more often than
the integrators (in blue), as depicted in Fig. 2, and the dynamics of such networks depends
on the coupling strength λ. For weak coupling (Fig. 2B), the most excitable units fire at
a relatively low rate while the integrators are nearly silent, firing only sparsely. However,
we shall see that their small contribution can play a major role in the network response to
varying external stimuli. Increasing the coupling (Figs. 2C and 2D), both subgroups fire
more often but the firing rate of the integrators remainsmuch lower than the nonintegrators
(Fig. 2A) and the network dynamics can be essentially split in two clusters that interact,
albeit weakly.

Our main analysis focuses on the input–output response function of networks subjected
to external driving h, whose intensity varies over several orders of magnitude, as is
commonly observed in sensory systems, for example. Response functions F are defined as
the mean activity over 5 s of the whole network or a subset thereof with the same threshold
θ (Fig. 3A). F curves exhibit a sigmoidal shape with low output rates for weak stimuli
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tivity F(h= 0)≡ F0 versus coupling strength λ. The critical coupling for the subpopulation θ = 1 and θ =
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(blue) and nonintegrator (red) subpopulations. The external driving is h= 10−2 Hz.
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Response curves (mean firing rate F versus stimulus rate h) for the subpopulations of θ = 2 (blue), θ =
1 (red), and the whole network (gray). Variables F0.1 and F0.9 (red dashed lines), and h0.1 and h0.9 (black
arrows) are used to calculate the dynamic range11 (red arrow) for the subpopulation with θ = 1, where
Fx = F0+ xFmax, hx is the corresponding input rate to the system, and F0 is the firing rate in the absence of
input. Solid black lines correspond to the mean-field approximation (see ‘Methods’). (B) Dynamic range
1 is optimized for different coupling strengths λ for the two subpopulations. Dotted lines connect the nu-
merical data points. Inset: susceptibility χ θ for the two corresponding subpopulations; susceptibility max-
ima coincide with the peaks of the dynamic range. Susceptibility was calculated over 500 trials of 100 ms
after transients of 0.5 s.

and high rates for strong stimuli. Aside from the saturated region, the subpopulation
of integrators (blue) fires less than the subpopulation of nonintegrators (red), and (for
this particular distribution) the activity of the whole network (gray) corresponds to the
average between the two subpopulations. For the two subpopulations as well as for the
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Figure 4 Threshold diversity improves performance. Comparison of dynamic ranges for homogeneous
networks where all units have threshold θ = 1 (green,1homo

1 ) or θ = 2 (purple,1homo
2 ) with the θ = 1

subpopulation of the bimodal distribution (red,11). Solid black lines correspond to the mean-field
approximation (see ‘Methods’), dotted lines join the numerical data points.

whole network our mean-field approximation is capable of reproducing the response
functions remarkably well. From the shape of the response functions we quantify the range
in which the amount of input can be coded by the output rate (Fig. 3A). This dynamic
range1= 10log10(h0.9/h0.1) is a standard measure (Kinouchi & Copelli, 2006) that neglects
the confounding ranges of too small sensitivity [top 10% (F > F0.9) and bottom 10%
(F < F0.1)], and quantifies how many decades of input h can be reliably coded by the
output activation rate F (see caption of Fig. 3A for further details).

Although isolated units (λ= 0) code input intensity very poorly (small1), increasing the
contribution from neighbors (by increasing the transmission probability λ) substantially
enhances the dynamic range (Figs. 3B and 4). However, this occurs only for coupling
smaller than a critical value λc , at which a phase transition to self-sustained activity
occurs (e.g., Fig. 2A). As the coupling strength increases beyond the critical value, the
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dynamic range decays because the effective output range is reduced by increasing levels
of self-sustained activity (Kinouchi & Copelli, 2006). Since our mean-field approximation
exhibits good agreement with the numerical results for the response functions, the dynamic
range is also precisely captured. There is only one outlier point that corresponds to the
critical point. At criticality the growth of the response functions is abnormally slow
(anomalous exponent) causing a substantial enhancement of the dynamic range that
cannot be matched by mean-field approximations (Gollo, Kinouchi & Copelli, 2012). In
this simple bimodal case the phase transition occurs at different λ values for the two
subpopulations, evidenced by peaks of the dynamic range 1θ as well as the susceptibility
(Fig. 3B and its inset). The susceptibility captures the variability of the instantaneous
ensemble firing rate around its mean value (over time) for each subpopulation, and it is
formally defined as χ θ ≡

