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A Model to Predict the Risk of Keratinocyte
Carcinomas

David C. Whiteman1, Bridie S. Thompson1, Aaron P. Thrift2, Maria-Celia Hughes1, Chiho Muranushi1,3,
Rachel E. Neale1, Adele C. Green1,4 and Catherine M. Olsen1, for the QSkin Study
Basal cell and squamous cell carcinomas of the skin are the commonest cancers in humans, yet no validated tools
exist to estimate future risks of developing keratinocyte carcinomas. To develop a prediction tool, we used
baseline data from a prospective cohort study (n ¼ 38,726) in Queensland, Australia, and used data linkage to
capture all surgically excised keratinocyte carcinomas arising within the cohort. Predictive factors were identified
through stepwise logistic regression models. In secondary analyses, we derived separate models within strata of
prior skin cancer history, age, and sex. The primary model included terms for 10 items. Factors with the strongest
effects were>20 prior skin cancers excised (odds ratio 8.57, 95% confidence interval [95%CI] 6.73e10.91),>50 skin
lesions destroyed (odds ratio 3.37, 95%CI 2.85e3.99), age� 70 years (odds ratio 3.47, 95%CI 2.53e4.77), and fair skin
color (odds ratio 1.75, 95%CI 1.42e2.15). Discrimination in the validation dataset was high (area under the receiver
operator characteristic curve 0.80, 95% CI 0.79e0.81) and the model appeared well calibrated. Among those
reporting no prior history of skin cancer, a similar model with 10 factors predicted keratinocyte carcinoma events
with reasonable discrimination (area under the receiver operator characteristic curve 0.72, 95% CI 0.70e0.75).
Algorithms using self-reported patient data have high accuracy for predicting risks of keratinocyte carcinomas.
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INTRODUCTION
Keratinocyte carcinomas (KCs) (specifically, basal cell carci-
nomas (BCC) and squamous cell carcinomas (SCC) of the
skin) are the most common cancers in humans. Although
often regarded as unimportant cancers, KCs cause consider-
able morbidity. Each year, 1.9% of the US adult population is
estimated to receive treatment for KC, rising to 6.9% of the
population aged >65 years (U.S. Department of Health and
Human Services, 2014). As such, KCs are the most costly
cancers in the US Medicare population, contributing to the
estimated total direct treatment costs of $4.3 billion each year
(Housman et al., 2003; U.S. Department of Health and
Human Services, 2014). Globally, the highest rates of BCC
(>1000 � 10�5 person-years) and SCC (387 � 10�5 person-
years) are observed in Australia, although KC incidence rates
exceed 100 � 10�5 person-years in most fair-skinned pop-
ulations around the world (Lomas et al., 2012).

The enormous burden of skin cancers underscores the need
to find better ways to control these conditions, both through
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primary prevention and early detection (U.S. Department of
Health and Human Services, 2014). Reducing hazardous
exposure to solar ultraviolet radiation is accepted as the
mainstay of primary prevention in the general population, but
there is less certainty about how to deploy medical services
for skin cancer control. At one end of the early detection
spectrum is formal population-based screening. To date, only
Germany has embarked upon a nationwide program of
screening for skin cancer (Choudhury et al., 2012), although
evidence is emerging that the benefits may not justify the
costs (Katalinic et al., 2015; Stang and Jockel, 2015). In other
jurisdictions, guidelines recommend that patients at high risk
for skin cancer undergo periodic surveillance, with the
implied but unstated advice that those at low risk receive
usual care (Cancer Council Australia, 2007; U.S. Preventive
Services Task Force, 2009). With the advent of promising
chemoprevention strategies for skin cancer (Chen et al.,
2015), reliable risk stratification tools are needed to identify
patients most likely to benefit from clinical intervention.
Presently, clinicians must rely on their own experience to
estimate a patient’s future risk of skin cancer, because unlike
for melanoma (Olsen et al., 2015), no prediction tools for
these cancers have been developed or validated. Thus, we
aimed to develop and validate a risk prediction model for
quantifying the probability of being treated for a KC,
regardless of histological subtype. Our approach was to use
self-reported information of the type that can be elicited
remotely, so that patients might be assessed and triaged
before consulting a physician.

RESULTS
The eligible cohort comprised 38,726 participants with no
prior history of melanoma, of whom 56% were women and
the mean age was 56.2 years (standard deviation 8.1). Most
estigative Dermatology. www.jidonline.org 1247
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participants reported white European ancestry (n ¼ 34,579,
93%) and most were born in Australia (30,054, 81%). Me-
dian follow-up was 36 months (min 20; max 44). Distribu-
tions of key factors in the derivation and validation datasets
are presented in Table 1.

