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Abstract

Objectives: To determine the accuracy of, and agreement among, EEG and

aEEG readers’ estimation of maturity and a novel computational measure of

functional brain age (FBA) in preterm infants. Methods: Seven experts esti-

mated the postmenstrual ages (PMA) in a cohort of recordings from preterm

infants using cloud-based review software. The FBA was calculated using a

machine learning-based algorithm. Error analysis was used to determine the

accuracy of PMA assessments and intraclass correlation (ICC) was used to

assess agreement between experts. Results: EEG recordings from a PMA range

25 to 38 weeks were successfully interpreted. In 179 recordings from 62 infants

interpreted by all human readers, there was moderate agreement between

experts (aEEG ICC = 0.724; 95%CI:0.658–0.781 and EEG ICC = 0.517; 95%

CI:0.311–0.664). In 149 recordings from 61 infants interpreted by all human

readers and the FBA algorithm, random and systematic errors in visual inter-

pretation of PMA were significantly higher than the computational FBA esti-

mate. Tracking of maturation in individual infants showed stable FBA

trajectories, but the trajectories of the experts’ PMA estimate were more likely

to be obscured by random errors. The accuracy of visual interpretation of PMA

estimation was compromised by neurodevelopmental outcome for both aEEG

and EEG review. Interpretation: Visual assessment of infant maturity is possi-

ble from the EEG or aEEG, with an average of human experts providing the

highest accuracy. Tracking PMA of individual infants was hampered by errors

in experts’ estimates. FBA provided the most accurate maturity assessment and

has potential as a biomarker of early outcome.

Introduction

Scalp recorded electroencephalography (EEG) is widely

used for bedside assessment of newborn brain function. It

is often used for monitoring epileptic seizures, and to

track functional brain recovery after medical adversities

such as birth asphyxia or early preterm birth.1–6 Recent

advances in neonatal intensive care unit (NICU) treat-

ment protocols have emphasized the need for improved,

evidence-based measures of functional brain development.

Several studies have indicated that early adversities or

compromised neurodevelopment are associated with a
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developmental delay in neonatal EEG.4,7–13 EEG would,

therefore, be an ideal tool for tracking functional brain

maturation in both research trials and clinical routine.

The visual interpretation of the EEG is, however, subjec-

tive and its general applicability is necessarily predicated

on its reliability.

Clinical evaluation of the neonatal EEG is based on

visual interpretation of the raw signal and/or its com-

pressed version, for example, the amplitude integrated

EEG (aEEG).14 Newborn EEG activity undergoes rapid

developmental changes during the early weeks of life and

a clinical EEG assessment is expected to determine the

relative maturity of the EEG activity compared to an

infant’s postmenstrual age (PMA).7,15–17 Given the impor-

tance of EEG for assessing brain function in preterm

infants, it is notable how little data exists on the accuracy

of an expert’s visual assessment of EEG maturity.18,19

Clinical practice is based on the common belief that an

experienced EEG reader would be able to assess EEG

maturity with an accuracy of 2 weeks.15

The aims of this study were to measure the accuracy

and reliability of clinical expert readers for assessing brain

maturity in EEG and aEEG recordings from a cohort of

preterm infants and compare visual review to a novel,

computational measure of functional brain age (FBA).

Methods

An overview of the study is shown in Figure 1.

Data acquisition

Two hundred and thirty-two (232) EEGs were recorded

from a cohort of 67 preterm infants consecutively admit-

ted to the NICU of the Medical University Hospital of

Vienna between October 2011 and July 2015. The median

recording duration was 2.7 h (IQR: 2.0–3.1 h, min: 0.4 h,

max: 7.8 h) and the median number of recordings per

infant was 4 (IQR: 3–4, min: 1, max 5). Initial tracings

were obtained as soon as possible after birth and consecu-

tively at 2-week intervals until term equivalent age, when

possible (range: 25–38 weeks PMA). Written, informed

parental consent was obtained from the parents. A subset

of this cohort was previously used to develop computa-

tional methods of EEG analysis.13,20 Infants were included

in the study cohort if they were born before 28 weeks

gestational age (GA) and they were medically stable at the

time of EEG recordings.

EEG recordings were made using nine scalp electrodes

and a Brain Quick/ICU EEG (MicroMed, Treviso, Italy)

at a sampling frequency of 256 Hz. Electrode positions

employed the international 10–20 system modified for

neonates at Fp1, Fp2, C3, C4, T3, T4, O1, O2, with a

reference at Cz. The default EEG montage for conven-

tional EEG review was Fp1-T3, T3-O1, Fp2-T4, T4-O2,

Fp1-C3, C3-O1, Fp2-C4, C4-O2, T3-C3, C4-T4. The

default aEEG montage was C3-C4.

Visual EEG and aEEG review

Seven clinical, neonatal EEG expert readers from six

countries reviewed the recordings. Four reviewed the EEG

signal (AK, EP, RC, SV) and three reviewed the aEEGs

(EG, KKS, MLT). All reviewers were trained under differ-

ent mentors and recording environments (Austria, Fin-

land, France, Italy, Netherlands, USA) and all are

internationally recognized experts with 7–30 years (mean

16 years) reading experience. Hence, we expected the

assessments of accuracy and reliability to represent the

upper end of the range seen in routine clinical practice.

All human experts reviewed the same EEG files using

the same online review software. This was made possible

by using a clinically approved cloud-based EEG platform

where each EEG/aEEG reviewer accessed the recording

database using a local installation of the software (iEEG/

Stratus, version 2.2.5253.13840, Kvikna Medical ehf., Ice-

land). Reviewers were able to alter the montage, filter set-

tings, time and voltage scaling as per clinical practice. To

ensure full blinding, the EEG files were converted to EDF,

renamed using randomized codes, and uploaded onto the

online review platform.