〈
ρθ

2
〉
/〈ρθ 〉−〈ρθ 〉, where ρθ = F θ (h= 0). The critical value of the

coupling (curve’s peak) for1θ is larger for integrators than for nonintegrators. Moreover,
as evidenced by the difference between themaximumdynamic range of each subpopulation
(11

max−1
2
max' 15 dB, Fig. 3B), nonintegrators greatly outperform integrators.

In the presence of diversity the specialized subpopulation of nonintegrators (11)
outperforms the two extreme cases with no diversity (homogeneous distribution) in which
all units are either integrators 1homo

2 or nonintegrators 1homo
1 (Fig. 4). This happens

because the response of the specialized units improves when they can also take advantage
of the contribution of the other subpopulation of integrators, which require simultaneous
neighboring stimulation to be effective. In the presence of integrators the network requires
stronger coupling to switch to the active state. Therefore, due to a stronger coupling, the
amplification of weak stimuli at criticality and thus the dynamic range are greater than in
the absence of diversity. Remarkably, however, having all nodes behave like the specialized
ones impairs performance.

Tricriticality optimizes coding performance
Henceforth, since criticality optimizes performance, we focus on characterizing the critical
behavior for various types of diversity in the excitability. Varying the density of integrator
units (with θ = 2) while the rest are nonintegrators, we find a critical point separating two
regimes (Fig. 5A): for a low density of integrators (green region) the phase transition to the
regime of spontaneous activity is continuous (transcritical bifurcation in the mean-field
equations for the model, see Methods); for a high density of integrators (purple region)
the phase transition to the regime of spontaneous activity is discontinuous (saddle–node
bifurcation in the mean-field equations) (Gollo, Mirasso & Eguíluz, 2012). The presence of
two different critical couplings in the region with continuous phase transitions indicates
double percolation, where the most excitable units percolate for a weaker coupling than
integrators. The critical-coupling curves (λc) grow with the density of integrators for
both the subpopulation of integrators (blue) and nonintegrators (red) and these curves
collapse at the tricritical point (orange line). This collapse is also captured by the mean-
field approximation because the critical regions can be detected with good precision. As
represented in the inset of Fig. 5A, the tricritical point corresponds to a critical density
of integrators (d = 0.8) separating regions undergoing continuous and discontinuous
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phase transitions. At this transition, apart from a collapsing of critical-coupling curves,
the maximum susceptibility also changes qualitatively (Fig. 5B). The inset of Fig. 5B
illustrates the curves of susceptibility for the subpopulation of θ = 1 for different densities
of integrators; the susceptibility curve becomes more sharp for discontinuous transitions.
Strikingly, as shown in Fig. 5C, the intermediary regime with a density of integrators of 80%
(orange line) poised between the regions of continuous and discontinuous phase transitions
yields optimal performance. In other words, the maximum dynamic range for generalized
bimodal distributions occurs at the tricritical point. The inset of Fig. 5C shows the response
functions corresponding to the tricritical regime. In this regime the sensitivity is more
than two orders of magnitude larger than in the absence of diversity (1homo

1 in Fig. 4).

Diversity can yield multiple percolation
Large dynamic ranges also occur at criticality in other distributions such as the uniform
distribution. In this case, the number of units with threshold θ is evenly distributed between
1 and θmax, as depicted in the top panel of Fig. 6 for an exemplar case with θmax= 5. Notably,
for the uniform distribution,11

max is much greater than1max of the other subpopulations
(Fig. 6A) and of the whole network (inset).

