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The transcriptional landscape of age in
human peripheral blood
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Disease incidences increase with age, but the molecular characteristics of ageing that lead to

increased disease susceptibility remain inadequately understood. Here we perform a

whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry

(including replication) and identify 1,497 genes that are differentially expressed with

chronological age. The age-associated genes do not harbor more age-associated

CpG-methylation sites than other genes, but are instead enriched for the presence of

potentially functional CpG-methylation sites in enhancer and insulator regions that associate

with both chronological age and gene expression levels. We further used the gene expression

profiles to calculate the ‘transcriptomic age’ of an individual, and show that differences

between transcriptomic age and chronological age are associated with biological features

linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass

index. The transcriptomic prediction model adds biological relevance and complements

existing epigenetic prediction models, and can be used by others to calculate transcriptomic

age in external cohorts.
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C
hronological age is a major risk factor for many common
diseases including heart disease, cancer and stroke, three
of the leading causes of death. Although chronological age

is the most powerful risk factor for most chronic diseases, the
underlying molecular mechanisms that lead to generalized disease
susceptibility are largely unknown. Genome-wide association
studies (GWAS) have identified thousands of single-nucleotide
polymorphisms (SNPs) associated with common human diseases
and traits1,2. Despite this success, APOE, FOXO3 and 5q33.3 are
the only identified loci consistently associated with longevity3–11.
Ageing has proven difficult to dissect in part due to its
interactions with environmental influences (for example,
lifestyle choices, diet and local exposures), other genetic factors,
and a large number of age-related diseases11, making the
individual factors difficult to detect.

Since studies in model organisms have shown that ageing is
characterized by many alterations at the molecular, cellular and
tissue level12, a transcriptome analysis might lend greater insight
than a static genetic investigation. Therefore, the aim of this study
was to exploit a large-scale population-based strategy to
systematically identify genes and pathways differentially
expressed as a function of chronological age. In contrast to the
relatively invariable genome sequence, the transcriptome is highly
dynamic and changes in response to stimuli. Previous gene
expression studies in the context of ageing have primarily focused
on model organisms13–15 or have been confined to specific ageing
syndromes such as Hutchinson–Gilford progeria16. One report
identified age-related expression modules across four separate
data sets17, while other studies examined age-associated gene
expression changes in relatively small cohorts18–22.

To our knowledge, we perform here the first large-scale meta-
analysis of human age-related gene expression profiles with well
powered discovery and replication stages. In addition, this is the
first large-scale study testing the hypothesis that changes in gene
expression with chronological age are epigenetically mediated by
changes of methylation levels at specific loci. Finally, we take
advantage of our large set of samples to build a transcriptomic
predictor of age, and we compare our transcriptomic prediction
model with the epigenetic prediction models of Horvath23 and
Hannum et al.24.

We identified 1,497 genes that are differentially expressed
with chronological age. These genes are enriched for the
presence of potentially functional CpG-methylation sites in
enhancer and insulator regions. Our transcriptomic age predictor
complements the existing epigenetic prediction models, and can
be used by others to calculate transcriptomic age in external
cohorts.

Results
1,497 genes differentially expressed with chronological age.
The discovery stage included six European-ancestry studies
(n¼ 7,074 samples) with whole-blood gene expression levels for
roughly half of the genes in the human genome (n¼ 11,908
significantly expressed genes across different platforms). We
identified 2,228 genes with age-associated expression in the
discovery stage (Po4.2E� 6) after adjusting for technical vari-
ables and confounding factors such as sex, cell counts and
cigarette smoking (Supplementary Fig. 1A). The replication stage
included 7,909 additional whole-blood samples, in which we
replicated association results for 1,497 genes (Po2.2E� 5). Dis-
covery and replication results were highly correlated (r¼ 0.972,
Supplementary Fig. 1B) and complete results are shown in
Supplementary Data 1. After meta-analysis of discovery and
replication stages, the expression levels of 897 genes were
negatively associated and 600 genes were positively correlated

with chronological age. The top 50 most significantly associated
genes are presented in Table 1.

Transferability of ageing transcriptome signatures. To examine
the generalizability of the results of our differential expression
meta-analysis, we tested whether the 1,497 identified genes were
also differentially expressed in relation to chronological age in
other ancestry samples, in brain tissue, and in specific blood sub-
cell-types (Supplementary Data 1). In Native Americans
(n¼ 1,457), 95% of the 1,497 genes were significantly expressed,
and 71% (1,005 genes) were associated with chronological age
(Po0.05). In Hispanic Americans (n¼ 1,244), 40% of the 1,497
genes were significantly expressed, and 74% (440 genes) were
associated with chronological age in the same direction (Po0.05).
In African Americans (n¼ 359), 99% of the genes were
significantly expressed, and 27% (392 genes) were associated
with chronological age in the same direction (Po0.05)
(Supplementary Table 1).

In both types of brain tissue studies (cerebellum and frontal
cortex, n¼ 394), approximately 58% of the 1,497 genes were
significantly expressed. Of these, 19% (163 genes) and 26% (229
genes) were associated with chronological age in the same
direction (Po0.05) in cerebellum and frontal cortex, respectively
(Supplementary Table 2, Supplementary Fig. 2, and
Supplementary Table 3). Among the top 50 age-associated genes,
three genes were associated with chronological age in all tissues:
SERPINE2, LDHB and BZW2 (Po0.05; Supplementary Data 2).

Novel and known age-associated genes and pathways. To
differentiate between changes caused by cell composition and
other biological mechanisms, we clustered genes based on co-
expression networks in GeneNetwork (see Methods) and per-
formed pathway analysis on the clusters of co-expressed genes.
Among the negatively age-correlated genes, three major clusters
were identified (Fig. 1a, Supplementary Data 3A–M). The largest
group (cluster #1, 109 genes) consisted of three sub-clusters
enriched for: (1a) RNA metabolism functions, ribosome biogen-
esis and purine metabolism; (1b) multiple mitochondrial and
metabolic pathways including 10 mitochondrial ribosomal pro-
tein (MRP) genes consistent with earlier ageing studies in mice,
Caenorhabditis elegans25 and Drosophila melanogaster26–28; and
(1c) DNA replication, elongation and repair, and mismatch
repair26. The second cluster of negatively correlated genes (cluster
#2, 57 genes) contained factors related to immunity; including
T- and B-cell signalling genes, and genes involved in
hematopoiesis. The third tight cluster (cluster #3) included 12
genes, of which 11 encoded cytosolic ribosomal subunits: 7 RPL-
genes (RPL8, RPL11, RPL18, RPL28, RPL30, RPL35 and RPL36), 3
RPS-genes (RPS14, RPS16 and RPS29) and UBA52 (ribosomal
protein L40). The other gene of the cluster (#12) was NACA, a
nascent polypeptide-associated complex alpha subunit. The
protein encoded by the NACA gene forms the nascent
polypeptide-associated complex (NAC), which binds to nascent
proteins as they emerge from the ribosome29. Strikingly, the
mRNA abundance of many genes encoding ribosomal subunits
and mitochondrial ribosomal proteins were significantly
associated with chronological age: 34 ribosomal genes were
significantly associated, of which 33 were negatively correlated
with chronological age (Supplementary Table 4), and 10 MRP
genes were significantly negatively correlated with chronological
age (Supplementary Table 5).

The positively age-correlated genes revealed four major clusters
(Fig. 1b, Supplementary Data 3N–V): cluster#1 (77 genes): innate
and adaptive immunity, cluster#2 (9 genes): actin cytoskeleton,
focal adhesion, and tight junctions, cluster#3 (8 genes): fatty acid
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metabolism and peroxisome activity and cluster#4 (6 genes):
lysosome metabolism and glycosaminoglycan degradation.

