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Beyond GWASs: Illuminating
the Dark Road from Association to Function

Stacey L. Edwards,1,2,4,* Jonathan Beesley,1,4 Juliet D. French,1,2,4 and Alison M. Dunning3,4

Genome-wide association studies (GWASs) have enabled the discovery of common genetic variation contributing to normal and

pathological traits and clinical drug responses, but recognizing the precise targets of these associations is now the major challenge.

Here, we review recent approaches to the functional follow-up of GWAS loci, including fine mapping of GWAS signal(s), prioritization

of putative functional SNPs by the integration of genetic epidemiological and bioinformatic methods, and in vitro and in vivo experi-

mental verification of predicted molecular mechanisms for identifying the targeted genes. The majority of GWAS-identified variants fall

in noncoding regions of the genome. Therefore, this review focuses on strategies for assessing likely mechanisms affected by noncoding

variants; such mechanisms include transcriptional regulation, noncoding RNA function, and epigenetic regulation. These approaches

have already accelerated progress from genetic studies to biological knowledge and might ultimately guide the development of prog-

nostic, preventive, and therapeutic measures.
Introduction

Since the advent of high-density genotyping arrays,

researchers have used genome-wide associations studies

(GWASs) to identify over 1,000 loci associated with a

multitude of physiological traits.1 These studies exploit

the nonrandom coinheritance of genetic variants (linkage

disequilibrium [LD]) to simultaneously assay hundreds of

thousands of markers for an association with any given

trait.2 Given that the SNPs on genotyping chips are

‘‘tags’’ for haplotypes on which the directly functional

variants reside, the next major challenge lies in moving

from associated tag SNPs to finding the strongest candi-

date causal variants and then identifying their target

gene(s). We define a causal variant as one that influences

a molecular or cellular process to affect a human pheno-

type. Contrary to early expectations, few GWAS-identified

variants are predicted to disrupt protein-coding regions,

and approaches to determining their functional conse-

quences are reviewed elsewhere.3 The vast majority of

GWAS tag SNPs lie in intergenic or intronic regions

(approximately 88%1) and therefore are likely to influence

gene regulation (assuming that the same is true for the

correlated candidate causal SNPs). There are now a limited

number of studies that have pursued the function of

GWAS hits, some of which have been defined by fine map-

ping (Table 1). However, the relevance of those studies that

lack comprehensive fine mapping is questionable. Here,

we review recent approaches to post-GWAS fine mapping

and functional evaluation of noncoding variants. Our pro-

posed functional pipeline for the follow-up of GWAS loci

addresses the prioritization of putative functional SNPs

(Figure 1). We describe the integration of genetic data

and statistical analysis, computational approaches, and

the use of specific assays to determine the contribution
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of short-listed variants to the regulation of particular genes

and pathways.

Fine Mapping of Associated Loci

GWASs reveal associations between specific genomic loci

and genetic traits or diseases via a set of marker SNPs

designed to tag all known common variants in the

genome.21 Human history and ancestry have caused com-

plete segments of DNA, termed haplotype blocks, to be

shared within populations.22 A typical haplotype block is

illustrated in Figure 2B, where segments of correlated

SNPs are separated by recombination hot spots (the gaps

between the gray-scale triangular matrices). Patterns of

block structure differ between ethnic groups, and on

average, European-ancestry populations have more highly

correlated SNPs and longer haplotype blocks (Figure 2B,

top panel) than do populations of African or Asian

ancestry (Figure 2B, lower panels).23 It is possible to infer

which type of segment a person carries by typing selected

markers within each haplotype block, obviating the need

to type the majority of variants in the human

genome.2,23 Modern GWAS genotyping chips typically

contain 300,000–5,000,000 SNPs, chosen for their correla-

tion with, and thus ability to tag, as many other human

genetic variants as possible. GWAS tag SNPs are not

selected for having likely functional consequences, and if

any are subsequently recognized, this is simply serendipi-

tous. The conclusion that can be drawn at the end of a

successful GWAS is that one or more genetic variants

within the locus, marked by the associated tag SNP, must

have biological functions that drive the observed associa-

tion. In this review, we use the term ‘‘locus’’ to mean a

haplotype block containing both the GWAS tag SNP and

the directly causal variant (Figure 2).
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Table 1. Functional Genetic Variants and/or Target Genes Successfully Identified at GWAS Signals

Disease or
Phenotype Locus

Functional SNPs
or Regions Target Gene(s)

Fine
Mappinga Key Methods References

Low-density lipoprotein
cholesterol levels (MIM
605028)

1p13 rs12740374 SORT1 (MIM 602458) � eQTL, reporter assays,
EMSAs, mouse models

Musunuru et al.4

Fetal hemoglobin levels 2p16 rs1427407,
rs7606173

BCL11A (MIM 606557) � 3C, ChIP-seq, reporter
assays, transgenic mouse
models, allele-specific
expression, TALENs

Bauer et al.5

Chronic obstructive
pulmonary disease
(MIM 606963)

4q31 rs1542725 HHIP (MIM 606178) þþ 3C, ChIP, reporter assays,
EMSAs

Zhou et al.6

Prostate cancer
(MIM 176807)

5p15 rs12653946 IRX4 (MIM 606199) þþ eQTL, reporter assays, ChIP,
EMSAs

Nguyen et al.7

Breast cancer (MIM
114480), ovarian
cancer (MIM 167000)

5p15 breast and ovarian
cancer risk regions

TERT (MIM 187270) þþ FAIREs, reporter assays,
splicing assays

Bojesen et al.8

Colorectal cancer
(MIM 120435)

8q23 rs16888589 EIF3H (MIM 603912) þþ 3C, reporter assays, EMSAs,
allele-specific expression,
in vivo transgenic assays

Pittman et al.9

Colorectal cancer 8q24 rs6983267 c-MYC (MIM 190080) þ 3C, EMSAs, reporter assays,
allele-specific ChIP,
microarrays, transgenic
mouse models.

Tuupanen et al.,10

Wright et al.11

Prostate, breast, and
colorectal cancer

8q24 prostate, breast,
and colorectal
cancer risk regions

c-MYC � 3C, reporter assays, ChIP Ahmadiyeh et al.,12

Sotelo et al.13

CAD (MIM 608320) 9p21 rs10811656 or
rs10757278

CDKN2A (MIM 600160),
CDKN2B (MIM 600431),
MTAP (MIM 156540),
IFNA21 (MIM 147584)

þþ 3C-DSL, ChIP, FISH Harismendy et al.14

CAD 9p21 CAD risk region CDKN2A, CDKN2B � targeted mouse models,
allele-specific expression

Visel et al.15

Breast cancer 10q26 rs7895676,
rs2981578

FGFR2 (MIM 176943) � eQTL, EMSAs, ChIP,
reporter assays

Meyer et al.16

Breast cancer 11q13 rs554219,
rs78540526,
rs75915166

CCND1 (MIM 168461) þþ 3C, reporter assays, EMSAs,
allele-specific ChIP

French et al.17

Renal cancer
(MIM 144700)

11q13 renal cancer risk
region

CCND1 � ChIP, FAIREs, 3C,
three-dimensional FISH,
allele-specific expression

Schodel et al.18

Asthma (MIM 600807)
and autoimmune
disease (MIM 109100)

17q12
17-q21

rs12936231,
rs80667378

ZPBP2 (MIM 608499),
GSDMB (MIM 611221),
ORMDL3 (MIM 610075)