There were 4,237 (16%) participants in the derivation
dataset with at least one surgical excision for a confirmed
BCC or SCC during the follow-up period. In univariate ana-
lyses, 23 items were significantly associated with the occur-
rence of KC (Supplementary Table S1 online). After
conducting backward stepwise regression within the imputed
derivation datasets (Supplementary Table S2 online), and
then testing whether adding further candidate terms signifi-
cantly improved the fit of the model, we derived a final
model with terms for 10 predictors (age, sex, smoking status,
ethnicity, skin color, tanning ability, freckling tendency,
number of sunburns <10 years, number of previous skin
cancers excised, and number of previous skin lesions
destroyed; Table 2). None of the pairwise interaction terms
was statistically significant at the P < 0.05 level, nor did they
Table 1. Characteristics of study participants in derivation

Characteristic

Derivation dataset

Controls
(N [ 21,605)

KC cases
(N [ 4,237) Total (N

Age group

40e49 6,309 (29.2) 616 (15.4) 6,9

50e59 8,371 (38.8) 1,471 (34.7) 9,8

60e69 6,784 (31.4) 2,063 (48.7) 8,8

70þ 141 (0.7) 87 (2.1) 2

Sex

Female 12,327 (57.1) 1,933 (45.6) 14,2

Male 9,278 (42.9) 2,304 (53.7) 11,5

Ethnicity

Non-white 1,500 (6.9) 85 (2.0) 1,5

White 19,889 (92.1) 4,115 (97.1) 24,0

Missing 216 (1.0) 37 (0.9) 2

Born in Australia

No 4,537 (21.0) 592 (14.0) 5,1

Yes 17,062 (78.0) 3,641 (85.9) 20,7

Missing 6 (<0.1) 4 (0.1)

Private health insurance

No 7,311 (33.8) 1,313 (31.0) 8,6

Yes 14,191 (65.7) 2,900 (68.4) 17,0

Missing 103 (0.5) 24 (0.6) 1

Education

University degree 5,341 (24.7) 855 (20.2) 6,1

Certificate or diploma 4,070 (18.8) 691 (16.3) 4,7

Trade 1,954 (9.0) 414 (9.8) 2,3

Secondary school 3,974 (18.4) 736 (17.4) 4,7

Intermediate school 3,200 (14.8) 764 (18.0) 3,9

Primary school 1,575 (7.3) 417 (9.8) 1,9

Missing 1,491 (6.9) 360 (8.5) 1,8

Smoking status

Never 11,763 (54.5) 2,260 (53.3) 14,0

Past 7,610 (35.2) 1,523 (36.0) 9,1

Current 2,120 (9.8) 424 (10.0) 2,5

Missing 112 (0.5) 30 (0.7) 1

Abbreviation: KC, keratinocyte carcinoma.
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substantially modify the Akaike Information Criterion or the
area under the receiver operator characteristic curve
(AUROC); hence they were not retained in the final models.
Strongest effects were observed for >20 prior skin cancers
excised, >50 skin lesions destroyed, age >70 years, and fair
skin color. Discrimination in the validation dataset was high
(AUROC 0.80, 95% confidence interval 0.79e0.81;
Figure 1). Although the model appeared well calibrated
overall, there was some evidence that true risks were
underestimated at the low end of the scale, and that risks
were marginally overestimated in the highest categories
(Figure 2).

Cumulative incidence plots demonstrated that the risk of
KC events was strongly predicted by the self-reported history
of prior skin cancer excisions (Figure 3). Thus, we derived
separate models according to the absence or presence of a
past skin cancer history. Among those in the derivation
dataset with no prior history of skin cancer excisions (n ¼
16,021), we derived a predictive model with good discrimi-
nation (AUROC 0.72, 95% confidence interval 0.70e0.75;
and validation datasets

Validation dataset

[ 25,842)
Controls

(N [ 10,773)
KC cases

(N [ 2,111)
Total

(N [ 12,884)

25 (26.8) 3,136 (29.1) 273 (12.9) 3,409 (26.5)

42 (38.1) 4,183 (38.8) 722 (34.2) 4,905 (38.1)

47 (34.2) 3,377 (31.4) 1,069 (50.6) 4,446 (34.5)

28 (0.9) 77 (0.7) 47 (2.2) 124 (1.0)

60 (55.2) 6,094 (56.6) 975 (46.2) 7,069 (54.9)