For both brain tissue studies, we checked the number (and %)
of overlapping age-associated genes for the different functional
clusters: 24 genes (11.7% of the genes expressed in cerebellum)
and 33 genes (of the genes expressed in frontal cortex) of all
pathway genes (278 genes) were associated with chronological age
(Supplementary Tables 6 and 7). In cerebellum, the best
replicating pathway was the positively age-correlated cluster #4:

lysosome metabolism and glycosaminoglycan degradation. In
frontal cortex, the best-replicating pathway was the positively age-
correlated cluster #2: actin cytoskeleton, focal adhesion and tight
junctions.

Associations with prior ageing candidate genes. We investigated
the intersection between genes significantly associated with
chronological age in our study and candidate genes from previous

Table 1 | Top 50 age-associated genes.

Discovery Replication Meta-analysis Generalization

Gene Rank Z-score P-value Z-score P-value Number of samples Z-score P-value Cerebellum Frontal Cortex

CD248 1 � 32.48 2.32E� 231 �40.13 4.07E� 352 15,266 � 51.46 1.62E� 577 NA NA
LRRN3 2 � 29.12 2.03E� 186 � 33.55 7.81E� 247 15,266 �44.38 3.53E�430 N Y (� )
NELL2 3 � 23.65 1.18E� 123 � 23.48 6.93E� 122 15,266 � 33.31 2.67E� 243 N Y (� )
LEF1 4 � 22.18 5.57E� 109 � 22.46 9.38E� 112 15,266 � 31.56 1.22E� 218 NA NA
CCR7 5 � 21.14 3.59E�99 � 22.44 1.48E� 111 15,266 � 30.83 1.04E� 208 NA NA
ABLIM1 6 � 22.32 2.34E� 110 � 20.73 1.71E� 95 15,266 � 30.41 4.41E� 203 N Y (þ )
GZMH 7 18.68 7.03E� 78 20.97 1.26E� 97 15,266 28.07 2.39E� 173 NA NA
MYC 8 � 18.96 3.36E�80 � 19.51 9.94E� 85 15,266 � 27.20 5.96E� 163 NA NA
CD27 9 � 17.65 1.07E�69 � 20.68 5.13E� 95 15,266 � 27.15 2.76E� 162 NA NA
FAM102A 10 � 19.46 2.24E�84 � 18.68 7.11E� 78 15,266 � 26.95 5.68E� 160 N Y (þ )*
SERPINE2 11 � 16.08 3.71E� 58 � 20.95 1.91E�97 14,385 � 26.34 7.66E� 153 Y (� ) Y (� )**
SLC16A10 12 � 20.39 2.29E�92 � 16.51 3.15E�61 13,809 � 26.15 1.00E� 150 Y (þ ) Y (� )
FCGBP 13 � 15.76 5.50E� 56 � 20.83 2.49E�96 15,266 � 25.95 1.65E� 148 NA Y (þ )*
GPR56 14 17.52 9.47E� 69 19.02 1.21E�80 15,266 25.86 2.03E� 147 NA NA
BACH2 15 � 17.82 4.64E� 71 � 17.75 1.85E� 70 15,266 � 25.14 1.71E� 139 N NA
SYT11 16 17.23 1.72E� 66 18.23 3.24E� 74 15,266 25.08 8.82E� 139 Y (� ) Y (� )
PDE9A 17 � 17.21 2.22E� 66 � 18.20 5.44E� 74 15,266 � 25.05 1.91E� 138 N N
NG 18 � 17.01 7.41E�65 � 17.52 9.87E� 69 15,266 � 24.42 1.16E� 131 NA NA
FLNB 19 � 15.78 4.26E� 56 � 18.61 2.87E� 77 15,266 � 24.36 4.94E� 131 N Y (þ )**
NT5E 20 � 17.45 3.29E�68 � 16.59 8.23E�62 15,039 � 24.06 6.98E� 128 NA NA
FGFBP2 21 17.45 3.51E� 68 15.79 3.51E� 56 15,266 23.47 8.43E� 122 NA NA
TGFBR3 22 15.00 7.73E� 51 17.66 9.15E� 70 15,266 23.13 2.41E� 118 N Y (þ )*
ITM2C 23 � 14.41 4.24E�47 � 17.73 2.45E� 70 15,266 � 22.78 7.22E� 115 N N
ATF7IP2 24 � 15.52 2.73E� 54 � 16.61 5.85E� 62 15,266 � 22.73 2.34E� 114 NA Y (� )*
CR2 25 � 16.29 1.10E� 59 � 15.85 1.51E� 56 15,266 � 22.71 3.49E� 114 NA NA
FAIM3 26 � 17.92 8.65E� 72 � 14.22 7.40E�46 15,266 � 22.65 1.41E� 113 NA NA
PHGDH 27 � 13.25 4.56E�40 � 18.30 8.10E� 75 15,266 � 22.39 4.85E� 111 N Y (þ )*
LDHB 28 � 15.63 4.33E� 55 � 15.96 2.42E� 57 15,266 � 22.34 1.55E� 110 Y (� )* Y (� )**
SIRPG 29 � 15.64 4.16E� 55 � 15.45 7.71E� 54 15,266 � 21.97 5.58E� 107 NA NA
FCRL6 30 13.29 2.83E�40 17.65 9.90E� 70 15,266 21.95 9.70E� 107 NA NA
PDE7A 31 � 15.58 9.40E� 55 � 15.37 2.68E� 53 15,266 � 21.88 4.42E� 106 NA NA
NSIP 32 � 14.44 3.12E�47 � 16.19 5.74E� 59 15,266 � 21.68 3.13E� 104 N N
PAICS 33 � 16.00 1.26E� 57 � 14.34 1.29E�46 15,266 � 21.42 9.39E� 102 N Y (þ )**
BZW2 34 � 14.93 2.19E� 50 � 15.18 4.55E� 52 15,266 � 21.29 1.42E� 100 Y (� )** Y (� )**
OXNAD1 35 � 15.59 9.09E� 55 � 14.32 1.71E�46 15,266 � 21.12 5.66E�99 NA NA
CX3CR1 36 14.09 4.14E�45 15.66 3.04E� 55 14,385 21.07 1.67E� 98 NA NA
SCML1 37 � 14.00 1.58E�44 � 15.69 1.92E� 55 15,266 � 21.01 5.02E� 98 NA NA
RPL22 38 � 14.91 3.03E� 50 � 14.79 1.79E�49 15,266 � 20.99 8.61E� 98 N Y (� )**
LDLRAP1 39 � 14.57 4.19E�48 � 14.82 1.15E�49 15,266 � 20.78 6.69E�96 N NA
RHOC 40 12.89 4.89E� 38 15.93 3.71E� 57 15,266 20.43 8.94E� 93 N Y (þ )
LTB 41 � 14.90 3.55E� 50 � 14.02 1.11E�44 15,266 � 20.43 9.52E� 93 NA NA
FAM134B 42 � 15.17 5.88E� 52 � 13.43 3.96E�41 15,266 � 20.19 1.31E� 90 N N
LBH 43 � 14.18 1.29E�45 � 14.22 7.04E�46 15,266 � 20.07 1.28E� 89 NA Y (� )**
PRSS23 44 14.07 5.76E�45 14.07 6.25E�45 15,266 19.89 5.11E� 88 NA NA
SUSD3 45 � 14.26 4.01E�46 � 13.91 5.30E�44 14,385 � 19.87 6.90E� 88 NA NA
PIK3IP1 46 � 14.93 2.02E� 50 � 13.13 2.16E� 39 15,266 � 19.81 2.58E�87 Y (þ )* Y (þ )**
MFGE8 47 � 12.46 1.23E� 35 � 15.34 4.09E� 53 15,266 � 19.70 2.06E� 86 N N
AGMAT 48 � 13.77 4.14E�43 � 14.09 4.34E�45 15,266 � 19.70 2.31E� 86 NA NA
NKG7 49 14.43 3.17E�47 13.42 4.53E�41 15,266 19.67 3.67E�86 NA NA
PPP2R2B 50 13.49 1.81E�41 14.26 4.19E�46 15,266 19.63 9.40E�86 Y (� )* Y (� )