In contrast to the bimodal distribution (Fig. 5A), the critical coupling curves of the
subpopulations for the uniform distribution grow with θmax without collapsing (Fig. 6B).
Hence, the system exhibits multiple critical couplings. However, the network taken as a
whole exhibits at most two peaks of susceptibility (insets of Figs. 6B and 6C). As shown in
the inset of Fig. 6B, the lowest-threshold critical coupling for the whole network matches
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the critical value for the subpopulation with θ = 1, and the other reflects the contribution
of all subpopulations. Figure 6C displays the susceptibilities for each subpopulation and
the whole network (inset). The larger the θ of the subpopulation, the greater the coupling
required to optimize the susceptibility, leading to a subpopulation hierarchy.

More details about multiple percolation in the case of θmax= 6 are also given in Fig. 7.
Figure 7A shows how the self-sustained activity grows in each subpopulation and in the
whole network as a function of the coupling strength. Each subpopulation has a different
percolation threshold. This is also clear from the peaks of the derivatives of the self-sustained
activity with respect to λ (Fig. 7B). Another key feature is that the peak corresponding to
the subpopulation of θ = 1 is much higher than the others, which is analogous to the shape
of χ shown previously in Fig. 6C. Both the time traces of ρ and the raster plot for a near
critical coupling of the most excitable subpopulation (Fig. 7C) show large fluctuations
in the activity of this subpopulation but only minor activity in the other subpopulations.
The active recruitment of other subpopulations requires stronger coupling, as shown in
Figs. 7D–7F.

Extending to a more realistic distribution
The gamma distribution is more general and presumably more realistic than the bimodal
and uniform distributions. As presented in the Methods and illustrated in Fig. 1, it is
described by two independent parameters, shape a and scale factor b, and generalizes
the exponential, chi-squared, and Erlang distributions. Exploring random networks with
thresholds given by discrete gamma distributions, we find large dynamic ranges (Fig. 8). The
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strength in the absence of input. (B) Derivatives of curves of A with respect to λ with step size1λ= 0.005.
Labels C, D, E, and F indicate the coupling strengths used in the correspondingly-labeled panels. (C–F)
Time traces and raster plots for different coupling strength λ. A, B, C: instantaneous firing ρ averaged over
nodes from each subpopulation and the whole network (gray). D, E, F: raster plot of 1,000 randomly cho-
sen units. Nonintegrator units are in red and other colors represent integrator units with different thresh-
olds (see C). The external driving is h= 10−2 Hz.

maximum dynamic range for both the subpopulation with θ = 1 and the whole network
can reach∼ 40 dB (Figs. 8A–8C). For some gamma distributions, the dynamic range of the
whole network can be larger than the specialized subnetwork of 11

max (dark gray area of
Fig. 8C). In these particular cases 11

max is very small; the maximum dynamic range of this
subpopulation is at its floor value, similar to the uncoupled case with λ= 0 (see e.g., Fig. 4),
implying that the network contribution to its dynamic range is negligible. A more detailed
picture of the dynamic range of the subpopulations reveals that very different relations
among subpopulations may appear for small changes in the parameters controlling the
discrete gamma distributions (see inset of Figs. 8D–8F). For a reasonably large density of
non-integrators and a distribution spanning from θ = 1 to large thresholds (Fig. 8D),11

max
largely exceeds the other subpopulations, and the maximum dynamic range decays with
threshold. For a fixed scale parameter b, increasing the shape parameter a, the number
of non-integrator units decays and 11