þþ FAIREs, allele-specific ChIP,
EMSAs, reporter assays

Verlaan et al.19

Prostate cancer 17q24 rs8072254,
rs1859961

SOX9 (MIM 608160) � 3C, reporter assays,
ChIP-seq, allele-specific ChIP

Zhang et al.20

Abbreviations are as follows: 3C, chromatin conformation capture; 3C-DSL, 3C with DNA selection and ligation; CAD, coronary artery disease; ChIP, chromatin
immunoprecipitation; ChIP-seq, ChIP sequencing; eQTL, expression quantitative-trait loci; EMSA, electrophoretic mobility shift assay; FAIRE, formaldehyde-
assisted isolation of regulatory element; FISH, fluorescence in situ hybridization; and TALEN, transcription-activator-like effector nuclease.
aSymbols are as follow: �, no fine mapping; þ, fine mapping using imputation from the GWAS tag SNPs; and þþ, dense genotyping and imputation or
resequencing of LD block.
Successful fine-scale mapping, intended to identify the

truly functional variants underlying observed GWAS sig-

nals, requires as a startingpoint a complete catalogof all var-

iants in the associated locus. The working principle is that

the functional variants being sought must be contained in

the initial list. For a number of years after the publication

of successful GWASs, generating such a catalog was the

rate-limiting step. During this period, targeted sequencing
780 The American Journal of Human Genetics 93, 779–797, Novemb
of the locus in DNA from sufficient subjects was needed

for ensuring the identification of all variants that could

conceivably explain the association.24 Most common vari-

ants are found from the sequencing of relatively few DNA

samples, but progressively more samples must be

sequenced for identifying increasingly rarer variants. This

process has been technically demanding, time consuming,

and very costly; consequently, very few loci have been
er 7, 2013



Figure 1. Workflow for Functionally Analyzing and Interpreting GWAS Loci
examined by this route. The public availability of the 1000

Genomes Project data25 has provided the necessary break-

through to grant all researchers access to sufficiently

comprehensive sequence data fromwhich to compile their

catalogs. This data set currently comprises 1,092 subjects,

drawn from eachmajor human ancestry, and has sufficient

sequencing depth for all discoverable polymorphic variants

(minor allele frequency > 1%) to be found.25

Once a comprehensive SNP catalog becomes available, the

next requirement is to genotype these SNPs in DNA from

studies in which the phenotype of interest has been accu-

rately measured. The key to success is statistical power,

most often developed by collaborating international

consortia with a shared interest (e.g., Wellcome Trust Case

Control Consortium,26 Genetic Investigation of Anthropo-

metric Traits,16 and Breast Cancer Association Consortium

[BCAC]27). These consortia have also generated their

own genotyping chips for fine-scale-mapping loci they

have discovered (e.g., Immunochip,28 Metabochip,29 and
The American
iCOGs).30 To date, the majority of GWASs and mapping

studies have been performed in European-ancestry popula-

tions, which tend to have longer haplotype blocks contain-

ing many highly correlated SNPs.23 This pattern provides a

GWAS advantage of requiring fewer tag SNPs for genome-

wide coverage but a subsequent fine-mapping disadvantage

due to associated loci containing many correlated SNPs,

mostofwhicharenotdirectly causal. Typically, study sample

sizes ranging from 10,000 to 100,000 have been required for

teasing apart the small differences in risk associated with

different SNPs.31 The aim is to separate variants displaying

the greatest associations (the best candidate causal variants)

fromthosewith strongbut significantly lesser associations so

that themajorityofvariants inagiven locus canbe rationally

excluded from further consideration. The ability to discrim-

inate between gradations in degree of association is a func-

tion of study power, which in turn is affected by the magni-

tude of the effect of the causal SNP and the sample size.31 In

addition to available sample size, other limiting factors are
Journal of Human Genetics 93, 779–797, November 7, 2013 781



Figure 2. Integrated Genetic and Genomic Data at the 11q13 Breast Cancer Susceptibility Locus
(A) Manhattan plot displaying the strength of genetic association (�log10 p) versus chromosomal position (Mb). Each dot represents a
genotyped or imputed SNP. Dot colors signify the degree of pairwise correlation (r2) with the top SNP, as presented in the color key.White
dots depict SNPs for which r2 values are unknown. The gray shaded stripe represents the iCHAV, encompassing a physical area bound by

(legend continued on next page)
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the cost of genotyping anddifficulties indeveloping success-

ful assays for every genetic variant under consideration,

because no single genotyping platform can analyze all

possible variant types. Imputation techniques (such as

IMPUTE2), which use known correlations between SNPs

(e.g., from the 1000 Genomes Project data) to estimate the

probable genotype of any SNP in a subject,31 have overcome

thishurdle. This approachaims tofill inall themissinggeno-

type data (with a known degree of accuracy) in any data set

and can be used when the relevant SNPs are not included

on the platform or because the genotyping failed. After

imputation, a complete data set containing all genotyped

or imputed SNPs within a locus should be compiled for all

subjects.

Loci vary enormously both in physical length and in the

number of common genetic variants that they contain. It is

not unusual for a locus to be >100 kb long and to contain

>1,000 variants, of which hundreds might display signifi-

cant associations with the phenotype of interest. Each

causal variant lies within an independent set of correlated,

highly trait-associated variants, which we have termed an

‘‘iCHAV.’’ An iCHAV resulting from an association study is

broadly analogous to the ‘‘linkage peak’’ identified via a

familial linkage study. For example, Figure 2B (green bar)

illustrates a tight ~30 kb haplotype block in all ethnicities

at the right-hand side of the diagram and a less defined

0.3 Mb block comprising several smaller blocks (Figure 2B,

purple bar) containing an iCHAV (Figure 2C, gray area) in

Europeans. Exclusion of noncasual variants begins with

the identification of the number of iCHAVs within a given

locus, typically by forward conditional logistic regression

analysis. Haplotype analysis can also be useful for exam-

ining the interrelationship of multiple putatively causal

SNPs.32 Such analysis proved particularly revealing in the

fine-scale mapping of the 11q13 breast cancer locus

(Table 1).17 Indeed, fine mapping revealed several more

strongly associated variants than the original GWAS tag

SNP, rs614367 (Figure 2A).17,33 If a single iCHAV is identi-

fied, the next stage is straightforward: the SNP showing

the strongest phenotypic association (the one with the

greatest effect size andmost significant association p value)

is assumed to be the best candidate for causation, and rela-

tive to this one, other variants within the same iCHAV

can be excluded from further consideration by means of a

likelihood ratio test.31 As a rule of thumb, just as in aBonfer-
SNPs that are statistically indistinguishable by stepwise conditional
dotted line represents the threshold for genome-wide significance (p
(B) Linkage disequilibrium plots depicting pairwise correlation betw
(CEU), African (YRI), and Asian (CHB) populations. The plots are in gr
The pink and green bars denote haplotype blocks described in the te
(C) Inset from panel (A). The UCSC Genome Browser was used for v
function. The pink stripe indicates the genomic region corresponding
are shown as red marks. Regions of open chromatin, indicative of put
(DHSs) and are marked. ChIP-seq data for histone marks associated w
shown. The ENCODE ChromHMM track represents integrated anal
human mammary epithelial cells (HMECs). Color coding is as follo
promoter; blue, insulator; gray, repressed. RNA Pol II ChIA-PET data
indicate more frequent interactions.

The American
roni correction, it is considered safe to exclude all variants

with likelihood ratios >100 times worse than the strongest

SNP in the iCHAV.31 This stage removes from further

consideration all SNPs simply associated with a phenotype

because they are carried on the samehaplotype as the stron-

gest candidates because of shared ancestral history. Under

ideal circumstances, i.e., with a sample size large enough

for adequate power, it might be possible to exclude all but

the most strongly associated variant. In practice, because

of the high degree of shared ancestry in European popula-

tions, there can be many very highly correlated variants in

any given iCHAV, leading to difficulty identifying single pu-

tative causal variants from genetic epidemiological studies

alone. More often, at the end of this stage there remain

10–50 highly correlated, strong candidates, all with good

likelihood ratios relative to the best hit,8,17,24,34 in one or

more iCHAVs underlying the original GWAS association.