82 (44.8) 4,679 (43.4) 1,136 (53.8) 5,815 (45.1)

85 (6.9) 747 (6.9) 42 (2.0) 789 (6.1)

04 (92.9) 9,917 (92.1) 2,055 (97.4) 11,972 (92.9)

53 (1.0) 109 (1.0) 14 (0.7) 123 (1.0)

29 (21.0) 2,272 (21.1) 280 (13.3) 2,552 (19.8)

03 (78.0) 8,495 (78.9) 1,831 (86.7) 10,326 (80.2)

10 (<0.1) 6 (0.1) 0 (0) 6 (0.1)

24 (33.4) 3,564 (33.1) 624 (29.6) 4,188 (32.5)

91 (66.1) 7,168 (66.5) 1,480 (70.1) 8,648 (67.1)

27 (0.5) 41 (0.4) 7 (0.3) 48 (0.4)

96 (25.0) 2,691 (25.0) 410 (19.4) 3,101 (24.1)

61 (18.4) 2,145 (19.9) 328 (15.5) 2,473 (19.2)

68 (9.2) 963 (8.9) 213 (10.1) 1,176 (17.8)

10 (18.2) 1,906 (17.7) 386 (18.3) 2,292 (17.8)

64 (15.3) 1,550 (14.4) 398 (18.9) 1,948 (15.1)

92 (7.7) 785 (7.3) 194 (9.2) 979 (7.6)

51 (7.2) 733 (6.8) 182 (8.6) 915 (7.1)

23 (54.3) 5,944 (55.2) 1,155 (54.7) 7,099 (55.1)

33 (35.3) 3,760 (34.9) 743 (35.2) 4,503 (35.0)

44 (9.8) 1,002 (9.3) 203 (9.6) 1,205 (9.4)

42 (0.5) 67 (0.6) 67 (0.6 ) 77 (0.6)



Table 2. Specification and performance of models to
predict risk of keratinocyte carcinoma within 3 years:
full derivation dataset (N [ 25,842)

Risk factor OR (95% CI)1 P-value2

Age group

40e49 1.00 (Ref)

50e59 1.25 (1.13, 1.40)

60e69 1.76 (1.57, 1.96)

70þ 3.47 (2.53, 4.77) <0.0001

Sex

Female 1.00 (Ref)

Male 1.31 (1.21, 1.41) <0.0001

Ethnicity

Non-white 1.00 (Ref)

White 1.72 (1.36, 2.17) <0.0001

Skin color

Dark 1.00 (Ref)

Medium 1.50 (1.22, 1.84)

Fair 1.75 (1.42, 2.15) <0.0001

Tanning ability

Deeply tan 1.00 (Ref)

Moderately tan 1.20 (1.05, 1.35)

Lightly tan 1.17 (1.05, 1.30)

Not tan 1.16 (0.98, 1.37) 0.0186

Freckling tendency

None 1.00 (Ref)

A few 1.00 (0.91, 1.09)

Some 1.06 (0.94, 1.18)

Many 1.21 (1.04, 1.41) 0.0557

Number of sunburns <10 years

Never 1.00 (Ref)

1e5 1.03 (0.93, 1.14)

6e10 1.07 (0.94, 1.21)

11e20 1.11 (0.96, 1.29)

21e50 0.79 (0.65, 0.97)

>50 0.88 (0.65, 1.18) 0.0148

Number of previous skin cancers excised

None 1.00 (Ref)

1 1.79 (1.60, 2.01)

2e10 3.32 (3.02, 3.66)

11e20 7.74 (6.38, 9.38)

>20 8.57 (6.73, 10.91) <0.0001

Number of previous skin lesions destroyed

None 1.00 (Ref)

1e5 1.75 (1.57, 1.94)

6e10 2.35 (2.06, 2.68)

11e20 2.81 (2.44, 3.23)

21e50 2.72 (2.33, 3.17)

>50 3.37 (2.85, 3.99) <0.0001

Smoking status

Never 1.00 (Ref)

Former 0.95 (0.87, 1.03)

Current 1.17 (1.03, 1.33) 0.0052

AUROC (95% CI)3

Derivation 0.79 (0.78, 0.80)

Validation 0.80 (0.79, 0.81)

1Odds ratios (and 95% confidence intervals) were adjusted for all other
terms in the table. Missing values were imputed as per protocol.
2Type III P-value from first imputation dataset (see Supplementary
Table S2 online).
3AUROC, area under the receiver operating characteristic curve; CI,
confidence interval.
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Figure 1. Discrimination performance of the keratinocyte carcinoma

prediction model in the validation cohort. Performance is assessed by the

area-under-the-receiver-operating-characteristic curve (AUROC). The x-axis

denotes the false-positive rate and the y-axis denotes the true-positive rate.