NA, not expressed.
For the 50 most significant age-associated genes, the discovery P-value (and Z-score), the replication P-value (and Z-score), and the meta-analysis P-value (and sample size and Z-score) are shown. The
last two columns display whether the genes were also significantly associated with age in the brain tissues cerebellum and frontal cortex.
Y¼ Po0.05; Y*¼ Po0.01; Y**¼ Po0.0001; N¼ PZ0.05; (� ) or (þ ) gives the direction of the effect with age.
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human and animal studies (170 genes, see Supplementary
Tables 8 and 9). Thirty-three of the 170 candidate genes were
significantly associated with chronological age in our whole blood
meta-analysis, including members of the mTOR/FOXO pathways
(FOXO1, VEGFB, EIF4G3, SREBF1, STAT3 and RPS6KB1)30,
DNA repair (ATM)31, and prior multispecies candidates (LDHB,
IGJ, IRF8and FCGR1A). Twenty-eight of the 33 significant age-
associated genes (B85%) have the same expression directionality
in our CHARGE meta-analysis as previously reported in a variety
of studies in humans and other model organisms.

Premature ageing syndrome genes ATM (ataxia-telangiectasia),
DKC (dyskeratosis congenita) and WRN (werner syndrome) all
exhibited lower transcript abundance in older individuals,
concordant with loss-of-function alterations in disease-related
mutations. On the basis of the co-expression analyses, these genes
clustered together with genes encoding proteins involved in DNA
and RNA metabolism, DNA repair, and purine/pyrimidine
metabolism. The Hutchinson–Gilford progeria gene LMNA

showed higher mRNA levels in the elderly, consistent with earlier
findings in muscle32, and clustered with actin remodelling genes.

Methylation association patterns for top age-associated loci.
Given the possible role of the methylome in ageing, we investi-
gated whether age-associated methylation accompanied age-
associated expression for the 1,497 age-associated genes. We
analysed methylation of 135,230 CpG sites (regions of DNA
where a cytosine nucleotide occurs next to a guanine nucleotide)
in or near (±250 kb) the age-associated genes in whole blood or
peripheral blood mononuclear cells (PBMCs) from seven cohorts
(N¼ 3,073). We chose CpGs in a 250 kb vicinity because earlier
studies have shown that methylation can regulate gene expression
levels at this distance33, and that long-range enhancer activities
are present and actively regulate gene expression at a wide scale34.
We observed significant associations between methylation and
chronological age for 31,331 CpG sites, and between expression
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b. Genes upregulated with ageing

Figure 1 | Pathway analysis on the clusters of co-expressed genes. We ran a co-functionality network analysis on 897 downregulated genes with age

(negative effect direction) and 600 upregulated genes with age (positive effect direction) using GeneNetwork. With a correlation threshold of 0.7, we

selected all clusters bigger than four genes and ran per-cluster pathway analyses using KEGG, Reactome, and GO-terms in WEBGESTALT. Benjamini &

Hochberg FDR was used for multiple testing corrections. The significant threshold 0.05 after correction for multiple testing was applied. (a) Three clusters

of downregulated genes with age and (b) four clusters of genes upregulated with age were enriched for functional pathways in KEGG, Reactome, and GO

terms; the specific pathways are mentioned next to the (sub)cluster names.
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and methylation for 12,280 CpG sites, based on a conservative
Bonferroni threshold (Po3.7E� 7) (top results for each gene in
Supplementary Data 4). In all, 1,248 of the 1,497 age-associated
genes (83%) had Z1 significant mediating CpGs and the number
of significant mediating CpGs per gene ranged from 1 to 154
(Supplementary Data 4).

To test whether the age-associated genes were enriched for
nearby CpG methylation sites associated with chronological age
or expression, we performed a similar analysis for a set of 1,497
randomly selected genes matched for similar gene length and
mean whole blood expression (see Methods and Supplementary
Fig. 3A–D). Compared to the set of random genes, age-associated
genes had only mild enrichment for CpG methylation sites
associated with chronological age (Fig. 2a; odds ratio (OR)¼ 1.04;
95% confidence interval (CI)¼ 1.02–1.06; P¼ 7.9E� 5), but
strong enrichment for CpG methylation sites associated with
expression (Fig. 2b; OR¼ 2.68; 95% CI¼ 2.58–2.78;
Po1E� 300). This pattern was consistent across all cohorts
(Supplementary Fig. 4) and within subsets of CpG methylation
sites annotated to specific biological features (that is, enhancer
regions, promoter regions, CpG islands and so on.)
(Supplementary Fig. 5), and was robust to the entire range of
significance thresholds (see Methods). This is consistent with a
scenario where many methylation sites associate with chronolo-
gical age, but only those with regulatory potential lead to altered
transcript expression with chronological age.

We used Sobel tests (see Methods) for all CpG methylation sites
to investigate whether the observed patterns could potentially
reflect a methylation-mediated relationship between chronological
age and transcript levels. In total, 1,248 of the 1,497 age-associated
genes (83%) had Z1 CpG site with a significant Sobel test after
Bonferroni adjustment for the number of CpGs tested
(Supplementary Data 4). These potentially mediating CpG sites
were less likely to reside in CpG islands (OR¼ 0.28; 95%
CI¼ 0.26–0.30; Po1E� 300) or in promoters (OR¼ 0.38;
95%CI¼ 0.36–0.40; Po1E� 300) and more likely to be located
in enhancers (OR¼ 2.29; 95%CI¼ 2.17–2.41; P¼ 2.7E� 188) and
insulators (OR¼ 1.44; 95% CI¼ 1.23–1.67; P¼ 6.6E� 6), com-
pared with non-mediating CpGs within 250 kb of age-associated
genes (Supplementary Fig. 6). This pattern is again consistent with
the mediation of age-associated transcripts by age-associated
methylation of CpG sites with specific regulatory roles.

Transcriptomic age prediction as a surrogate biomarker. All
11,908 discovery genes were used to build a predictor for age
using a leave-one-out-prediction meta-analysis (see Methods).
For each cohort in turn, we left out that cohort as the validation
sample and re-ran the discovery meta-analysis on the other
cohorts to avoid overlap between the discovery and validation
sample (Supplementary Data 5A). The difference between the
predicted transcriptomic age and chronological age (delta age)
may be a reflection of altered biological age (see Methods). The
correlation between chronological age and transcriptomic age was
significant in all cohorts (Po2E� 29; Fig. 3a–h). The average
absolute difference between predicted age and chronological age
was 7.8 years (n¼ 8,847 samples, Supplementary Table 10). A
positive delta age, interpreted as reflecting more rapid biological
ageing, was consistently associated with higher systolic and dia-
stolic blood pressure, total cholesterol, HDL cholesterol, fasting
glucose levels and body mass index (BMI) (Table 2,
Supplementary Table 11). All analyses were adjusted for
chronological age, and after adjustment for BMI all phenotypes
remained associated in the same direction (Table 2,
Supplementary Table 12). For systolic blood pressure, the added
predictive value of the transcriptomic predictor over chron-
ological age is shown for the Rotterdam Study (Fig. 4a–c). Other
phenotypes showed the same pattern.

We compared our transcriptomic predictor with two already
published epigenetic predictors of age of Horvath23 and Hannum
et al.24 in 1,396 individuals from the KORA study and the
Rotterdam Study, all having gene expression levels and
methylation data available. The transcriptomic predictor was
less strongly correlated with chronological age than the two
epigenetic predictors (Supplementary Fig. 7), which can be
explained by the different data types used: we used gene
expression data instead of DNA methylation data.