Under appropriate conditions, it can be possible to use

studies from different ethnicities to further reduce the

remaining number of candidates.35 The necessary condi-

tions are that the same association must be observable in

collected study samples from more than one ethnicity

and that the patterns of SNP correlation must differ

between the different ethnic groups. Given adequate

sample sizes, it should thus be possible to exclude more

candidates by using similar studies from different ethnic

groups, but in practice the haplotype structure at the locus

of interest is not always favorable.36

We began this type of fine-scale mapping of breast cancer

lociwithin theBCACwith theworkinghypothesis that a sin-

gle functional variant, in a single iCHAV,would explain each

GWAS hit. However, among the nine breast cancer loci we

examined in sufficient detail, and in reports from others,

there is now strong evidence of the existence ofmultiple, in-

dependent functional variants at many GWAS-discovered

loci.8,17,28,37–40 In some loci, these are carried on separate

haplotype backgrounds (and separate iCHAVs), indicating

that they result from separate mutational events. In other

loci, multiple, apparently functional variants occur together

on the samehaplotype background (within a single iCHAV),

generating additive effects on cancer risk.17,36 The discovery

of multiple causal variants at loci originally thought to

contain only one will explain more ‘‘missing heritability’’41

than previously calculated from the GWAS results alone.39

Moreover, early findings indicate that independent variants
analysis and including the GWAS lead SNP rs614367. The purple
¼ 5 3 10�8).
een SNPs genotyped in the 1000 Genomes Project for European
ayscale, for whichwhite and black signify r2¼ 0 and 1, respectively.
xt in relation to transethnic fine mapping.
isualizing ENCODE data tracks, which are indicative of regulatory
to the iCHAVat 11q13, and the locations of the fine-mapped SNPs
ative regulatory signals, are detected as DNaseI hypersensitive sites
ith regulatory regions and specific TFs relevant to breast cancer are
ysis of chromatin states based upon histone ChIP-seq data from
ws: green, weak transcription; yellow and orange, enhancer; red,
from MCF7 cells are represented as a grayscale bar; darker regions
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Table 2. Computational Tools and Resources for the Analysis of GWAS Loci

Feature Description Significance Experimental Approach
Bioinformatic Tools and
Online Resourcesa

Open
chromatin

nucleosome-depleted chromatin sequences harboring
regulatory signals

DNase-seq, FAIRE sequencing ENCODE, NIH Roadmap
Epigenomics Project,
RegulomeDB, HaploReg,
FunciSNP

TF-binding
prediction

short DNA consensus recognition
sequence characteristic of a
particular DNA-binding protein

computationally predicted
TF recognition site

position weight matrices TRANSFAC, JASPAR, MAPPER2

DNA-protein
interaction

short DNA sequence associated
with a DNA-binding protein
after precipitation with a specific
antibody

physical protein-nucleic-acid
binding (note: no direct
evidence of activity)

ChIP-seq, DNase footprinting ENCODE, NRCistrome,
RegulomeDB, HaploReg

DNA
methylation

methylation of cytosine residues
in CpG dinucleotides

repression of gene expression methylation array, bisulphite
sequencing, MeDIP-seq, MRE-seq

ENCODE, NIH Roadmap
Epigenomics Project,
MethDB, EpiGraph

RNA
expression

detection and measurement of
transcribed RNA

coding RNA, noncoding RNA,
alternative splicing

RNA-seq, RNA-PET, CAGE ENCODE, Gene Expression
Omnibus, Galaxy

Histone
modifications

specific posttranslational
modifications of particular
histone protein residues are
associated with various
regulatory activities

H3K4me1: promoters and
enhancers
H3K4me2: promoters and
enhancers
H3K4me3: promoters
H3K79me2: transcription
transition
H3K27ac: active regulatory
region
H3K9ac: promoters
H3K9me1: active chromatin
H3K9me3: repressed
chromatin

ChIP-seq ENCODE, NIH Roadmap
Epigenomics Project,
NRCistrome, RegulomeDB,
HaploReg, ChromHMM,
GWAS3D, Segway, ChroMoS

Chromatin
interactions

long-range physical interactions
between distal genomic regions

contact between regulatory
motifs, such as tissue-specific
enhancers and promoters

3C, 4C, 5C, 6C, Hi-C, ChIA-PET GWAS3D, Hi-C Project,
ChIA-PET Browser

Abbreviations are as follows: 3C, chromosome conformation capture; 4C, circular 3C; 5C, carbon-copy 3C; 6C, combined 3C-ChIP-cloning; CAGE, cap analysis
gene expression; DNase-seq, DNaseI hypersensitive site sequencing; MeDIP-seq, methylated DNA immunoprecipitation sequencing; MRE-seq, methylation-
sensitive restriction enzyme sequencing; and RNA-PET, RNA paired-end-tag sequencing.
aNonexhaustive list of examples.
within a given locus can disrupt the same target gene by

differing mechanisms and are consequently associated

with differing magnitudes of risk.8,17 Clearly, these data are

contingent on comprehensive fine mapping for ensuring

that the genuinely causal variant(s) is captured prior to func-

tional assessment.With the list of SNPs that cannot be elim-

inated from consideration by statistical fine-scale mapping

studies as a starting point, the next challenge is to elucidate

the mechanism by which each candidate variant might

influence the expression of its target gene(s). Functional

evaluation of noncoding, regulatory variants requires

the stepwise application of an array of computational

approaches, including database searches and application of

in silico tools, as well as a subsequent range of molecular

experimental techniques (Figure 1).

Using Publically Available Data to Guide Functional

Analyses

Many noncoding SNPs reside within regulatory sequences

and influence gene expression through transcriptional,

posttranscriptional, and posttranslational mechanisms.

Transcription is a complex process dependent on a coordi-
784 The American Journal of Human Genetics 93, 779–797, Novemb
nated interplay between protein-DNA and protein-protein

interactions (reviewed in Kadonaga42). RNA polymerase II

(RNA Pol II) assembles at gene promoters with the basal

transcription machinery, and numerous transcription fac-

tors (TFs) and accessory molecules are recruited to alter

the function of RNA Pol II by associating with regulatory

sequences. The accessibility of these factors is dependent

on chromatin structural changes mediated by posttransla-

tional histone modifications, such as methylation and

acetylation.43 Importantly, regulatory signals can act over

long genomic distances and are brought into contact

with target promoters via three-dimensional DNA folding.

Computational approaches to assigning potential regula-

tory function to noncoding SNPs have been greatly

enhanced by the recent emergence of several large-scale

genome-wide data sets. Data made publically available by

projects such as ENCODE, Nuclear Receptor Cistrome

(NRCistrome), and the National Institutes of Health

(NIH) Roadmap Epigenomics Project can be routinely

mined with a range of tools for the annotation of noncod-

ing variants with a potential impact on regulatory mecha-

nisms (Table 2). Regulatory function can be predicted on
er 7, 2013



the basis of particular genomic features, such as histone

modifications, open chromatin, and TF binding, which

are measured with targeted biochemical assays and high-

throughput sequencing technologies (Figure 2C).Mapping

these data to a region of interest can then facilitate the

design of additional functional analyses.

A range of computational tools, including RegulomeDB,

HaploReg, and FunciSNP, are available for specifically

querying these data sets (Table 2). With these, the genera-

tion of hypotheses to test candidate-SNP effects can be

prioritized for experimental assessment. These programs

test the potential impact of sequence variation on several

genomic features, including gene and isoform annota-

tions, expression quantitative-trait loci (eQTL), chromatin

immunoprecipitation sequencing (ChIP-seq), DNaseI

hypersensitive site (DHS) sequencing, chromatin interac-

tions, evolutionary sequence conservation, and TF-bind-

ing motifs. It is important to incorporate fine-mapping

genetic data (i.e., the best candidate SNPs) into these ana-

lyses, and this can be easily achieved with GWAS3D, which

is capable of analyzing an entire GWAS output. Because

these tools are freely available online, the combined

outputs should be routinely used for triaging variants for

further characterization (Table 2). It should be noted that

many tools rely on ENCODE data, which are not exhaus-

tive (i.e., limited TFs and cell types have been assayed),

so there is also a high probability of false negatives, for

example, where missing data might lead to the absence

of valid results. Conversely, these programs do not take

into account tissue specificity, which could lead to false

positives, such as where SNPs might influence signals in

irrelevant cell types. Overall, with the consideration of

the specific biological question, computational approaches

currently represent a useful starting point to guide the

design of functional assays.