The diagonal line represents the “line of non-discrimination” which is

equivalent to the prediction tool performing no better than random chance.
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Supplementary Figures S1 and S2 online) that comprised 10
statistically significant terms, namely age, sex, ethnicity, skin
color, tanning ability, freckling, sunburns < 10 years, sun-
burns > 20 years, number of previous skin lesions destroyed,
and family history of melanoma (Table 3). Among those with
a self-reported history of at least one prior skin cancer exci-
sion (n ¼ 9,650), the most parsimonious prediction model
comprised eight terms (namely number of previous skin
cancers excised, number of previous skin lesions destroyed,
age, sex, smoking status, skin color, freckling tendency, and
sunburns < 10 years) (Table 3). Discrimination in the vali-
dation cohort was 0.72 (95% confidence interval 0.70e0.73)
(Supplementary Figures S3 and S4 online).

In supplementary analyses, we derived prediction models
within strata of age and sex (Supplementary Table S3 online).
Discrimination of the models in the validation datasets was
similarly high across all models (AUROC approximately 0.80),
although the terms included in the prediction models differed.
Models restricted to older people (�60 years) and women had
fewer terms (seven each) than models restricted to younger
people (10 terms) and men (11 terms). Across all four strata,
terms were retained for age, ethnicity, skin color, numbers of
skin cancers excised, and numbers of skin lesions destroyed.

Finally, to assess the utility of using the prediction model to
guide clinical management, we calculated the proportion of
patients in the source population that would be considered
for clinical action (e.g., chemoprevention, surveillance pro-
gram, etc.) at different risk score thresholds as predicted by
the model (Table 4). Assuming a stringent scenario in which
clinical action would be taken only for patients with a very
www.jidonline.org 1249
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Figure 2. Calibration performance of the keratinocyte carcinoma prediction

model in the validation cohort. The x-axis denotes the observed probability

and the y-axis denotes the predicted probability. The plot presents the

bootstrap-corrected calibration curves averaged over 500 replications.
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high risk of developing skin cancer (e.g., 3-year risk score
�0.7), then only approximately 1.3% of patients would be
affected. Such a regimen would have extremely high speci-
ficity (99.5%) but very low sensitivity (5.4%), missing almost
95% of future cases of skin cancer. In contrast, selecting
patients with 3-year risk score threshold �0.2 would permit
72.5% of patients to avoid clinical action, while yielding
64.5% of future cases with reasonable specificity (79.7%).
The Youden Index was optimized (J ¼ 0.46) at a predicted
3-year risk score of 0.13.
Figure 3. Cumulative incidence of keratinocyte carcinoma by category of

the self-reported number of excised skin cancers before enrolment (171

participants had missing data for this item). The x-axis denotes time in study

from date of consent and the y-axis denotes cumulative incidence (risk) of first

excision of keratinocyte cancer. Separate cumulative incidence curves are

presented for each of five groups of participants according to their self-

reported prior history of skin cancer.
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DISCUSSION
We used data from a large cohort in the high incidence
setting of Queensland, Australia, to develop a tool for pre-
dicting the 3-year risk of developing KC. We found that in-
formation on 10 items yielded a risk prediction index for KCs
with very high discrimination (AUROC 0.79). This level of
discrimination is among the highest reported in a validation
dataset for a cancer prediction index. Although statistical
techniques are not yet available for testing the calibration
performance of prediction tools in very large datasets (Paul
et al., 2013), visual inspection of the plots suggests that the
predicted probabilities accord favorably with the observed
risk of KC events. Overall, the strongest predictors of future
risk were a past history of an excised skin cancer or a
destroyed actinic skin lesion, and age. Smoking status and a
number of pigmentary factors including skin color, tanning
ability, and freckling tendency also independently and
significantly improved the fit of the model. In separate ana-
lyses restricted to participants with no self-reported skin
cancer history, the predictive factors were largely the same,
although smoking status was dropped from that model and
three other factors (sunburns in childhood, sunburns in
adulthood, and family history of melanoma) were retained.
Interestingly, apart from sunburns, measures of past or current
sun exposure were not retained in any models, despite their
strong associations with KC events in univariate analyses.
Several nonexclusive explanations are likely. First, a past
history of skin cancer is essentially a proxy measure for high-
level cumulative sun exposure. Secondly, in populations
exposed to high levels of ambient solar ultraviolet radiation
(such as Australia or southern USA), the role of pigmentation
factors risk is likely accentuated because these factors strongly
determine the actual dose of ultraviolet radiation received at
the level of the target cell. Thirdly, because phenotypic mea-
sures are reported with higher reproducibility than sun
exposure (both in this sample (Morze et al., 2012) and others
(English et al., 1998; van der Mei et al., 2006; Yu et al., 2009)),
they are less prone to misclassification and thus, on average,
more likely to discriminate cases from controls.