max suffers a large reduction (Fig. 8E). Moreover, a
further increase in the shape parameter a leads to a regime in which the dynamic range
grows with θ until its maximum value and then decays for larger thresholds (Fig. 8F). This
regime is significant because the dynamic range of the whole network (horizontal line)
outperforms all subpopulations. Although it is often taken as a basic truth that the whole
is greater than its parts, we find that this is not a general rule for all complex systems.
Among all considered distributions (bimodal, uniform, and gamma) we only find the
whole network outperforming all subpopulations in a small region of parameters of the
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Figure 8 Optimal performance for gamma-distributed thresholds: the whole can outperform its parts.
(A–C) Maximum dynamic range versus shape parameter a and scale parameter b of the gamma distribu-
tion. (A) Specialized (with highest sensitivity) subnetwork; (B) the whole network; (C) difference between
the whole network and the specialized subnetwork. (D–F) Maximum dynamic range for various subpopu-
lations and the whole network (horizontal gray line). Inset: gamma distribution of threshold values for the
corresponding shape and scale parameters.

gamma distribution in which the subpopulation with θ = 1 cannot benefit from network
interactions (top-right pale region of Fig. 8A).

Networks with excitatory and inhibitory nodes
Our main result that performance can be substantially enhanced with diversity is also
robust with respect to the presence of inhibition. We introduced bimodal diversity in the
thresholds as follows. First, we fix the proportion of inhibitory units at 20%. For each
total density of integrators, we distribute these according to three simple cases: (i) all
inhibitory units are integrators (thus requiring a total integrator density d ≥ 20%, with the
excitatory units comprising the d−0.2 integrators and the remainder nonintegrators); (ii)
all inhibitory units are nonintegrators (thus requiring a total integrator density d ≤ 80%);
and (iii) diversity in the threshold of the inhibitory units (fixed at 50% integrators and
50% nonintegrators, thus requiring a total integrator density 10%≥ d ≤ 90%). This covers
the two extreme cases (i) and (ii) and an intermediate case (iii). After an inhibitory neuron
spikes, post-synaptic quiescent neurons receive inhibition with probability λ. Upon arrival,
inhibition prevents the unit from spiking within a time-step period irrespective of the
number of excitatory active neighbors (i.e., we model shunting inhibition). We find that
inhibition has two effects on the response function, influencing the dynamic range in
opposite ways. On the one hand, inhibition prevents a rapid increase in the firing rate for
small input. On the other hand, it prevents saturation for large input. The first effect tends
to reduce the dynamic range whereas the second effect tends to increase it.

In the absence of diversity, the overall effect reported in the literature is a small reduction
in the network dynamic range (Pei et al., 2012). In the presence of diversity, however, we
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find the overall effect counterbalanced and inhibition does not alter the diversity-induced
enhancement of 1. Figure 9 shows the robustness of the maximum dynamic range in
the presence of inhibition. Regardless of whether the inhibitory units are integrators
(pentagons), nonintegrators (triangles), or a mix of both (square) the dynamic ranges are
very similar to the case without inhibition (filled circles). Although inhibition has been
shown to crucially shape the network dynamics (Larremore et al., 2014), and diversity in
excitatory and inhibitory populations may have different effects (Mejias & Longtin, 2014),
we found that in the presence of diversity inhibition produces only minimal quantitative
differences in the coding performance of networks.