Transcriptomic age and epigenetic age (both Hannum and
Horvath) were positively correlated, with r2 values varying
between 0.10 and 0.33 (Supplementary Fig. 7). Interestingly, all
three age predictors were associated with different ageing
phenotypes (Supplementary Tables 13 and 14), that is, the
transcriptomic predictor was significantly associated with systolic
blood pressure, waist-hip-ratio, and smoking; the epigenetic
Horvath predictor was associated with waist-hip-ratio only; and
the epigenetic Hannum predictor was associated with fasting
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Figure 2 | Age-associated genes are enriched for the presence of potentially functional methylation sites. (a) Quantile–quantile (QQ) plot of the

observed P-values (� log10P) for the methylation–age associations. The plot in black shows pvalues from the 1,497 significant age-associated genes,

whereas the plot in red shows pvalues for 1,497 random genes. We do not see enrichment for the 1,497 age-associated genes. (b) QQ plot of the observed

P-values (� log10P) for the expression–methylation associations. The plot in black shows P values from the 1,497 significant age-associated genes,

whereas the plot in blue shows pvalues for 1,497 random genes. The age-associated genes are enriched for CpG methylation sites that associate with gene

expression levels.
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glucose, waist-hip-ratio and smoking (all analyses were adjusted
for chronological age, sex and BMI). By adding two predictors
into one formula (one transcriptomic predictor and one
epigenetic predictor), both predictors added value (significant
effect) to the phenotype associations, that is, for waist-hip-ratio in
KORA (explained variance transcriptomic predictor¼ 0.015%,
Horvath predictor¼ 0.005%, Hannum predictor¼ 0.006%;
transcriptomicþHorvath¼ 0.017% and transcriptomicþ
Hannum¼ 0.016%) (Supplementary Tables 15 and 16).

Discussion
Age-associated changes in gene expression levels point towards
altered activity in defined age-related molecular pathways that
may play vital roles in the mechanisms of increased susceptibility
to ageing diseases. In contrast to earlier, smaller studies17–21 of
human age-related molecular differences, we detected and
replicated 1,497 age-associated genes in 14,983 individuals of
European ancestry. In addition, many of our associations were
generalized across different ancestries and multiple cell and tissue
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Figure 3 | Transcriptomic age versus chronological age. This figure represents the correlations between chronological age (x axis) and transcriptomic age

(y axis) in eight different cohorts: (a) RS-III, (b) DILGOM, (c) KORA, (d) InCHIANTI, (e) SHIP-TREND, (f) FHS-OFFSPRING, (g) NIDDK/PHOENIX and (h)

EGCUT. Transcriptomic age was calculated using a cohort-specific prediction formula and the measured gene expression levels of 11,908 genes. The

correlation between chronological age and transcriptomic age was significant in all cohorts (Po2E� 29).

Table 2 | Meta-analysis of associations between transcriptomic Dage with twelve biological ageing phenotypes.

Adjusted for chronological age Adjusted for chronological ageþBMI

Phenotype of Interest Z-score P-value Direction N Z-score P*-value Direction N

Sex: 0¼male, 1¼ female � 2.7610 5.76E�03 � � þ � � þ � þ 8,836 0.7500 4.53E�01 � � þ þ þ � � þ 8,829
Systolic bloodpressure: mm Hg 9.8510 6.78E� 23 þ þ þ þ þ þ þ þ 8,571 9.3740 6.97E� 21 þ þ þ þ þ þ þ þ 8,564
Diastolic bloodpressure: mm Hg 7.7200 1.16E� 14 þ þ þ þ þ þ þ þ 8,568 6.8020 1.03E� 11 þ þ þ þ þ þ þ þ 8,561
Total cholesterol levels: mmol l� 1 5.4190 5.99E�08 þ þ þ þ þ � þ þ 8,688 4.6370 3.53E�06 þ þ þ þ þ � þ þ 8,681
HDL cholesterol levels: mmol l� 1 4.4630 8.07E�06 þ þ þ þ þ � þ � 8,687 5.8310 5.52E�09 þ þ þ þ þ � þ þ 8,680
Fasting glucose levels: mmol l� 1 6.9330 4.11E� 12 þ þ þ þ þ þ ?? 7,330 5.8920 3.82E�09 þ þ þ þ þ þ ?? 7,323
BMI: kg m� 2 5.3860 7.21E�08 þ þ þ þ þ þ þ þ 8,829 NA NA NA NA
Waist hip ratio 3.3800 7.25E�04 þ þ ??þ þ þ þ 4,837 1.9370 5.27E�02 þ þ ??þ þ þ þ 4,837
Hand grip strength: kg � 1.5120 1.31E�01 þ þ ?� ???? 3,651 � 1.1760 2.40E�01 þ þ ?� ???? 3,651
Renal function 0.8740 3.82E�01 þ þ þ � þ ?� ? 7,317 �0.4890 6.25E�01 þ þ þ � þ ?� ? 7,310
Mini mental state exam score � 1.3130 1.89E�01 � � ?????? 1,492 � 1.3810 1.67E�01 � � ?????? 1,492
Current smoking: 0¼ no, 1¼ yes 5.5100 3.59E�08 þ � ?þ þ þ � � 7,379 3.2040 1.36E�03 � � ?þ þ þ � � 7,379

BMI, body mass index; NA, not available.
We tested whether the transcriptomic delta age was associated with twelve biological phenotypes known to be associated with chronological age. Gene expression levels were adjusted for plate ID, RNA
quality score, fasting state, sex, smoking status and cell counts. Association results of all cohorts were meta-analysed. After adjustment for chronological age and BMI (right columns), systolic blood
pressure, diastolic blood pressure, total cholesterol levels, HDL cholesterol levels, and fasting glucose levels were significantly positively associated with the delta age (Po4.17E� 3). Samples predicted to
be older (positive delta age) consistently had higher levels for these ageing phenotypes.
Delte age¼ transcriptomic age� chronological age; þ Z-score¼ increasing phenotype with higher predicted age; � Z-score¼ decreasing phenotype with higher predicted age;
*if Po(0.05/12¼4.17E� 3), significance has been reached.
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types. Because we had much smaller sample sizes for both brain
tissue (n¼ 394) and the other ancestry groups (1,244 Hispanic
Americans, 1,457 Native Americans, and 359 African
Americans), we used a nominal P-value threshold (Po0.05) in
these specific sub-analyses. Larger sample sizes will ultimately be
needed to fully understand the transferability of the ageing-
transcriptome signatures.

A potential limitation of our study is that we relied on a linear
regression model to identify age-associated genes. A linear model
assumes constant change over age, which may not be always
correct in biological processes that stretch over several decades
(adulthood). A recent study demonstrated that a quadratic
regression model has a higher statistical fit to cross-sectional gene
expression datasets over linear models35. Although we chose to
apply a linear regression model in our study, we recognize that
more complex models could be investigated in future studies.

Our human age-expression and pathway enrichment analysis
results were consistent with known ageing mechanisms including

dysregulation of transcription and translation, metabolic func-
tion, DNA damage accumulation, immune senescence, ribosome
biogenesis and mitochondrial decline. Houtkooper et al.25,
McCarroll et al.26 and Landis et al.27 highlighted the key role
of mitochondria in ageing and longevity in model organisms.
Mitochondria regulate a multitude of different metabolic and
signalling pathways and also play an important role in
programmed cell death36. The number of mitochondria
decreases and their capacity to produce energy is reduced with
chronological age37–39. Consistent with these reports, a large
number of mitochondrial ribosomal proteins (MRPL24, MRPL3,
MRPL35, MRPL45, MRPS18B, MRPS26, MRPS27, MRPS31,
MRPS33 and MRPS9) showed lower expression at higher
chronological age in our study, supporting the hypothesis that
age-dependent mitochondrial dysfunction plays a causal role in
human ageing.