The models described here are conceived to be clinical
aids for stratifying patients according to their probability of
developing skin cancer requiring surgical excision. As such,
we used self-reported data of the type that can be collected
remotely before consultation, and we did not discriminate
between the development of BCC or SCC because initial
management is similar for both. In addition to the pragmatic
design, other strengths include the very large sample size
(allowing separate datasets for deriving and validating
models) and the use of a validated survey instrument for
collecting baseline data that was specifically intended to
assess skin cancer risk factors. We used health administration
data ensuring virtually complete follow-up for all such events
within the cohort. Moreover, we have shown that the eight
items for excision of histologically confirmed KC have very
high concordance (approximately 97%) with histopathologic
diagnoses obtained independently from pathology records
(Thompson et al., 2015). We consider it unlikely that any
controls would be misclassified as cases, although it is
possible that some study participants who did develop inva-
sive KCs during follow-up may have been misclassified as



Table 3. Specification and performance of models
to predict risk of keratinocyte carcinoma within 3
years, by strata of self-reported prior skin cancer
history (N [ 25,671)1

Risk factor

Prior history of skin cancer excision (self-report)

Yes (N [ 9,650) No (N [ 16,021)

OR
(95% CI) P-value

OR
(95% CI) P-value

Age group

40e49 1.00 (Ref) 1.00 (Ref)

50e59 1.08 (0.93, 1.25) 1.53 (1.30, 1.81)

60e69 1.47 (1.27, 1.69) 2.26 (1.90, 2.69)

70þ 3.10 (2.08, 4.62) <0.0001 4.42 (2.55, 7.64) <0.0001

Sex

Female 1.00 (Ref) 1.00 (Ref)

Male 1.26 (1.14, 1.38) <0.0001 1.39 (1.22, 1.57) <0.0001

Ethnicity

Non-white e 1.00 (Ref)

White e n/s2 2.07 (1.44, 2.96) <0.0001

Skin color

Dark 1.00 (Ref) 1.00 (Ref)

Medium 1.60 (1.18, 2.16) 1.32 (0.99, 1.76)

Fair 1.99 (1.48, 2.68) <0.0001 1.44 (1.08, 1.92) 0.0405

Tanning ability

Deeply tan e 1.00 (Ref)

Moderately tan e 1.31 (1.10, 1.55)

Lightly tan e 1.34 (1.08, 1.65)

Not tan e n/s 1.34 (0.98, 1.84) 0.0122

Freckling
tendency

None 1.00 (Ref) 1.00 (Ref)

A few 0.89 (0.80, 1.00) 1.20 (1.04, 1.39)

Some 0.94 (0.82, 1.07) 1.31 (1.08, 1.58)

Many 1.10 (0.93, 1.32) 0.0543 1.41 (1.06, 1.86) 0.0094

Number of
sunburns
aged <10 years

Never 1.00 (Ref) 1.00 (Ref)

1e5 0.94 (0.82, 1.08) 1.09 (0.92, 1.29)

6e10 0.95 (0.81, 1.12) 1.20 (0.98, 1.48)

11e20 0.92 (0.76, 1.11) 1.37 (1.07, 1.75)

21e50 0.63 (0.49, 0.80) 1.18 (0.81, 1.71)

>50 0.74 (0.53, 1.05) 0.0029 0.82 (0.45, 1.51) 0.0972

Number of
sunburns
aged >20 years

Never e 1.00 (Ref)

1e5 e 1.15 (0.96, 1.37)

6e10 e 1.11 (0.89, 1.39)

11e20 e 1.31 (1.01, 1.71)

21e50 e 1.49 (1.04, 2.14)

>50 e n/s 0.74 (0.36, 1.52) 0.089

Number of
previous skin
cancers excised

None e e

1 1.00 (Ref) e

2e10 1.94 (1.74, 2.17) e

11e20 4.69 (3.84, 5.74) e

>20 5.14 (4.01, 6.60) <0.0001 e

(continued )