DISCUSSION
Minimal models play a key role in elucidating the mechanisms and dynamics of complex
systems. Following this approach and investigating the impact of diversity in the intrinsic
excitability, we have shown that: (i) Diversity offers clear-cut advantages in distinguishing
input with respect to homogeneous networks; (ii) At the tricritical point the system benefits
from multiple critical instabilities, thereby optimizing performance; (iii) Subpopulations
percolate in order of decreasing excitability; (iv) The collective response from the entire
network can outperform all subpopulations but only when the specialized subpopulation
is underrepresented in the distribution of thresholds; (v) The main results are robust to
more realistic distributions, and can be applied to cortical systems composed of excitatory
and inhibitory neurons.
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Diversity has been a keystone of the recruitment theory that proposed the first
explanation for how animals can distinguish incoming input spanning many orders
of magnitude, even when each individual sensory neuron distinguishes only a narrow
dynamic range (Cleland & Linster, 1999). The proposed mechanism there requires many
neurons exhibiting responses tuned to specific (short) ranges of input but with the ensemble
of specific ranges spanning several orders of magnitude. The limitation of this recruitment
mechanism is evident because neurons would need to have receptor densities also varying
across orders of magnitude, which is not found experimentally (Chen & Yau, 1994; Cleland
& Linster, 1999). A competing hypothesis claims that diversity is not required, but instead
nonlinear interactions are sufficient for sensory systems to cope with incoming input
varying over many orders of magnitude (Kinouchi & Copelli, 2006; Copelli, 2007). Our
revisited version of the recruitment theory reconciles the two proposals by employing the
key ingredient of each one: mutual (non-linear) interactions, which amplify the dynamic
range of isolated neurons, and intrinsic diversity in the excitability, which requires only
small variability in threshold (and not variations of orders of magnitude as in the classic
recruitment theory Cleland & Linster, 1999). Therefore, by showing that diversity enhances
the dynamic range of response functions, we establish a revisited recruitment theory with
firmer biological plausibility.

Although we have focused on a specific task of distinguishing stimuli intensity, sensory
systems also need to handle various other features. As a byproduct and another advantage of
diversity, nonspecialized units may execute and specialize in other functions. For example,
as recently reported in the moth olfactory system (Rospars et al., 2014), a concurrent
function of the detection of stimulus intensity is the ability to respond promptly to external
stimuli. Under evolutionary pressure, the ability to execute such complementary functions
likely takes advantage of diversity to improve performance.

Our work provides predictions that may be used to guide experiments: (i) Manipulating
the coupling strength between neurons (such as done by Shew et al., 2009) should change
their dynamic range. Weaker coupling favors units with larger sensitivity and stronger
coupling favors units with lower sensitivity. Provided that a variation in coupling strength
is large enough, it should be possible to change which subpopulation is most sensitive.
(ii) The dynamic range can be substantially reduced if diversity is compromised, for
example by neurodegeneration or in genetically modified animals. Another possibility
for manipulating diversity would be to induce changes in a specific targeted population.
Although these predictions may be challenging to test experimentally, the numerical results
presented here will aid in narrowing down the proposed questions.

The importance of having diversity in groups is a widely-accepted strategy for improving
performance (Jackson & Ruderman, 1995; Van Knippenberg & Schippers, 2007; Joshi &
Roh, 2009; Freeman & Huang, 2015). The common examples of businesses, scientific
collaborations and sport teams assume that the collective output is enhanced because
different elements contribute by providing complementary expertise. Here, however, we
focus on a different problem in which all elements are responsible for the same task, but
some elements can perform better than others because of their different sensitivity. It is
natural to assume that a group of high-sensitivity specialized elements would lead to the
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optimal outcome. Counter-intuitively, our results show that optimal performance requires
a group of diverse elements, including specialized units with high sensitivity and supporting
units with low sensitivity. The supporting units do not typically outperform the specialized
units but they play a major role in enabling the enhancement of the specialized units’s
performance. In the simplest case of diversity (bimodal distribution) the specialized units
are the gullible units and their performance is greatly enhanced by the interaction with
other prudent units. This combination of units delays the critical transition and provides
additional sensitivity in distinguishing stimulus intensity to the specialized units. In fact,
although amixture of these two types of units is beneficial with respect to the unimodal case
(with no diversity), there is an optimal recipe for combining them: maximal amplification
in coding performance occurs for a critical balance of the two types of units. Such balance
corresponds to a critical regime that splits the dynamics in two. Adding extra integrators
makes the phase transition discontinuous, and removing them makes the phase transition
continuous.