Potentially interesting results from such tools can be

further interrogated via manual investigation of specific

loci in the UCSC Genome Browser, which is able to display

customizable ENCODE and NIH Roadmap Epigenomics

Project data. Experimental matrices that display all avail-

able data are a starting point for loading various ‘‘tracks’’

into the browser. Users are also able to upload data,

including SNP positions of interest or experimental data

retrieved from repositories such as the NCBI Gene Expres-

sion Omnibus and NRCistrome. Other notable features

include ‘‘sessions,’’ or configurations of track sets that

can be shared between users, and the ‘‘table browser’’

feature, which provides a means by which the database

can be queried for automated analyses.

Analysis of LD patterns is facilitated through the use of

several key resources, including the HapMap and 1000

Genomes projects. Downloaded genotype data covering

specific loci can be visualized and manipulated with

HaploView44 for investigating haplotype structure and fre-

quency (Figure 2B). LD patterns can be compared between

ethnicities, enabling the determination of variant segrega-

tion in different populations. Several online resources,
The American
including the SNP Annotation and Proxy Search tools at

the Broad Institute and LocusZoom, enable plotting of

association data with LD information. Figure 2A demon-

strates how pairwise correlation r2 coefficients can be

related to a lead SNP via color coding.

Several elegant examples utilizing these computational

approaches have recently been published. Maurano et al.

showed that GWAS signals were overrepresented in regula-

tory regions by assessing the frequency of variant

occurrence in DHSs generated by the ENCODE and NIH

Roadmap Epigenomics consortia.45 Furthermore, assess-

ment of putative functional variants at the 17q24.3 pros-

tate cancer risk locus with the use of ENCODE and NIH

Roadmap Epigenomics Project data facilitated the identifi-

cation of a prostate-specific enhancer.20 We used mam-

mary-cell-specific ChIP-seq signals from ENCODE and

NRCistrome to assess potential regulatory functions at

the 11q13 breast cancer risk locus, where we ultimately

showed that CCND1 is a target of that association

(Figure 2C).17 These resources are extremely useful pro-

vided that the cell and tissue typesmost relevant to the dis-

ease state under study have been assayed. For example,

limited data are currently publically available for ovarian

tissues, precluding the approaches outlined above in

preliminary investigations for the correlation of ovarian

cancer risk alleles in regulatory signals. Furthermore, there

are limits to the availability of tissues at each develop-

mental stage or under exposures to different environ-

mental conditions.

Pathway-based analyses are another strategy being used

for prioritizing genes from GWAS-identified regions (re-

viewed in Wang et al.46). These approaches typically

examine whether a group of genes in the same biological

pathway are jointly associated with a GWAS trait. The

advantage of using these approaches is that important

biological pathways underlying the GWAS trait can be

uncovered. However, caution should be taken because

these types of analyses are based on the often incorrect

assumption that SNPs can be assigned to genes on the basis

of proximity or the LD block in which they reside. In addi-

tion, prior biological knowledge about the genes and path-

ways is also required, thus undermining the agnostic

nature of the GWAS approach.

eQTL

Levels of gene expression are highly heritable,47,48 and spe-

cific genomic regions containing variants that influence

gene expression are known as eQTL. Multiple studies

have provided strong evidence that GWAS signals are

enriched with eQTL in a tissue-specific manner,49,50 high-

lighting their utility in understanding the mechanisms

underlying GWAS hits. Many resources, including online

databases such as GeneVar, are now available for eQTL

analyses. Importantly, eQTL annotation is carried out in

an unbiased fashion; hence, associations between alleles

and target genes require no prior knowledge of functional

mechanisms. Although GWAS variants can be associated
Journal of Human Genetics 93, 779–797, November 7, 2013 785



with expression (ideally in a relevant tissue type), addi-

tional functional assays are required for confirming the

mechanistic relevance to the disease or trait. A recent

approach interrogated cancer-derived samples by using

RNA sequencing (RNA-seq) and correlated allelic imbal-

ance (AI) to breast cancer risk genotypes.51 Importantly,

the analysis adjusted for copy number and methylation,

significant confounders when gene expression is exam-

ined in tumor material.

Given that somatic alterations present in tumor cells

can greatly affect expression, subtle genotype-associated

influences can be undetectable.52 It is therefore ideal to

measure eQTL effects in normal cells, representative of

the cell of origin for the disease under study. This is partic-

ularly important because it is estimated that 50%–90% of

eQTL are tissue dependent,50,53 and trait-associated vari-

ants tend to exert more tissue-specific effects.54,55 Not

surprisingly, Fu et al. also showed that SNPs that fall in

regulatory regions of the genome are also more likely to

confer tissue specificity.54 To date, most eQTL data sets

are derived from only a limited number of source cell

types, including monocytes,56 lymphoblastoid cells,53

and brain cells.57 In an effort to address this issue, a large

NIH-funded project known as Genotype Tissue Expression

has been initiated with the aim of characterizing eQTL in

more than 60 different normal tissues from 900 indi-

viduals.

Several factors must be considered when eQTL data are

used. The majority of identified eQTL are cis-acting, arbi-

trarily defined as regulation of genes within 1 Mb, given

that their effect sizes are usually relatively large and can

be detected with smaller sample sizes.58 However, genetic

variants can also affect the expression of genes that reside

further away or are on different chromosomes (trans-

eQTL).59 Notably, Fehrmann et al. identified independent

trans-associated SNPs affecting similar genes, suggesting

that independent GWAS associations might influence

similar biological pathways.60 Haplotype might also influ-

ence eQTL effects:61 because LD patterns are population

specific, association between variants that tag a haplotype

could lead to the ambiguous identification of the true

casual SNP. Furthermore, the target genes of eQTL associa-

tions could be coding or noncoding RNAs,62 although

small RNA expression is not measurable by certain plat-

forms. Recent RNA-seq experiments have revealed that

genotype can also influence alternative isoform produc-

tion,63 and variation in mRNA stability is also known to

be under the control of correlated alleles.64 As with GWASs

for any complex trait, the analysis of eQTL across diverse

populations will enable more accurate mapping of regula-

tory variants.48,53,65 Variation in levels of specific protein

isoforms have also recently been shown to be heritable.66

It should be noted that identifying an eQTL provides

only indirect evidence of a link between genotype and

gene transcription. Elucidating the involved mechanisms

will then rely on a range of molecular approaches, which

we describe below.
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Regulatory Variation at GWAS Loci

The recent fine mapping and functional characterization

of GWAS variants have indicated that cis-regulation is a

common mechanism underlying these associations.4,8,17

The most frequent elements affected are transcriptional

enhancers and silencers. These elements are typically

locatedmore than 1 kb from their target genes and regulate

transcription through long-range interactions, mediated

by the formation of chromatin loops.35 The ability to iden-

tify the target gene(s) of cis-regulatory variants is key to

understanding the mechanism by which GWAS variants

act. The identification of eQTL can be used for predicting

the target genes; however, this strategy usually only pro-

vides indirect evidence of an association, and experimental

approaches are necessary for confirming its mechanistic

relevance.

A more direct approach is to use chromatin conforma-

tion capture (3C), a technique that converts chromatin

interactions into specific ligation products, which are

then quantified individually by real-time PCR.67 3C has

already been used for successfully identifying the target

gene of several regulatory variants identified through

GWASs. For example, we fine mapped the 11q13 breast

cancer risk locus and showed that the strongest signal

mapped to a transcriptional enhancer that distally regu-

lates the CCND1 promoter, located 125 kb away (Figure 2).
17 SNPs associated with chronic obstructive pulmonary dis-

ease at 4q31 also lie within a transcriptional enhancer and

physically interact with the HHIP promoter, located 85 kb

away.6 In both of these cases, the target promoter of the

regulatory elements is the closest gene. However, recent

analysis by the ENCODE Consortium shows that only

27% of the distal regulatory elements have an interaction

with the nearest promoter,68 suggesting that the nearest

gene is often not the target of a given GWAS association.