The large immune function associated clusters (cluster #2 and
cluster #1 of the negatively and positively correlated genes,
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Figure 4 | The added value of the transcriptomic predictor. To show the added value of the transcriptomic predictor, we choose one biological ageing

phenotype systolic blood pressure (SBP), and plotted its correlation with chronological age (a), delta age (b) and the transcriptomic age (c) in the

Rotterdam Study (n¼ 597 samples with SBP data available). Delta age represents the difference between chronological age and transcriptomic age. SBP

was plotted on the y axis, and the age-related values were plotted on the x axes. SBP was significantly associated with chronological age (P¼4.0E�04),

but SBP was even stronger associated with transcriptomic age (calculated with a cohort-specific prediction formula based on gene expression levels)

(P¼8.7E�09), Therefore, the transcriptomic predictor adds value over chronological age alone. Other biological ageing phenotypes showed the same

pattern.
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respectively) reflect immune senescence. The relative abundance
of immune cells in whole blood shifts with ageing, with naive
T cells decreasing and highly differentiated effector and memory
T cells increasing with chronological age28,40–44. Consistent with
immune senescence, the mRNA abundance of the chemokine
receptor CCR7 and cell differentiation antigens CD27 and CD28
was lower in older individuals (P¼ 1.0E� 208, P¼ 2.8E� 162,
and P¼ 5.8E� 59). Notably, these results were consistent in
many of the blood sub-cell-types. For example, CCR7 was lower
in older individuals across multiple cell types including CD4þ
cells (P¼ 1.0E� 08), CD8þ cells (P¼ 3.0E� 15), CD14þ cells /
monocytes (P¼ 8.5E� 3), and PBMCs (P¼ 3.0E� 3). This
suggests that genes in the immune associated clusters reflect a
biological function related to a more general ageing phenotype , at
least in multiple immune cell types, and are not solely
accountable to cell-count differences. We also note that cell
subset classification is to a greater or lesser extent artificial,
reflecting our current ability to distinguish cells based on specific
small sets of available markers. Accepted subpopulation of cells
can often be further broken down into additional subgroups as
the tools for such classification become more sophisticated. The
analysis of unfractionated cell populations (such as our study)
adds a layer of complexity to the interpretation, but is not
necessarily less informative than the analysis of marker defined
subpopulations.

Aside from the immune clusters, we identified and newly
emphasized pathways associated with human ageing, for example,
glycosaminoglycan degradation and actin remodelling. These
pathways have previously been implicated in life span regulation
of the model organisms C. elegans and D. melanogaster45–47.
Glycosaminoglycans (GAGs) influence cell migration,
proliferation and differentiation and play a role in wound
healing48,49. Impaired degradation of GAGs in extreme lysosomal
storage disorders lead to chronic, progressive effects on a variety
of organs and physiologic systems50. Tissue repair and
regeneration are known to be impaired in the elderly and
inhibition of GAG degradation may be therapeutic in these
contexts51. Our findings suggest GAG degradation as a candidate
mechanism for the age-associated changes. The actin cytoskeleton
is a critical structural element in eukaryotic cells that is crucial in
mediating cell responses to both internal and external signals in
yeast52. Actin dynamics have clearly been linked to yeast
replicative ageing through both reactive oxygen species-
mediated apoptosis and through selective sequestration of
healthy mitochondria to new daughter cells during cell
division52,53. Our pathway analysis indicates that the actin
cytoskeleton may be similarly important in human ageing.
While much prior effort in targeting actomyosin dynamics has
been aimed at cancers, recent studies indicate that targeted
modulation of these systems could also have benefits in immune-
mediated pathologies48.

In addition to these novel candidate pathways, our 1,497 age-
associated genes contain genes in many pathways known to be
associated with ageing. Beyond the immune-related pathways, we
confirm an age-associated role for mitochondrial function54,
metabolic function12, ribosome biogenesis55, DNA replication,
elongation and repair56,57, focal adhesion58 and lysosome
metabolism59, and suggest a number of new potential age-
related targets within these pathways, including TTC27 (ribosome
biogenesis); CCDC34 (ribosomal cluster); ARHGAP15, DOCK10,
FAM129C, FCRLA, GIMAP7 and VPREB3 (T- and B-cell
signalling genes and genes involved in haematopoiesis); GZMH,
SAMD9L and TAGAP (innate and adaptive immunity). Of note,
overexpression of the full-length ARHGAP15 protein in COS-7
and HeLa cells resulted in an increase in actin stress fibres and
cell contraction, relating the newly ageing emphasized actin

remodelling pathway and the focal adhesion pathway in ageing to
immune cell changes60. Thus, by using co-expression networks,
we identified new genes and pathways that are likely important in
human ageing, opening new avenues of enquiry for future studies.

Age-related epigenetic changes have recently been examined
including a large study combining data across 7,844 non-cancer
samples from 82 individual data sets to define a set of age-
methylation clock genes. Only 35 of our 1,497 age-related genes
were found among the genes harbouring the 353 age-methylation
clock CpG sites reported by Horvath23, suggesting that our age-
associated genes may not be particularly enriched for age-
associated CpG methylation sites. To test this formally, we
analysed the DNA methylation sites (CpG sites only) within
250 kb (upstream and downstream) of all 1,497 age-associated
genes, as well as a comparison set of 1,497 randomly chosen
unassociated genes. We observed that the genes exhibiting age-
associated transcript levels in blood are much more likely than
other genes to harbour CpG methylation sites that associate with
expression levels, but are not substantially more likely to harbour
methylation differences in close CpG sites associated with
chronological age. These results suggest that genes showing age-
related expression differences are characterized primarily by the
presence of nearby CpG sites with regulatory potential, rather
than by the presence of age-associated CpG methylation sites,
which are abundant everywhere in the genome. A limitation of
our study is that we used the Illumina Infinium
HumanMethylation450K BeadChip Array for measuring
methylation levels: this array queries only 1.6% of all CpGs in
the genome and the CpG selection is biased towards CpG islands.
In addition, we did not examine non-CpG methylated sites,
which have recently been suggested to play a role in regulating
gene expression as well61. Other techniques—whole-genome
bisulfite sequencing62 and methylC-capture (MCC)
sequencing63, for example—have definite technical advantages
(higher resolution and no CpG island selection bias), but these
have currently not been applied to a large number of samples.

Although the CpG selection on the methylation array is biased
towards CpG islands, the CpG sites for which methylation was
associated with both expression and chronological age were
strongly enriched for enhancer activity. This is consistent
with the concept that methylation at enhancers is more variable
and may regulate gene expression in development64 and/or in
environmental responses, while promoter methylation is
comparatively stable. Interestingly, the age- and expression-
associated CpGs were also enriched at insulators, which function
to block the communication between an enhancer and a
promotor, thereby preventing inappropriate gene activation.
Taken together, these results suggest that the age-associated
genes reported here may be regulated by methylation of CpG sites
in specific functional regions, and that studying both methylation
and expression as potential joint effectors of the ageing process
may significantly improve the prediction of age and identification
of novel age-related genes and pathways.