Table 3. Continued

Risk factor

Prior history of skin cancer excision (self-report)

Yes (N [ 9,650) No (N [ 16,021)

OR
(95% CI) P-value

OR
(95% CI) P-value

Number of
previous skin
lesions destroyed

None 1.00 (Ref) 1.00 (Ref)

1e5 1.45 (1.22, 1.71) 1.79 (1.55, 2.06)

6e10 1.97 (1.65, 2.37) 2.27 (1.82, 2.84)

11e20 2.25 (1.87, 2.71) 3.30 (2.58, 4.21)

21e50 2.30 (1.89, 2.79) 3.18 (2.32, 4.36)

>50 2.89 (2.35, 3.54) <0.0001 4.36 (2.81, 6.76) <0.0001

Family history
of melanoma

No e 1.00 (Ref)

Yes e n/s 1.19 (1.03, 1.38) 0.0126

Smoking status

Never 1.00 (Ref) e

Former 0.96 (0.87, 1.07) e

Current 1.21 (1.03, 1.43) 0.0244 e n/s

AUROC (95% CI)

Derivation 0.71 (0.70, 0.72) 0.70 (0.68, 0.71)

Validation 0.72 (0.70, 0.73) 0.72 (0.70, 0.75)

Abbreviations: AUROC, area under the receiver operating characteristic
curve; CI, confidence interval.
1Missing values were imputed as per protocol. Participants with missing
data for stratification variable were excluded from this analysis (n ¼ 171).
2Not statistically significant: term was not retained in the final risk pre-
diction model.
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controls in these analyses. This could happen if KCs were
treated destructively or were removed by simple biopsies that
did not attract one of the eight billing codes reserved for
excisions of histologically confirmed KCs. The magnitude of
bias of this type is difficult to estimate, although we note that
approximately 15% of controls had at least one skin biopsy
during follow-up. Such bias is most likely conservative
because it would tend to diminish the differences between
cases and controls, and thereby reduce the discrimination of
the model. A potential limitation of the present analysis was
the absence of histology data with which to separately pre-
dict risks of BCC and SCC. We aim to explore histology-
specific prediction tools when such data become available.

Although population screening for melanoma and KCs was
introduced in Germany in 2008, recent reports suggest that
the program has not delivered the anticipated benefits
(Katalinic et al., 2015; Stang and Jockel, 2015). Based on
these findings, and the limited likelihood that any random-
ized trials for skin cancer screening will be conducted in the
foreseeable future, there is growing interest in developing
prediction tools to identify patients who may benefit from
clinical interventions such as chemoprevention (Chen et al.,
2015) or surveillance (Moons et al., 2009). An additional
benefit of such tools, especially in high incidence pop-
ulations or in settings where access to specialist care may
be rationed, is to be able to triage people at low risk of
disease back to their routine care providers. Prediction
models for cancers of the breast (Rockhill et al., 2001), colon
www.jidonline.org 1251
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Table 4. Sensitivity and specificity of the risk
prediction model and proportion of “actionable”
patients at incremental thresholds of risk scores for
keratinocyte carcinoma within 3 years

Risk score
threshold1

Sensitivity2

(%)
Specificity3

(%)
“Actionable”

proportion4 (%)

0 100 0 100

�0.1 82.7 60.7 64.3

�0.2 64.5 79.7 27.5

�0.3 49.6 88.2 17.9

�0.4 34.5 93.9 10.7

�0.5 20.9 97.3 5.6

�0.6 13.3 98.6 3.3

�0.7 5.4 99.5 1.3

�0.8 0.3 99.9 0.1

�0.9 0.0 100.0 0

1Lower bound of the risk score for having a keratinocyte carcinoma event
within 3 years as predicted by the full model.
2Proportion of cases who were correctly predicted to be a “case” (defined
as having a risk score exceeding this threshold).
3Proportion of controls who were correctly predicted to be a “control”
(defined as having a risk score below this threshold).
4Proportion of all participants (“the population”) who would be consid-
ered actionable at this level of risk score.
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(Steffen et al., 2014), prostate (Eastham et al., 1999), and
melanoma (Vuong et al., 2014; Whiteman, 2014) have been
developed, but we are not aware of any published models
that predict risk of KCs in the general population.