For example, the likely causal variant for a GWAS associa-

tion at 1p13 with low-density lipoprotein cholesterol is

rs12740374, which lies in a transcriptional enhancer and

alters the activity by creating a C/EBP TF-binding site.4

On the basis of the strong correlation with expression in

the liver, the likely target gene of this cis-regulatory variant

is the fourth-closest gene, SORT1. ENCODE data also sug-

gest that the average number of local target genes of a distal

regulatory element is 2.5, indicating that genetic variants

located in cis-regulatory elements might influence transac-

tivation of multiple promoters and therefore directly affect

the expression of more than one gene.68 Indeed, our

unpublished data indicate that the variants responsible

for the association at the 11q13 breast cancer risk region

affect at least one more gene in addition to CCND1.

3C has two principle limitations. First, it is not possible

to distinguish relevant nearby chromatin interactions

(within ~20 kb) above background interactions caused by

random collisions. Second, 3C can only detect specific

interactions between prespecified regions because it relies

on PCR primers designed across interacting regions. To

overcome these limitations, researchers have developed
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several variations of the 3C method so as to provide unbi-

ased approaches to identifying the target gene of regula-

tory elements. Circular 3C (also called 4C) allows the entire

genome to be screened for sequences that contact a specific

DNA or ‘‘bait’’ region by means of inverse PCR with bait

primers from a circular intermediate of 3C. Limitations of

4C include (1) the inability to identify interactions around

the ‘‘bait’’ region, (2) the lack of resolution (~100 kb to 1

Mb), (3) that the choice of enzymes used might preclude

the identification of some interactions, and (4) that trans-

interactions (interchromosomal) and distal cis-interactions

(>500 kb from the bait) need to be further validated by

independent methods such as fluorescence in situ hybrid-

ization. Despite these limitations, using the 4C method,

Patel et al. showed that aberrant TAL1 (MIM 187040)

expression in human T cell acute lymphoblastic leukemia

(T-ALL [MIM 613065]) is mediated by a T-ALL-specific

interchromosomal interaction between the TAL1 pro-

moter on chromosome 1 and a regulatory element called

TIL16 (TAL-1 interacting locus on chromosome 16) on

chromosome 16.69 These observations imply that the

target gene(s) of any given GWAS hit could also be located

on a different chromosome. To date, however, 4C

approaches have not been applied to GWAS loci, and until

such time, it is difficult to assess the contribution of inter-

chromosomal interactions to common disease.

Other genome-wide variants of the 3C method provide

unbiased methods for identifying long-range chromatin

interactions. Carbon-copy 3C (also known as 5C) detects

all chromatin interactions across large genomic regions

by using multiplex PCR in combination with high-

throughput sequencing or microarrays.70 Using a similar

technique, coined 3C with DNA selection and ligation,

Harisemendy et al. showed that cis-regulatory variants

associated with coronary artery disease (CAD) interact

with four genes, including IFNA21, located more than

900 kb away. The CAD risk alleles disrupted a binding

site for STAT1, a well-known effector of interferon sig-

naling, and treatment of cells with interferon-g increased

the frequency of the interaction between the enhancers

and IFNA21.14

Chromatin interaction analysis by paired-end-tag

sequencing (ChIA-PET), another variation of 3C, detects

chromatin interactions bound by a specific protein.71

Fullwood et al. originally developed ChIA-PET to map

chromatin interactions bound by estrogen receptor (ER)

from breast cancer cells treated with estrogen. By mining

these data, we identified chromatin interactions between

the CCND1 promoter and a transcriptional enhancer

harboring genetic variants associated with ER-positive

breast cancer (Figure 2C).17 Additional ChIA-PET data

sets for CTCF (CCCTC-binding factor), RNA Pol II, and

H3K4Me2 (a chromatin modification associated with

enhancers) are now available for several different cell

lines.72–74 An obvious limitation of ChIA-PET is the fact

that any given TF is only expected to be involved in a

subset of chromatin interactions, so ChIA-PET data sets
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will thus not include all promoter-enhancer interactions.

However, it might be possible to identify the majority of

promoter-enhancer interactions by using antibodies

against the general TFs (such as RNA Pol II) or chromatin

modifications (such as H3K4Me1 and H3K4Me2) together

with deeper sequence read depth.72,73 Given that cis-

regulatory elements are highly tissue specific, future chro-

matin-interaction profiles generated in multiple cell lines

will be an invaluable resource for post-GWAS studies.

Once the target gene(s) of a regulatory element has been

established, the impact of SNP(s) on the transactivation of

a specific promoter can be tested via standard reporter

assays. In these assays, regulatory elements are cloned

into a promoter-driven reporter construct and transiently

transfected into relevant cell lines. The effect of individual

SNPs, or preferably the risk haplotype, can then be

compared to the common allele or haplotype constructs.

Importantly, the effect of the SNP(s) might vary depending

on the promoter used to drive reporter expression. Viral

promoters are commonly used for assessing enhancer

activity; however, it should be noted that promoter-

specific effects can be overlooked. The choice of cell type

is also important because cis-regulatory elements are high-

ly tissue- and cell-type specific. For example, a recent study

revealed very different activities of eleven enhancers across

four mammary epithelial cell lines, emphasizing the

importance of conducting these assays in various cellular

contexts.75 Reporter assays can also be used for mapping

DNA regions harboring regulatory activity. This is particu-

larly useful when limited information regarding the regula-

tory potential is available. For example, functional

enhancer mapping of a 40 kb region at the 8q21 ovarian

cancer risk locus identified two regulatory regions that

harbor risk-associated SNPs.76

DNA variants can also affect chromatin looping, a mech-

anism distinct from transactivation.77 Allele-specific chro-

matin interactions can be detected by direct sequencing of

3C products.11,17 However, the SNP needs to be relatively

close to a 3C restriction site for this to be feasible. The

assessment of allele-specific protein binding is also impor-

tant given that the majority of regulatory functions (such

as chromatin looping and transactivation) are mediated

through TFs and other proteins. Computational prediction

of TF binding is the most widely used method for identi-

fying candidate TFs. These predictions are based onmodels

called position weightmatrices, which quantitatively score

the likelihood of observing a particular nucleotide at a

specific position of the known or candidate TF-binding

site. Many web-based programs such as MAPPER2 provide

easily searchable platforms that combine motifs docu-

mented in databases such as JASPAR and TRANSFAC

(Table 2). Recent mapping of histone modifications by

means of ChIP-chip (ChIP followed by microarray hybrid-

ization) or ChIP-seq technologies provides a complemen-

tary approach to predicting TF-binding sites.78 However,

ChIP assays are limited in that each experiment profiles

just one TF, and it is difficult to determine the precise
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binding site for a factor because of the low resolution of the

assay. Protein binding can be assessed with in vitro assays

such as electrophoretic mobility shift assays (EMSAs), for

which knowledge of the bound proteins is not required.

Antibodies against TFs of interest are then used in

supershift EMSA experiments for testing which proteins

mediate allele-specific binding. High-throughput TF-

binding methods, such as proteome-wide analysis of

SNPs (PWAS), that utilize quantitative mass spectroscopy

can also be used for screening SNPs for differential TF

binding.79 An advantage of this technique is that multiple

SNPs can be assayed and the TF can be identified in one

experiment. By applying PWAS to twelve fine-mapped

SNPs associated with type 1 diabetes (MIM 222100), Butter

et al. identified at the IL2RA (MIM 147730) locus four SNPs

that displayed preferential binding of common TFs.79

Allele-specific protein binding should also be verified by

ChIP experiments because the in vitro nature of EMSAs

and PWAS can generate false-positive results. The effect

of these proteins on transactivation in the presence and

absence of a SNP can then be tested by cotransfection in

reporter assays.