Using gene expression levels as a predictive biomarker
indicated that individuals having higher predicted than chron-
ological age also have clinical features consistent with an older
age, such as higher blood pressure and total cholesterol levels.
Developing a strongly predictive gene expression set as a
biomarker panel has clinical potential to identify subjects at risk
for early biological ageing, and provide a tool for targeting
susceptible individuals for early intervention. It remains to be
seen whether the transcriptomic age can serve as a surrogate
marker to predict age-associated decline in other tissues. There-
fore, the development of a robust transcriptomic predictor for age
will require independent and prospective validation across
different tissues.
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We observed that both the transcriptomic predictor and the
epigenetic predictors were significantly associated with a number
of phenotypes, but that the pattern of association differed among
the predictors. Therefore, the transcriptomic age and the
epigenetic age should be combined to obtain the optimal
biological age prediction. A general transcriptomic prediction
formula has been calculated that is freely available
(Supplementary Data 5B). These results suggest that the
biological mechanisms behind the transcriptomic and the
epigenetic predictors are different. The exact mechanism of these
differences need further examination in larger sample sizes and
subgroup analysis were different diseases are studied. In addition,
the predictors need to be evaluated for their prognostic value. In
conclusion, gene expression levels are likely to become a valuable
addition to evolving indicators of age based on epigenetic and
telomeric age predictors. Ideally, a combination of transcriptomic,
epigenetic and telomeric elements could further improve and
refine age prediction.

In conclusion, we have identified a compendium of genes and
pathways associated with human chronological age. By leveraging
transcriptional information across large, multiethnic cohorts,
different tissue types and genomic repositories, we captured an
unprecedented overview of the complex and temporally dynamic
biological pathways orchestrating the ageing process. Our list of
genes should provide a rich trove of data for future ageing studies.
While the pursuit of an anti-ageing panacea in humans remains a
distant goal, our work has generated new biological hypotheses
and will serve as a roadmap for future studies aimed at translating
findings into treatment strategies for age-related diseases.

Methods
Study design. We performed a differential expression meta-analysis in 7,074
human peripheral blood samples from six independent cohort studies, including
EGCUT (n¼ 1,086), FHS—2nd generation (n¼ 2,446), INCHIANTI (n¼ 698),
KORA (n¼ 993), ROTTERDAM STUDY (n¼ 881), and SHIP-TREND (n¼ 970;
Supplementary Table 17). Gene expression data for each dataset was obtained
using either PAXGene (Becton Dickinson) or Tempus Tubes (Life Technologies),
followed by hybridization to Illumina Whole-Genome Expression BeadChips
(HT12v3 or HT12v4) or Affymetrix Human Exon 1.0 ST GeneChips.

We replicated the significantly associated transcripts in 7,909 peripheral blood
samples from seven independent cohort studies, including BSGS (n¼ 862),
DILGOM (n¼ 512), FEHRMANN (n¼ 1,191), FHS—3rd generation (n¼ 3,180),
GTP (n¼ 359), HVH (n¼ 121 on the Illumina HT12v3 platform and n¼ 227 on
the Illumina HT12v4 platform), and NIDDK/PHOENIX (n¼ 1,457)
(Supplementary Table 18). Gene expression data for these datasets was also
obtained using either PAXGene (Becton Dickinson) or Tempus Tubes (Life
Technologies), followed by hybridization to Illumina Whole-Genome Expression
BeadChips (HT8v2, HT12v3, or HT12v4 arrays) or Affymetrix Human Exon 1.0
ST GeneChips.

We generalized the significantly replicated transcripts in 4,644 samples with
other tissue types, including: CD4þ cells of EGCUT (n¼ 302) and a Boston
sample (n¼ 213), CD8þ cells of EGCUT (n¼ 299), CD14þ cells (or monocytes)
of a Boston sample (n¼ 213) and MESA (n¼ 354), LCLs of GENOA (n¼ 869),
lymphocytes of SAFHS (n¼ 1,244), PBMCs of GARP (n¼ 134) and PMBC-MS
(n¼ 228), and brain tissue (cerebellum and frontal cortex) of NABEC-UKBEC
(n¼ 394) (Supplementary Table 19). Gene expression data of these data sets was
obtained by tissue specific RNA isolation and hybridization to Illumina Whole-
Genome Expression BeadChips (WG6v1, HT12v3 or HT12v4), Affymetrix Human
Exon Arrays, or Affymetrix Human Gene Arrays.

The study outline is summarized in Supplementary Fig. 8. The study populations,
the RNA isolation methods, the amplification and labelling methods and the array
types used for each study are described in the Supplementary Methods. The
covariates used in each study are presented in Supplementary Tables 17–19.

Phenotype. Chronological age was defined as the length of time in years between
birth and blood draw, using two decimals. Detailed descriptions of the chron-
ological age distributions, fasting status and the available covariates from the
participating cohorts are presented in Supplementary Tables 17–19 and
Supplementary Fig. 9A–V.

Illumina pipeline: gene expression probes and normalization procedure. The
different Illumina platforms used by the different cohorts share a large number of

probes with identical 50-mer probe sequences. Therefore, we harmonized the
probes across the HT12-v3 and the HT12-v4 platforms by determining the probe
sequences from the different annotation files for each platform; renumbering the
probes on the basis of unique probe sequences. In total, we identified 56,330 unique
Illumina probes (11,453 probes measured only on the HT12-v3 platform, 7,529
probes measured only on the HT12-v4 platform, 37,348 probes measured on both
platforms). Genes were declared significantly expressed in the discovery data when
(1) the detection P-values calculated by GenomeStudio were o0.05 in 410% of all
discovery samples and (2) the probes were measured in at least two cohorts. This
resulted in 23,170 transcripts considered as being significantly expressed in our
Illumina discovery; these transcripts code for 15,639 well characterized unique
genes. 3,484 genes have more than one Illumina probe on the HT12 platform.
Illumina gene expression data was quantile normalized to the median distribution
and subsequently log2-transformed. The probe and sample means were centered
to zero.

Affymetrix pipeline: gene expression probes and normalization procedure.
The Affymetrix platform generated CEL files, containing both gene-based and
exon-based expression levels. We used the gene-based expression levels and nor-
malized the data using Affymetrix Power Tools: probes with RLE mean values
43.0 (range 1.34–12.71) were considered to be significantly expressed. This
resulted in 16,798 well characterized unique genes in the Affymetrix discovery.
Samples with all probeset RLE means 4 0.7 were defined as outliers and excluded
from further analysis. A genetic expression SNP analysis was undertaken to locate
mislabeled samples and reidentify them where possible with high confidence. After
exclusions and reidentification, the RMA normalization was repeated.

Differential expression with chronological age. All Illumina studies ran a least
squares linear regression model (lm) using the normalized and standardized gene
expression values as dependent variables, chronological age as an explanatory
variable and with adjustments for the potential confounders: sex (factor),
fasting and smoking status (both factors), plate origin (factor), RNA quality
(RIN/RQS) and cell counts (number of granulocytes, lymphocytes, monocytes,
erythrocytes and platelets), so:

lm gene expression� chronological ageþ confoundersþ batch effectsð Þ

The Affymetrix cohort ran a multivariate stepwise PC regression, using the
normalized and standardized gene expression values as dependent variables,
chronological age as an explanatory variable, and the significant technical
covariates: all_probeset_mean, all_probeset_stdev, neg_control_mean,
neg_control_stdev, pos_control_mean, pos_control_stdev, all_probeset_rle_mean,
all_probeset_mad_residual_mean, RNA quality (RIN), and RNA processing batch.
Batch was included in modelling as a random factor while all others were fixed
factors.

Meta-analysis of significantly expressed genes. We ran four separate meta-
analyses: one for the studies using the Illumina platforms in the discovery phase,
one for the Illumina discovery studies plus the FHS Affymetrix discovery results,
one for the replication sample combined, and one for the discovery samples plus
replication samples for validated results to re-rank the final results list. For these
meta-analyses, we used a sample size weighted meta-analysis based on P-values and
the direction of the effects; using P-values, a Z-statistic characterizing the evidence
for association was calculated. The Z-statistic summarized the magnitude and the
direction of the effect. An overall Z-statistic and P-value was calculated from the
weighted sum of the individual statistics. Weights were proportional to the square-
root of the number of individuals examined in each sample and standardized such
that the squared weights sum to 1.