We therefore developed a prototype web-based applica-
tion (see www.qskin.qimrberghofer.edu.au) to calculate a
personal risk score. From a drop-down menu, a person se-
lects the most appropriate response for each of the 10 items
that were found to significantly predict risk of KC. The al-
gorithm sums the beta-coefficients of the selected response
items to generate a risk score, and then determines where that
person’s score lies relative to the distribution of all risk scores
in the QSkin cohort. For clinical utility, and to avoid per-
ceptions of spurious precision, the tool reports a risk category
rather than the actual score, as follows: (i) very much below
average risk (bottom 20% of the risk distribution), (ii) below
average risk (21st to 40th percentile of the risk distribution),
(iii) about average risk (41st to 60th percentile of the risk
distribution), (iv) above average risk (61st to 80th percentile
of the risk distribution), (v) very much above average risk (top
20% of the risk distribution). Although the subsequent man-
agement of each patient will depend on his or her own
particular circumstances, we believe this tool will aid clini-
cians and their patients in quantifying risk and deciding on an
appropriate course of action. Although the external validity of
this prediction tool remains to be determined, especially in
settings where the incidence of KCs is lower than in Australia,
it is notable that the factors conferring the greatest contri-
bution to the risk score were not specific to this particular
population. Moreover, the items to measure the factors were
scaled across the full ranges of exposure, and are readily
elicited by self-report either in a clinical encounter or
remotely. In our future research, we aim to assess the impact
of applying these prediction tools in diverse clinical settings.
Journal of Investigative Dermatology (2016), Volume 136
MATERIAL AND METHODS
Study populations

The QSkin Study comprises a cohort of 43,794 men and women

aged 40e69 years randomly sampled from the population of

Queensland, Australia, in 2011 (overall participation fraction 23%).

Full details of recruitment and baseline characteristics of the cohort

have been published previously (Olsen et al., 2012). The Human

Research Ethics Committee at the QIMR Berghofer Medical

Research Institute approved the study, and all participants gave their

informed and written consent to take part.

Data collection

At baseline, participants were asked to self-report information about

demographic items, ethnicity, general medical history, pigmentary

characteristics, history of sun exposure, use of tanning beds and past

history of treatments for skin cancer, and other skin lesions. The

characteristics of the questionnaire have been published, including

measures of repeatability for study survey items (Morze et al., 2012).

The primary outcome for this analysis was excision of a histo-

logically confirmed BCC or SCC (“KC event”). To identify KC events

in the cohort, we obtained administrative claims data from Medicare

Australia for all medical services provided to all participants who

gave express written consent for data linkage (n ¼ 40,383) between

the date of consent (from November 2010) and censor date (30 June

2014). Medicare is Australia’s universal health care system that

subsidizes virtually all medical services outside of the public hos-

pital system for citizens and permanent residents, regardless of age,

private health insurance status, or other factors (Olsen et al., 2014).

Deterministic linkage to Medicare was conducted using Medicare

number, name, address, and date of birth as identifiers. We defined

KC cases as participants who received a medical service for one of

eight item numbers (31255, 31260, 31265, 31270, 31275, 31280,

31285, 31290) for first surgical excision of BCC or SCC, for which

the diagnosis must be confirmed by histology before the claim is

lodged. We excluded 1,657 participants with confirmed pre-

enrolment melanoma identified through record linkage to the

population-based Queensland Cancer Registry; thus the final dataset

for analysis comprised 38,726 participants.

Candidate predictor variables

Candidate predictor variables were selected a priori from the liter-

ature and practitioner input and included terms for demographic

characteristics including age at enrollment, sex, place of birth,

ethnicity, and place of residence as a child. We tested numerous self-

reported measures of phenotype (including unexposed skin color,

skin burning tendency, skin tanning tendency, eye color, hair color,

categorical freckling density on the face at age 21, and categorical

nevus burden at age 21), self-reported measures of sun exposure

(including number of sunburns at ages <10 years, 10e20 years, and

>20 years, numbers of hours spent outdoors on weekdays and

weekend days in the past year), and frequency of use of tanning

beds. Terms related to prior medical history included self-reported

numbers of skin cancers excised surgically, self-reported numbers

of skin lesions treated destructively, history of melanoma in close

blood relatives, and frequency of aspirin use in the past year (see

Supplementary Table S1).

Imputation of missing data

Missing values for most candidate predictor items occurred at

prevalence <1% and was highest for educational attainment (7%).

To avoid potential bias, we imputed missing values for candidate

http://www.qskin.qimrberghofer.edu.au
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predictors using the fully conditional specification method in PROC

MI in SAS v9.4 (SAS Institute, Cary, NC), under the assumption that

data were missing at random. We included all predictor variables

and the outcome variable in the imputation step, specifying logistic

regression to impute ordinal variables and linear regression for

continuous variables. Imputation was run over five imputation cy-

cles to generate five imputed datasets. We then performed the

backward stepwise regression analyses on the five imputed datasets

and combined the regression coefficients of the retained predictor

variables using a modified version of “Rubin’s rules” suitable for

categorical variables (Sterne et al., 2009).