We have demonstrated the benefits of diversity at criticality for different simple
distributions of excitability (as requested in the recent literature; Baroni & Mazzoni, 2014).
In the context of diversity-induced resonance (Tessone et al., 2006), in which diversity
plays a role similar to the noise in stochastic resonance, the firing rate modulation by
heterogeneity causes an optimal correlation response of the network to an oscillatory
external driving (Mejias & Longtin, 2012; Mejias & Longtin, 2014) but no specific attribute
has been previously identified to the network at the optimal level of diversity to justify its
optimized response. Addressing this issue, for the first time we provide evidence that the
well-known advantages of criticality (Plenz & Niebur, 2014) are magnified at tricriticality.
The optimal performance in the simple case of two type of units is found at a tricritical
point with a critical coupling separating the active/inactive phases and a critical density
of integrators separating the regimes of continuous/discontinuous phase transitions.
Even though a continuous phase transition has been proposed for the brain (Chialvo,
2010), hysteresis and multistability observed in models (Gollo, Mirasso & Eguíluz, 2012;
Wilson & Cowan, 1972) and experiments (Kastner, Baccus & Sharpee, 2015) suggest that
discontinuous phase transitions may also play a functional role.

The dynamics of excitable networks exhibits two regimes: percolating (active phase) and
non-percolating (inactive phase) (Saberi, 2015). In the non-percolating regime the coupling
is not strong enough to guarantee self-sustained propagation of activity. The network
activity eventually dies at the absorbing state and an external stimulation is required to
generate a spike. In contrast, the percolating regime is characterized by ceaseless activity.
Between these two regimes there is a phase transition. In the presence of diversity (even in
the simplest case of bimodal distribution), if the density of integrators is below a critical
density, double percolation is observed. Themost excitable units undergo a phase transition
to the active phase for weaker coupling than integrators. This process is analogous to the
recently shown (Colomer-de Simón & Boguñá, 2014) double percolation, which occurs
in core–periphery networks with sufficient clustering: core nodes percolate earlier than
peripheral nodes as edges are added to the network. Our results also generalize double
percolation to arbitrarily high-order multiple percolation, with subpopulation thresholds
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following a hierarchy of excitability. This analysis shows that the intrinsic properties of the
nodes can play a crucial role in disentangling the network activity even in the absence of
special topological features such as a core–periphery structure.

Features of the network structure can also play distinctive roles in shaping the dynamic
range. Networks in which hubs (nodes with large degree) are mutually connected
(i.e., assortative networks) exhibit larger performance than if they were not connected (De
Franciscis, Johnson & Torres, 2011; Schmeltzer et al., 2015). In scale-free networks, nodes
with higher degree have larger dynamic range (Wu, Xu &Wang, 2007), and the dynamic
range of networks grows with the degree exponent, which means that the dynamic range is
larger for scale-free networks withmore homogeneous degree (Larremore, Shew & Restrepo,
2011). Such distinct roles for diversity in the network connectivity as opposed to diversity
in the intrinsic dynamics highlight their difference in nature. Although we have focused on
a simple random network topology, the combination of diversity at the unit level with the
network level appears to be a rich avenue for future work.

We introduced diversity into our networks by having the node excitabilities follow simple
distributions. Our results remained robust in moving from simple distributions to more
complex cases, suggesting that the effects of diversity are general and widely-applicable.
Another crucial feature of many systems is the presence of excitatory and inhibitory
units. Our results are also robust with respect to the presence of inhibition regardless of
whether inhibitory units are homogeneous or not. This result indicates that inhibition
does not play a large role in the coding performance of the network, which contrasts with
its crucial role in other functions such as maintaining the self-sustained activity in the
network (Larremore et al., 2014). The reason for such a robustness is that the two effects of
inhibition in the response function are opposite and compensate one another: it reduces
both the sensitivity to small stimuli and the saturation to large stimuli. This robustness
suggests that either diversity in inhibitory neurons (observed in experiments,Whittington
& Traub, 2003) should have other functional roles (Mejias & Longtin, 2014) and does not
contribute significantly to the network’s coding performance, or that a more complex and
detailed modeling approach (Harrison et al., 2015) is needed to address the role of diversity
within the subset of inhibitory neurons for coding performance.
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