We calculated the Z-scores and P-values using the Meta-Analysis Tool
for genome-wide association scans (METAL)65. METAL is a flexible and
computationally efficient command line tool that was developed for meta-
analyzing GWAS studies, but can easily be adapted to gene expression studies.
Because we are dealing with gene expression levels and not SNPs, we changed the
SNPID column to probe IDs and gave all probes a minor allele A and a major allele
G, a minor allele frequency¼ 0.10, and a þ strand. For the positions, the probe
chromosomes and the midpoint position of the probes were used. Sample sizes,
effect directions, and P-values were extracted from the linear model results files.
We extensively tested what input parameters to use for meta-analysing gene
expression data. By using similar allele names, allele frequencies, and allele strands
for all cohorts, we forced METAL to use the default meta-analysis approach. We
tested an inverse variance weighted meta-analysis (using the effect size estimates
and the standard errors), and found that our METAL meta-analysis results were
identical to the meta-analysis results using the R package Meta.

Meta-analysis of discovery samples. To calculate which genes are significantly
associated with chronological age, we ran a sample size weighted meta-analysis
based on P-values and the direction of the effects of the results of the Affymetrix
and the Illumina meta-analyses. Combining the 16,798 Affymetrix probes and the
15,639 Illumina probes, these platforms have 11,908 genes significantly expressed
in whole blood samples in common.
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Replication phase. Genes with a P-value o4.20E� 6 (0.05/11,908 genes tested)
were considered transcriptome-wide significantly associated with chronological
age. We replicated these findings in an additional 8,009 samples (Supplementary
Table 18). Replication cohorts used the same analysis plan and R-scripts as the
discovery phase, however, some covariates were not available in these cohorts and
ethnicities could be different than European-ancestry.

Meta-analysis of the replication cohorts. We meta-analysed the summary
statistics of the replication cohorts using METAL. Genes were considered
significantly replicating if Po2.23E� 5 (0.05/2,238 genes tested) and the overall
Z-score was in the same direction as the overall Z-score of the discovery
meta-analysis.

Meta-analysis of discovery and replication cohorts. We additionally performed a
meta-analysis based on the summary statistics of all discovery and all replication
cohorts and obtained two-sided P-values.

Generalization phase. To see whether our findings are specific for whole blood,
we tried to generalize our significantly replicating transcripts in samples of other
tissue types, including CD4þ cells, CD8þ cells, CD14þ cells (monocytes), LCLs,
lymphocytes, PBMCs and brain tissue (both cerebellum and frontal cortex;
Supplementary Table 19). If we had data of one tissue type of more than one
cohort, then we ran a meta-analysis based on the summary statistics of both
cohorts. Because sample sizes of these tissue types were very small, we considered
P-values o0.05 (with an identical effect direction) sufficient to document gen-
eralization of the effect.

Pathway analysis of significant genes. We used WEBGESTALT (http://bioin-
fo.vanderbilt.edu/webgestalt/analysis.php) and GeneNetwork (http://gene-
network.nl:8080/GeneNetwork/pathway_network.html) for pathway analysis of
age-associated transcripts. First, we ran the co-functionality network analysis
separately on 897 down-regulated genes and 600 up-regulated genes, using a
correlation threshold of 0.7. Of 897 downregulated genes, 192 formed cluster
groups at this threshold, and of 600 upregulated genes, 114 formed cluster groups.
We next re-ran the co-expression cluster analysis on these 192 and 114 genes, using
a correlation threshold of 0.65 to see if small clusters could be merged together if a
lower co-expression threshold was applied. We selected clusters with five and more
genes for pathway analysis; in total 178 and 100 down- and upregulated genes
respectively. On the basis of the clustering analysis, we performed per-cluster
pathway analysis. Pathways were selected using KEGG, Reactome and GO-terms.
In WEBGESTALT Benjamini & Hochberg FDR was used for multiple testing
corrections. The significant threshold 0.05 after correction for multiple testing was
applied.

Analysis of chronological age, methylation and expression. For 3,073 blood
samples with methylation data available from the Illumina 450 K array, we analysed
methylation for CpG sites within 250 kb of the 1,497 genes identified in the dif-
ferential expression meta-analysis. For this analysis we performed a new meta-
analysis of samples from seven cohorts including EGCUT (n¼ 82), InChianti
(n¼ 485), KORA (n¼ 735), Rotterdam Study (n¼ 726), BSGS (n¼ 610), GTP
(n¼ 315) and GARP (n¼ 120); all samples were derived from whole-blood except
for GARP (PBMCs). After filtering (to remove non-specific probes and probes with
SNPs in the probe target as documented by Price et al.66), 135,230 CpG sites within
250 kb of the 1,497 age-associated genes were eligible for analysis.

Within each cohort, we fit two linear regression models where we considered as
our dependent variable either standardized gene expression values for a particular
gene or methylation b-values, which are measures of the proportion of DNA
methylated within a sample, for a particular CpG site. In Model 1, we regressed
methylation b-values on chronological age. In Model 2, we regressed gene
expression on both methylation and chronological age. In both models we adjusted
for the following potential confounders as available in each cohort: sex, fasting and
smoking status (both modelled as categorical variables or factors), and cell counts
(number of granulocytes, lymphocytes, monocytes, erythrocytes and platelets). In
Model 1, where methylation was the dependent variable we adjusted for chip and
row on chip (both as factors). In Model 2, where the dependent variable was gene
expression we adjusted for plate origin (factor) and RNA quality (RIN/RQS). For
each of the age-associated genes, we fit these models separately for each CpG site
within 250 kb (upstream or downstream) of the gene.

To combine results from these models across cohorts, we performed a sample
size weighted meta-analysis based on the t-statistics from these models. For each
model, we calculated a Z-score as the weighted sum of t-statistics across the seven
cohorts. As above, weights were proportional to the square-root of the number of
individuals analysed in each cohort and selected such that the squared weights sum
to 1. To test for mediation of the age-expression relationship by methylation of a
particular CpG site, we used the Z-scores from Model 1 and Model 2 to perform a
Sobel test67, such that our Sobel Z-score was equal to:

SobelZ ¼ Z1Z2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

1 þZ2
2

q
ð1Þ

where Z1 is the meta-analysis Z-score from the association between methylation
and chronological age in Model 1, and Z2 is the meta-analysis Z-score from the
association between expression and methylation, adjusted for chronological age, in

Model 2. To assess overall significance for each model (Model 1, Model 2 and the
Sobel test), we used a Bonferroni-adjusted a-level of .05/135,230¼ 3.70� 10� 7 for
all CpG sites tested. To assess whether sites in each gene were significant, we
assessed Bonferroni significance for each gene according to the number of CpG
sites tested in that gene.

To test whether the genes were enriched for CpG sites associated with
chronological age in Model 1, or CpG sites associated with expression in Model 2,
we performed similar analyses on a set of 1,497 random genes. We chose these
genes by first selecting the 5,000 least-associated genes from the original age-
expression analysis. We then used the optmatch R package68 to select a subset of
1,497 random genes that were well-matched to the 1,497 age-associated genes in
terms of gene length (bp) and the log of mean expression in whole blood. By doing
this, we obtained a set of 1,497 random genes that were similar to the 1,497 age-
associated genes in distributions of gene length, mean expression, and number of
CpG sites within 250 kb (Supplementary Fig. 3A–D). We then performed the meta-
analysis for Models 1 and 2 for all eligible CpG sites (after filtering to remove sites
with probes that were non-specific or harboured genetic variants) within 250 kb of
these genes. We used Fisher’s exact test to test whether there was an increased
proportion of significant (Poa) CpG sites in each model in the age-associated
genes compared to the random genes. For our main enrichment test we set
a¼ 2.37� 10� 7 as in the original analysis but to ensure robustness we re-
performed the enrichment test for a wide range of a-levels, ranging from 10� 20 to
0.05, and observed that results were consistent for all a-levels considered.