Statistical analysis

Our overall approach was to derive risk prediction models in

a randomly selected sample of the dataset (two-thirds subset

n ¼ 25,842; hereafter “derivation sample”), and then to test the

performance of models in the remaining sample (“validation sam-

ple,” n ¼ 12,884; see Figure 1). We compared KC cases and controls

using c2 tests for categorical variables.

Risk model development. We used logistic regression for

analysis, because the pragmatic consideration in the clinical setting

is to determine the probability that a person with a given set of

characteristics will require a KC excision within the next 3 years

(i.e., become a “case”), or not. Although the logistic regression

approach does not accommodate an analysis of competing risks of

death, this is very unlikely to bias the estimates in our models

because there were very few deaths during follow-up (>98.5%

survival at 3 years). The very low rate of deaths was similar among

cases and controls in both the development dataset and the vali-

dation dataset (development dataset: 1.49% vs. 1.29% in cases and

controls, respectively, P ¼ 0.30; validation dataset: 0.99% vs. 1.08%

in cases and controls, respectively, P ¼ 0.74). In the first phase, we

included in the multivariate model those variables that were statis-

tically significantly associated with KC at the 0.05 level in univariate

analyses. We performed backward stepwise regression whereby

those factors losing their significance at the 0.1 level in the multi-

variate analysis were dropped. In the second phase, those factors not

significant in the univariate analyses were subsequently fitted to the

multivariate model to identify any effects detectable only after

adjusting for major risk factors.

Our analysis protocol stipulated that we were to perform analyses

stratified by prior skin cancer history (yes vs. no); sex and age (<60

years vs. 60þ years) on the a priori assumption that these factors

would likely interact with predictor variables. Because of the sub-

stantial computational resources required to test all possible pairwise

combinations of predictive factors, as well as the implications for

multiple testing and the very low likelihood of meaningful gains in

predictive value, we tested only for potential interactions between

terms considered plausible and clinically relevant (age*sex; age*-

sunburns as a child; age*number of skin cancers excised;

age*number of skin lesions destroyed; skin color*sunburns as a child;

skin color*number of skin lesions destroyed). We included each

pairwise interaction term in the primary analysis models and re-ran

the logistic regression in the development dataset.

Model validation. We assessed the performance of derived

prediction models using tests for discrimination and calibration. We

evaluated discrimination using the AUROC (also known as the

c-statistic) and its 95% confidence interval. The AUROC can be

interpreted as the probability that the model will assign a higher
probability of developing KC to a randomly chosen participant who

developed KC than to a randomly chosen participant who did not

develop KC during follow-up. An AUROC of 0.5 indicates that the

model discriminates no better than chance, whereas an AUROC of

1.0 indicates a perfectly discriminating model. We also assessed

calibration that compares the observed proportions of KC versus

controls within equally sized groups categorized according to their

predicted probability from the model. When the average predicted

risk within specified categories matches the proportion observed, the

model is well calibrated. We plotted bootstrap-corrected calibration

curves (averaged over 500 replications) to illustrate the model’s fit

across the range of predicted risk for KC compared with the observed

outcome. We did not use the Hosmer-Lemeshow goodness-of-fit

statistic because this measure is known to be overly sensitive with

large samples sizes and as yet, no correction algorithms have been

validated for samples >25,000 (Paul et al., 2013). We calculated the

Youden index (J) for all data points in the sample to identify the

“optimal” cutoff point at which both sensitivity and specificity are

maximized.

In secondary analyses, we sought to establish whether predictive

factors differed according to the past history of excision of skin

cancer (self-reported), sex, and age (<60 years, �60 years), and so

we repeated the process within strata of these variables. We

excluded from the analyses stratified by self-reported prior history of

skin cancer those participants with missing data for that item (n ¼
171, 0.6%). We used multiple imputation to complete missing

values for all other variables.

Statistical computations were performed using SAS software

(version 9.4; SAS Institute), and all tests for statistical significance

were two-sided at a ¼ 0.05. Calibration was conducted using the

rms package in R v3.0.1.

NOTE
An online version of the KC risk prediction calculator will be made available
on our study website (www.qskin.qimrberghofer.edu.au) after publication of
the article.
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