Noncoding RNAs at GWAS Loci

Many post-GWAS studies have focused on cis-regulatory

variation to explain disease associations. However, it is

becoming increasingly clear that risk variants can also

affect the expression or function of noncoding RNAs

(ncRNAs). These regulatory ncRNAs can be divided into

two broad categories according to size: (1) small RNAs

(<200 bp), such as microRNAs (miRNAs), small nucleolar

RNAs (snoRNAs), and piwi-interacting RNAs (piRNAs);

and (2) long noncoding RNAs (lncRNAs; >200 bp), which

are often spliced transcripts transcribed from both DNA

strands.

miRNAs typically regulate gene expression through

binding to 30 UTRs of target mRNAs to direct their post-

transcriptional repression.80 Recent studies have indicated

that sequence variation in target genes can modulate

miRNA activity. For example, Kulkarni et al. demonstrated

that variation within the 30 UTR of HLA-C (MIM 142840)

affects binding by miR-148 and thus results in differential

cell-surface expression levels of HLA-C allotypes.81 Their

findings provided themechanism for a linked HIV-control-

associated SNP located 35 kb upstream ofHLA-C.82 Predict-

ing potential target genes is the major challenge in

exploring miRNA function, given that a single miRNA

can potentially regulate hundreds of different genes. A

variety of computational tools, including TargetScan and

PicTar, are available for miRNA target prediction, and

several databases have also been developed for linking

polymorphisms in predicted miRNA-binding sites with

complex traits. It should be noted that most of these pro-

grams rely on target-prediction algorithms that only assess

the possibility of interaction, and so all predictions need to

be experimentally validated. With the increasing avail-

ability of data from deep-sequencing and crosslinking-
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immunoprecipitation projects,83 a few groups have now

tried to characterize the relationship among genetic varia-

tion, miRNA, and gene expression on amore genome-wide

scale.84,85 Collectively, the results indicate that genetic

variants within the 30 UTRs of susceptibility genes at

miR-binding sites are associated with disease risk and

should be routinely considered in post-GWAS functional

studies.

Although it is clear that lncRNAs are important for regu-

lating gene expression, their role in influencing disease

susceptibility is only now being realized. Several studies

have shown that lncRNAs are transcribed from genomic re-

gions associated with disease risk.ANRIL (MIM 613149), an

antisense lncRNA expressed from the CDKN2B-CDKN2A

locus, spans 126 kb and appears to be a hot spot of

GWAS hits.86 SNPs within this locus are associated with

multiple genetic diseases, including diabetes, coronary

heart disease, glaucoma (MIM 231300), and multiple

cancers. Although it cannot be ruled out that these SNPs

affect other genes at this locus, the disease-associated vari-

ants are more strongly correlated with ANRIL expression in

peripheral blood than with that of two nearby genes,

CDKN2A and CDKN2B.86 Fine mapping of this region

and functional studies in the relevant cell types will be

required for confirming that ANRIL is the main target of

these genetic associations. Another example is the

thyroid-specific lncRNA PTCSC3 (MIM 614821), which is

transcribed from a locus associated with papillary thyroid

carcinoma (PTC [MIM 188550]). SNP rs944289, which is

significantly associated with PTC, lies in the promoter of

PTCSC3 and is associated with increased expression in

normal thyroid tissue.87 Conversely, rs944289 is associated

with decreased PTCSC3 expression in PTC, suggesting that

the effects of this SNP differ in normal andmalignant cells.

Lastly, genetic variants within a gene desert at 8q24 are

associated with multiple cancers, including breast, pros-

tate, and colorectal cancer.37 The most likely target gene

at this locus is c-MYC (although it has been difficult to

demonstrate this link), but it is worth noting that several

lncRNAs, as well as a miRNA cluster (miR-1204-1208),

are produced from this locus. These ncRNAs could

either work alone or in concert with c-MYC to explain

the association.

As more RNA sequencing data in relevant tissues become

available, it is likely that other lncRNAs will be identified at

risk loci identified by GWASs. In addition, new tech-

nologies for identifying rare transcripts, a common feature

of lncRNAs, will be important given that it is now clear that

exhaustive sequencing of the human transcriptome has

not been achieved with standard RNA-seq. For example,

Mercer et al. developed a technique termed RNA-

CaptureSeq, which achieves deeper sequencing of tran-

scripts derived from targeted regions.88 As in targeted

genomic sequencing, cDNAs are hybridized onto tiling

arrays prior to sequencing, thus enriching for a specific

fraction of the transcriptome and allowing deeper

sequencing with the same amount of sequence reads.
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With this technology, targeted capture of ~50 human

genes identified 200 new protein isoforms and 163

lncRNAs at or near protein-coding genes, providing

evidence that the human transcriptome is more complex

than previously thought. Application of this technology

in relevant tissues could uncover entirely newmechanisms

for the genetic associations identified by GWASs.

A battery of techniques will then be required for eluci-

dating how individual SNPs affect lncRNA function.

Similar to protein-coding genes, some SNPs are likely to

fall in regulatory elements of lncRNAs, just as rs944289

falls within the promoter of the PTCSC3 lncRNA.87 These

SNPs could be analyzed with methods similar to those

described above. Other SNPs could fall within the lncRNA

transcript itself and therefore influence lncRNA function

by affecting secondary structure and/or protein binding.

Allele-specific protein binding can be tested by RNA

mobility shift assays, in vitro assays that do not require

prior knowledge of the bound proteins. Alternatively, if

the RNA-binding protein is known or predicted, RNA

immunoprecipitation (RIP) using an antibody against the

RNA-binding protein could be performed and allele-

specific binding could be assessed. Interestingly, using

RIP, Olshavsky et al. showed that allele-specific binding

of the RNA-binding protein SRSF1 (also known as ASF/

SF2) affects the splicing of CCND1;89 such a mechanism

could also apply to lncRNAs. It is also possible that genetic

variants within the transcript could affect the stability of

the lncRNA.90

Epigenetic Contribution to Complex Traits

Epigenetic modifications represent an additional layer of

complexity to understanding gene regulation and might

explain some of the failure to identify target genes of

complex diseases. Epigenetic changes such as DNA

methylation and histone modifications are required for

normal gene regulation and are therefore obvious candi-

date targets for GWAS associations.91 DNA methylation is

perhaps the most extensively studied epigenetic modifica-

tion. Aberrant promoter methylation of tumor-suppressor

genes is frequently observed in cancer and firmly

established as an important mechanism for gene inactiva-

tion.92 Although not well understood, gene-body methyl-

ation can suppress transcriptional noise and might also

be involved in splicing regulation.93 Evaluating the link

among genetic variants, DNA methylation, and disease

predisposition is currently a very active area in research.

There are several examples of cis-acting genetic alterations

giving rise to epimutations. In hereditary nonpolyposis

colorectal cancer, MLH1 (MIM 120436) hypermethylation

and transcriptional silencing have been linked to a SNP

within its 50 UTR.94 Similarly, heritable DAPK1 (MIM

600831) methylation in individuals with familial chronic

lymphocytic leukemia is associated with a point mutation

upstream of its promoter.95 Moreover, there is also

evidence that altered DNA methylation of distal transcrip-

tional enhancers might also play a role in cancer predispo-
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sition.96 Further insight into this potentially causative

relationship has beenmade possible with the development

of high-throughput DNA methylation arrays.97 Similar to

eQTL, methylation quantitative-trait loci (metQTL) can

be used for associating SNPs with CpG methylation in

any tissue or cell type of interest. Most studies to date

have found that correlations with cis-genotypes are more

frequent, but there is also some evidence of trans-

regulation cross multiple tissues.98

Risk-associated SNPs can also disrupt the structural

organization of chromatin in the nucleus. Chromatin-

state signatures correlate with tissue-specific gene expres-

sion; therefore, allelic differences in chromatin could

potentially change expression patterns. Consistent with

this, changes in allele-specific binding of CTCF (an

important chromatin organizer) can affect the expression

of several genes in the ORMDL3 locus and contribute to

the risk of asthma and autoimmune disease.19 Further-

more, common variants at TCF7L2 (MIM 602228) confer

risk of type 2 diabetes (MIM 125852) by altering cis-

regulation and local chromatin structure in islet cells.99

In addition, Cowper-Sal-lari et al. recently used a system-

atic approach to explore the effect of genetic variation on

allele-specific TF binding and chromatin structure. They

showed that the majority of SNPs associated with breast

cancer risk are enriched with FOXA1- and ER-binding

sites, as well as H3K4me1 histone modification.100

FOXA1 is a pioneer factor central for opening compacted

chromatin, nucleosome repositioning, and ER function.