To identify whether the mediating CpG sites were located in functionally
relevant regions, we took two main approaches. First, we intersected the CpG
positions with the hg19 CpG island annotation track from UCSC Genome Browser
(http://genome.ucsc.edu), to determine whether each site was located in a CpG
island, CpG shore (þ /� 1.5 kb from island) or CpG shelf (þ /� 1.5 kb from
shore). Second, we intersected the CpG positions with ENCODE’s ChromHMM
annotation for lymphoblastoid cell line GM12878, which uses a hidden Markov
model to assign genomic features based on the combinatorial pattern of various
chromatin marks69. The ChromHMM annotation allowed us to identify CpGs
located in promoters, enhancers and insulators. We then used Fisher’s exact test to
assess whether there was significant enrichment of each feature in mediating CpG
sites compared to other CpG sites within the 1,497 genes.

Query of candidate age-expression associated genes and pathways. A total of
204 candidate genes were identified from a variety of sources including Mendelian
ageing disorders, longevity genetics candidates11,12,70–72 and members of key
ageing pathways, mainly FOXO/mTOR, key DNA repair genes, regulators of
telomere maintenance, and mitochondrial ribosomal proteins12,25,71,73. Additional
candidates included those from past human or multispecies expression
studies74–76, and markers of naive or differentiated immune cells77. Animal model
gene names were translated to human homologue names. All genes and their
known human alias names were searched against the discovery and replication
results. Thirty-three genes were not tested due to lack of measurement or blood
expression below filtered levels. Most candidate genes (n¼ 126) were analysed but
did not meet the strict discovery thresholds to be carried forward to the replication
phase (Supplementary Table 9). Of 45 genes carried into replication, 33
convincingly replicated in whole blood (Supplementary Table 8).

Transcriptomic age prediction as surrogate biomarker. To investigate how
accurate biological age can be predicted from gene expression levels, we performed
a leave-one-out prediction analysis, that is, re-running the meta-analysis excluding
each of the validation cohorts. For all models, we used the standardized residuals of
the gene expression levels, which were obtained by adjusting the gene expression
levels for the technical covariates (RNA quality, batch effects) and some biological
covariates (sex, fasting status, smoking status and cell counts).

To predict age, we needed to have the estimated effect sizes of the gene
expression levels on chronological age (model 1: chronological age Bgene
expression). However, effect sizes from the meta-analysis were for chronological
age on gene expression levels (model 2: gene expression Bchronological age). We
used an equivalent transformation to convert the effect size in model 2 to that in
model 1 by the following equation:

bb ¼ zffiffiffiffiffiffiffiffiffiffiffiffi
nþ z2
p ; ð2Þ

where bb is the effect size of the gene expression level on chronological age
(model 1), based on standardized chronological age and standardized gene
expression levels, so that it needs to be interpreted in s.d. unit for both
chronological age and gene expression level; z is the z-statistic for association from
the meta-analysis; and n is the sample size. We then conducted an approximate
ridge regression analysis based on a random effect model, which is analogue to the
best linear unbiased prediction approach in mixed linear model analysis, to
estimate the effect sizes of all 11,908 genes jointly taking correlations between
probes into account. The random effect model can be written as:

y¼X bR þ e ð3Þ

where y is the vector of age phenotype and X is the matrix of gene expression level,
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bR is a vector of effects of gene expression on age with:

bR � N 0; Is2
b

� �
ð4Þ

and e is a vector of residual with:

e � N 0; Is2
e

� �
ð5Þ

In a ridge regression analysis, bR can be estimated as

b̂R ¼ ðX0Xþ IlÞ� 1X0y ð6Þ
where

l ¼ s2
e=s

2
b: ð7Þ

In a single probe based meta-analysis, the analysis is equivalent to:

bb ¼ D� 1X0y ð8Þ
where b is a vector of effect sizes estimated from the meta-analysis and D is the
diagonal matrix of X0X. If the gene expression level of each probe is standardized,
the ith diagonal element of D is:

Dii ¼ n ð9Þ
with n being the sample size. We therefore have

X0y ¼ Dbb ð10Þ
so that

bbR ¼ ðX0Xþ IlÞ� 1Dbb ¼ ðRþ Il=nÞ� 1bb ð11Þ
where R is the correlation matrix between probes. This method largely follows the
method that was proposed to estimate the joint effect sizes of SNPs using summary
data from GWAS and linkage disequilibrium between SNPs from a reference
sample78. We estimated bR using b̂ from the meta-analysis (excluding the
validation cohort) and probe correlation matrix R from reference samples (also
independent from the validation cohort).

We calibrated the parameter l using BSGS as the validation cohort (finding a l
value that maximized prediction accuracy in BSGS; Supplementary Fig. 10) and
applied it to the prediction analysis in the other validation cohorts (Supplementary
Data 5A). We call this an approximate method because the correlation matrix R
consisted of weighted averages (weighted by sample size) from up to six of the
discovery cohorts rather than all the samples pooled together. We applied the
estimates of the individual genes from the ridge regression analysis to the left-out
sample (validation sample) to predict age, and calculated the correlation coefficient
of chronological age and the predicted transcriptomic age (Fig. 3a–h).

Since the effect sizes of the probes were estimated from the meta-analyses
excluding the validation sample, the validation set is completely independent from
the discovery (training) set, so that the prediction accuracy is unbiased. We created
the predictor of an individual in the validation cohort as

Z ¼
X

i

xvðiÞb̂RðiÞ ð12Þ

with xv(i) being the gene expression level of ith probe in the validation cohort. We
scaled Z using the mean and s.d. of chronological age from the validation cohort:

SZ ¼ mage þ Z� mzð Þ� sage

sz
ð13Þ

where mage and sage are the mean and s.d. of chronological age from the validation
cohort, and mz and sz are the mean and s.d. of the predictor Z. Delta age was
defined as the difference between the scaled transcriptomic predicted age (SZ) and
chronological age for each individual.

We explored whether delta age was associated with any multi-systemic
biological parameter (or biomarker) of ageing, such as sex, blood pressure,
cholesterol levels, glucose levels, and so on. For all biomarkers used, outliers were
excluded from the analysis. Associations were tested using a linear model,
including the phenotype of interest as the outcome (the dependent variable) and
the delta age as the independent variable; all associations were adjusted for
chronological age. To overcome the effects of obesity on cardiovascular disease and
other traits, we additionally adjusted for BMI in a second model. In additional, we
tested whether the biological parameters were directly associated with
chronological age (Supplementary Table 20), so:

lm phenotype� chronological-ageð Þ ð14Þ

Transcriptomic age prediction for external cohorts. A general transcriptomic
predictor (Z) was generated which can be used by external researchers for future
purposes. This predictor was calculated using the prediction meta-analysis of all
cohorts (except BSGS on which we calibrated the l parameter; Supplementary
Fig. 10). Cohorts that have chronological age available should scale the predictor as
we did for the validation cohorts (equation (13)), using the mean and s.d. of
chronological age and the mean and s.d. of the predictor (Z).

To make our predictor useful to cohorts that do not have chronological age
available, we further transformed the predictor to a scaled transcriptomic predictor
(in years). This scaled predictor was calculated using the mean and s.d. of

chronological age from all discovery cohorts in the meta-analysis (equation (13)).
Since the individual level age data were not available, the s.d. of chronological age
was calculated using the pooled variance method (Supplementary Table 21).

The Transcriptomic Age Prediction (TRAP) webpage contains information on
how to calculate transcriptomic age based on data measured with the Illumina
HumanHT-12 (v3/v4) Gene Expression BeadChips or the Affymetrix Human Exon
(1.0 ST) Arrays. After uploading your gene expression data, the function will return
a text file whose rows report the estimated transcriptomic age of each subject. The
online Transcriptomic Age Predictor can be accessed at: https://trap.erasmusmc.nl/.
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