These studies further emphasize the complexity of regula-

tory variation.

The clear relationship between genetic and epigenetic

variation for complex diseases has provided a strong

argument for integrating GWASs with epigenome-wide

association studies (EWASs). As the name suggests, EWASs

utilize large-scale epidemiologic studies and high-

throughput arrays as an unbiased strategy to systematically

study epigenetic control.101 Currently, DNA methylation

is the most suitable mark for EWASs and has been used,

with some success, in the study of both nonmalignant dis-

eases and epigenetic perturbations in cancer. It should be

noted, though, that like GWASs, EWASs have a number

of limitations and considerations in both their design

and their interpretation. Some of the main challenges

include the choice of tissue to be sampled and the matter

of tissue heterogeneity, obtaining adequate sample size

for achieving the necessary statistical power, and replica-

tion in independent study populations. Environmental

factors are another variable because they can also directly

or indirectly induce epigenetic changes.102 Despite these

issues, Bell et al. successfully combined GWAS and EWAS

data to identify variant-CpG-restricted haplotype-specific

methylation within the FTO (MIM 610966) obesity suscep-

tibility locus.103 Their study highlights the potential for

integrating genetic and epigenomic approaches as a post-

GWAS strategy for dissecting the functional consequences

of GWAS loci.
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In Vitro and In Vivo Models for Assessing SNP

Function

The approaches described above only identify candidate

target genes. The next step in the functional analysis pipe-

line is to validate each gene and to explore the funda-

mental mechanisms of disease (Figure 1). Human disease

models can be based on either in vitro studies in cultured

cell lines and/or primary tissues or in vivo models of

disease development. Established human cancer cell lines

have been extensively used for testing the function of

candidate genes at risk loci. The primary advantages of

these models are their ease of manipulation, homogeneity,

and extended replicative capacity. Furthermore, hundreds

of cell lines representing the major forms of cancer are

commercially available, and many of them have been

genetically characterized.104 However, some important

limitations must be recognized, especially when these

models are used for studying genetic associations. The

most relevant limitation is that any functional effects

could be obscured or falsely elevated by cellular genomic

instability. In addition, karyotypic abnormalities and

variability due to extensive passaging and different culture

conditions must also be considered. Better models for

evaluating GWAS-identified genetic variations are normal,

nonaberrant tissues and cell lines. The main challenges

impeding the establishment of these in vitro models are

limited access to clinical samples and difficulties in

culturing and manipulating primary cells. However,

several reasonable models of normal tissue, including

MCF10As for breast, PNT2 for prostate, EndoC-bH1 for

pancreatic beta cells, and lymphoblastoid cell lines for

blood traits, are already available.

Ideally, we need to create panels of genetically matched

‘‘normal cells’’ to provide isogenic systems to study disease

mechanisms. Significant progress toward reaching this

goal has been made with the development of program-

mable nucleases, such as zinc finger nucleases (ZFNs) and

transcription-activator-like effector nucleases (TALENS),

which are promising new tools that enable targeted

genome modifications.105,106 In a genome, these enzymes

induce site-specific double-strand breaks (DSBs), which

cells then respond to with various repair mechanisms.

Many types of genomic alterations, including point

mutations, can be introduced with ZFNs or TALENs, thus

potentially enabling studies to determine the functional

significance of individual sequence variants. There are

several recent examples of interrogation of putative causal

genes in appropriate human cell types. For example,

Soldner et al. used engineered ZFNs to generate isogenic

pluripotent stem cells to study risk variants for Parkinson

disease (MIM 168600).107 The lines differed by two single

point mutations in a-synuclein (MIM 163890) but main-

tained a pluripotent state, the ability to form teratomas,

and the ability to differentiate into dopaminergic neurons

in vitro. Another technical challenge for post-GWAS

research is the difficulty of studying locus heterogeneity,

the joint effect of multiple independent variants across
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different loci. This limitation might soon be overcome by

means of an alternative genome editing system called

CRISPR/Cas (Clustered Regularly Interspaced Short

Palindromic Repeats),108 which relies on the RNA-guided

DNA endonuclease, Cas9, inducing targeted DSBs into

genomic DNA. The method also allows for the simulta-

neous introduction of multiple guide RNAs, resulting in

multiplex genome editing in mammalian cells,109 pro-

viding proof of principle of the potential of this system

for GWAS functional studies.

Currently, one of the biggest challenges in post-GWAS

validation is being able to accurately evaluate the effects

of SNPs and their associated genes in an intact organism.

The mouse is usually the mammalian model of choice

because of its high degree of genome similarity, numerous

techniques for genetic manipulation, and capacity to

mimic human multifactorial disease phenotypes.110

Mouse models have mainly been used for studying the

function of the most compelling or nearest candidate

gene to the GWAS SNP for a range of complex diseases.

For example, GWAS-identified SNPs in the vicinity of

NR5A2 (MIM 604453) are associated with pancreatic

cancer (MIM 260350) risk.111 Two recent papers used

loss-of-function mouse models to show that NR5A2 is a

key regulator of pancreatic acinar cell plasticity and that

loss of NR5A2 cooperates with KRAS in preneoplastic trans-

formation of the pancreas.112,113 However, a caveat for

many of these studies is the lack of evidence linking the

functional SNPs to expression of candidate target genes.

This issue has been partly addressed for the 8q24 suscepti-

bility locus. Several studies have indicated that the 8q24

cancer risk SNP rs6983267 resides in an enhancer element

(called MYC-335) that can control expression of the

oncogene c-MYC.10,114 Sur et al. subsequently generated

Myc-335-knockout mice and showed a modest decrease

in c-MYC in the colon, but more interestingly, these

mice were resistant to intestinal tumorigenesis when

challenged with the APCmin (MIM 611731) mutation.115

Although these results clearly show the importance of

the MYC-335 region in intestinal tumorigenesis, the rele-

vance of c-MYC itself remains uncertain, and they also

highlight the need for unbiased approaches to identifying

target gene(s).

As discussed earlier, because most disease-associated

SNPs confer only modest effects on risk, the relevance of

a complete versus heterozygous knockout must always be

considered. TALEN-, ZFN-, and CRISPR/Cas-basedmethods

are themost promising approaches to addressing heterozy-

gous allele combinations. Indeed, these technologies have

already successfully generated monoallelic and biallelic

modifications in mice.116 Currently, only one group has

used ZFNs to study GWAS loci;99 however, the speed

with which ZNF-, TALEN-, and CRISPR/Cas-engineered

mice can be created will greatly accelerate GWAS-driven

functional research. It should be noted that there are

some important ‘‘mouse traps’’ that should be considered

when mouse models are used for delineating human
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genotype-phenotype relationships. These include species-

species differences in gene function, poor evolutionary

conservation in noncoding regions, changes in cellular

microenvironments and immunity, the genetic back-

ground of the mice, and the presence of specific micro-

biota.110 Future mouse models will also most likely require

a more thorough mapping of the genetic variants already

present and the introduction ofmultiple genetic variations

to the model so that the human genetic landscape can be

more faithfully recapitulated.

Zebrafish and Drosophila are other increasingly popular

model organisms for studying the functions of normal

and disease-associated alleles. Both models have a number

of advantages for post-GWAS analysis over their rodent

counterparts; these include the ease of genetic manipula-

tion, the ability to rapidly produce large numbers of organ-

isms of a specific genotype, and the capacity to study

tissue-specific gene expression in live animals. Again,

most studies to date have used these organisms to study

the function of the nearest candidate gene(s) to the

sentinel SNP without first establishing that the gene is

the target of that SNP.117 For zebrafish, transient disruption

of normal gene function can be achieved by microinjec-

tion of mRNA, DNA, or morpholinos into early

embryos.35 Although not as straightforward, regulatory

elements can also be assessed by the generation of trans-

genic zebrafish by means of reporter constructs.118 In

Drosophila, transgenic RNAi is the most common method

used for downregulating orthologs of candidate genes.119

A disadvantage of using nonmammalian animals to model

human disease is the need for functionally similar ortho-

logs. A recent study attempted to address this limitation

by performing post-GWAS functional assays in both zebra-

fish and Drosophila.120 Of the 49 candidate genes, results

were available for the orthologs of 12 genes in zebrafish

and 25 genes in Drosophila, and orthologs from six genes

were available in both species.120 Clearly, not all down-

stream mechanistic studies will be feasible in these organ-

isms, but for many of the simpler in vitro strategies we

have described, they could help prioritize hypotheses for

testing in more complex organisms.

Conclusions

GWASs have robustly identified thousands of disease- and

trait-associated genetic variants. However, significant

obstacles have hampered our ability to pinpoint casual

variants, identify genes affected by causal variants, and

disentangle the mechanism by which genotype influences

phenotype. The critical first step is to undertake mapping

at increased marker density with imputation to capture

all nongenotyped alleles, which is vital to clarifying the

most likely causal candidates prior to assessment of

whether they contribute to a molecular mechanism.

Even then, it should be noted that variants are unlikely

to act alone, and the importance of combinatorial effects

should be considered. In addition, consistency in the direc-

tion of the effect detected in genetic analyses (e.g.,
The American
increased or decreased risk) and the probable mechanism

(e.g., upregulation or downregulation of transcription) is

ultimately required for adequately explaining the mole-

cular association, although unknown and surprising gene

functions should always be anticipated.

The emergence of several large-scale genomic data sets

generated by projects such as ENCODE have revolu-

tionized our ability to query and annotate putative cis-

regulatory variants and form readily testable hypotheses.

Expansion of these resources and establishing well-

powered eQTL databases derived from relevant tissues

and cells will enable studies to pinpoint likely causal vari-

ants at any locus. We emphasize that functional studies

must then be undertaken in an unbiased manner so that

undermining the agnostic approach of GWASs can be

avoided. Most reports have simply implicated the nearest

gene to a GWAS hit without any evidence that it is the

true target of the functional variant. This is particularly

relevant for regulatory variants that could be considerably

distant from target gene(s). New technologies, including

3C-based techniques and the use of TALENS and ZFNs for

generating isogenic cell lines, will clearly be important

for identifying and validating the gene(s) directly affected

by the risk-associated variants. Modeling the effect of vali-

dated variants in laboratory animals might then provide

avenues for studying genetic disease.

This review provides a functional pipeline for the iden-

tification of candidate causal variants at GWAS loci. It is

important to note, however, that it is difficult to unequiv-

ocally prove that a SNP is the direct cause of any given

association. As opposed to linking rare mutations to dis-

ease, proving that common variants exert deleterious

effects is problematic. Although experimental evidence

might strongly support a plausible mechanism for an

association, it is unlikely that definitive proof of causality,

equivalent to ‘‘Koch’s postulates for genes,’’ will be

achieved.121 Furthermore, it is becoming clear that causal

variants are not always single SNPs acting alone and that

combinations of variants are often required in order for

effects to be explained. SNPs could also act in unantici-

pated cell types or could be involved in as yet undefined

mechanisms.

GWASs have also received criticism for their lack of clin-

ical translation becausemost effect sizes have been deemed

too small to be meaningful. However, individual small

effect sizes (<1.5) represent the reality of common genetic

variation and do not necessarily preclude clinical utility.

For example, the extremely successful cholesterol-lowering

statin drugs target HMGCR, a GWAS hit for circulating

lipid levels.122 This discrepancy occurs because a drug’s

efficacy bears little relation to the degree of genetic varia-

tion in its target gene. Unraveling the complex mecha-

nisms underlying GWAS associations will ultimately

identify important biological pathways that could present

suitable targets for drug development or repositioning of

known therapeutics.123 Steps toward filling this knowledge

gap, as described in this review, will bring us closer to
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elucidating the genetic basis of complex disease and offer

opportunities for personalized medicine.
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Niittymäki, I., et al. (2009). The common colorectal cancer

predisposition SNP rs6983267 at chromosome 8q24

confers potential to enhanced Wnt signaling. Nat. Genet.

41, 885–890.

11. Wright, J.B., Brown, S.J., and Cole, M.D. (2010). Upre-

gulation of c-MYC in cis through a large chromatin loop

linked to a cancer risk-associated single-nucleotide
er 7, 2013

http://browser.1000genomes.org/index.html
http://cancergenome.nih.gov/
http://cms1.gis.a-star.edu.sg/index.php
http://compbio.mit.edu/ChromHMM/
http://epicenter.immunbio.mpg.de/services/chromos
http://www.nature.com/icogs/
http://www.nature.com/icogs/
http://www.genome.gov/10005107
http://epigraph.mpi-inf.mpg.de/WebGRAPH/
http://bioconductor.org/packages/2.12/bioc/html/FunciSNP.html
http://bioconductor.org/packages/2.12/bioc/html/FunciSNP.html
https://usegalaxy.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.sanger.ac.uk/resources/software/genevar/
http://www.ncbi.nlm.nih.gov/gtex
http://www.ncbi.nlm.nih.gov/gtex
http://jjwanglab.org/gwas3d/
http://www.broadinstitute.org/mammals/haploreg
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://jaspar.binf.ku.dk/
http://csg.sph.umich.edu/locuszoom/
http://genome.ufl.edu/mapperdb
http://www.methdb.de
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.genome.gov/GWAstudies
http://www.cistrome.org/Cistrome/Cistrome_Project.html
http://www.cistrome.org/Cistrome/Cistrome_Project.html
http://www.omim.org/
http://www.omim.org/
http://pictar.mdc-berlin.de/
http://www.regulomedb.org
http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
http://noble.gs.washington.edu/proj/segway/
http://www.targetscan.org/
http://www.biobase-international.com/gene-regulation
http://genome.ucsc.edu
http://www.genome.gov/gwastudies
http://www.genome.gov/gwastudies


polymorphism in colorectal cancer cells. Mol. Cell. Biol. 30,

1411–1420.

12. Ahmadiyeh, N., Pomerantz, M.M., Grisanzio, C., Herman, P.,

Jia, L., Almendro, V., He, H.H., Brown, M., Liu, X.S., Davis,

M., et al. (2010). 8q24 prostate, breast, and colon cancer

risk loci show tissue-specific long-range interaction with

MYC. Proc. Natl. Acad. Sci. USA 107, 9742–9746.

13. Sotelo, J., Esposito, D., Duhagon, M.A., Banfield, K.,

Mehalko, J., Liao, H., Stephens, R.M., Harris, T.J., Munroe,

D.J., andWu, X. (2010). Long-range enhancers on 8q24 regu-

late c-Myc. Proc. Natl. Acad. Sci. USA 107, 3001–3005.

14. Harismendy, O., Notani, D., Song, X., Rahim, N.G., Tanasa,

B., Heintzman, N., Ren, B., Fu, X.D., Topol, E.J., Rosenfeld,

M.G., and Frazer, K.A. (2011). 9p21 DNA variants associated

with coronary artery disease impair interferon-g signalling

response. Nature 470, 264–268.

15. Visel, A., Zhu, Y., May, D., Afzal, V., Gong, E., Attanasio, C.,

Blow, M.J., Cohen, J.C., Rubin, E.M., and Pennacchio, L.A.

(2010). Targeted deletion of the 9p21 non-coding coronary

artery disease risk interval in mice. Nature 464, 409–412.

16. Meyer, K.B., Maia, A.T., O’Reilly, M., Teschendorff, A.E.,

Chin, S.F., Caldas, C., and Ponder, B.A. (2008). Allele-specific

up-regulation of FGFR2 increases susceptibility to breast can-

cer. PLoS Biol. 6, e108.

17. French, J.D., Ghoussaini, M., Edwards, S.L., Meyer, K.B.,

Michailidou, K., Ahmed, S., Khan, S., Maranian, M.J.,

O’Reilly, M., Hillman, K.M., et al.; GENICA Network;

kConFab Investigators (2013). Functional variants at the

11q13 risk locus for breast cancer regulate cyclin D1 expres-

sion through long-range enhancers. Am. J. Hum. Genet.

92, 489–503.
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