Reviewers were asked to estimate the PMA of the

infant for each EEG file. Except for the broad age range

of the cohort (25–38 weeks PMA), no other information

or video about the infants was disclosed. Reviewers were

not required to explain their estimates, but comments

were collected on any recording issues that could interfere

with PMA assessments, such as limited recording length,

excessive artefact, or the presence of pathological EEG/

aEEG patterns. Reviewers were encouraged to give PMA

estimates in all cases where possible, irrespective of con-

cerns about technical quality or pathological findings.

EEG recordings were excluded from further analysis if:

(1) at least two out of seven reviewers commented on

excessive artefact in the recording, (2) if at least two

reviewers commented that the recording was too brief for

analysis, or (3) missing age estimates from at least one

reviewer.

Computational estimate of functional brain
age (FBA)

FBA was calculated by a recently developed machine

learning-based algorithm that estimates maturation based

on a multivariable regression model with quantitative

EEG (qEEG) variables as inputs.13 The FBA algorithm
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Figure 1. Study overview: this figure depicts a display of 4 h of aEEG and 60 sec of conventional EEG, recorded from an infant at a PMA of

26 weeks.
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forms an estimate of age using a combination of compu-

tational summary measures of 1 h epochs of EEG record-

ings. These computational measures of EEG were

designed to (1) reflect the visual interpretation of EEG

with measures such as amplitude, inter-burst interval, and

relative frequency band powers, and (2) reflect several sig-

nal measures that are not explicitly observed in visual

interpretation such as entropy, suppression curve, the dis-

tribution of bursts versus their durations, and average

shapes of bursts normalized over time and amplitude.13

The FBA algorithm also has initial pre-processing stages

to remove suspected periods of artefact based on criteria

for excessive amplitude. The function that combines these

features into an estimate of age was estimated using sup-

port vector regression trained on subsets of data used in

this study. FBA used in this study was evaluated on the

current dataset using leave-one-out cross validation.21 For

EEG recordings that were longer than 1 h in duration,

the average FBA over multiple 1 h epochs was used as the

measure of FBA.

Statistical analysis

Inter-rater agreement among expert readers was evaluated

using the intra-class correlation coefficient (ICC) which

assumes that “a random sample of k judges is selected

from a larger population, and each judge rates each tar-

get, that is, each judge rates n targets altogether”.22 The

age estimates (k = 4 for the EEG, k = 3 for the aEEG)

were compared across EEG recordings.

Inter-rater agreement between EEG and aEEG estimates

of PMA was compared using resampling methods (boot-

strap), i.e. the distributions were calculated for the differ-

ences between ICC of aEEG and EEG estimates of PMA

for 1000 resampled subsets. The 95%CI was used to

determine a significant difference in ICC, that is, if the

95%CI did not span zero then the ICC was deemed to be

significantly different. Systematic differences between indi-

vidual EEG and aEEG reviewers were assessed using the

Kruskal–Wallis test. The reviewers’ assessments were also

compared on an individual by individual basis with Pear-

son’s linear correlation coefficient. Bootstrap resampling

was used for estimating confidence intervals of the corre-

lation coefficients.

The accuracy of age estimation was evaluated using

two forms of error: Systematic error (bias or average

deviation from the PMA) and random error (variance or

point-wise deviation from the PMA). Pearson’s correla-

tion coefficient and standard deviations were used to

measure random error and assessed for individual inter-

pretations and for an ensemble interpretation (average

across all reviewers). These measures were supported by

additional stratified measures of accuracy such as the

percentage of recordings within 1 week and 2 weeks of

PMA. The ensemble age estimate was also compared to a

computational estimate of age (FBA). For comparisons

including the FBA, we used only EEG recordings that

were successfully annotated by both human expert review-

ers and the computer algorithm (n = 149), the latter of

which includes a separate, automated artefact rejection

stage. Differences in the mean error (systematic error)

between the PMA and the visual interpretation of age or

FBA were tested using t-tests (paired data) or Welch’s t-

test (unpaired data). Differences in the error standard

deviation (random error) between the PMA and the

visual interpretation of age or FBA were tested using the

Pitman Morgan test (paired data) or Barlett test (un-

paired data).

The ability of visual interpretation to track trajectories

of brain maturation across consecutive EEG recordings

was evaluated by computing the standard deviation of the

difference between estimated age and PMA per infant.

Only infants with at least two recordings were included

(n = 47). The difference in infant-wise standard devia-

tions between interpretations (EEG, aEEG, FBA) was eval-

uated using a one-way ANOVA. For the ANOVA, the

homogeneity of group variances was tested using Levene’s

absolute test and post-hoc analysis was performed using

the Tukey’s HSD test. The standard deviation variable

was log-transformed for the ANOVA.

The effects of pathologic conditions on ICC and PMA

estimation accuracy were also examined. Three definitions

of abnormality were used: (1) Visual EEG interpretation,

whereby a recording was deemed abnormal if at least one

reviewer annotated a specific EEG abnormality such as low

voltage activity, absent sleep-wake cycling, sharp waves,

dysmorphic delta brushes or burst suppression; (2) Neu-

ropathological lesions, whereby an EEG was recorded from

an infant with a diagnosis of IVH or PVL; (3) Neurodevel-

opmental abnormalities, whereby an EEG was recorded

from an infant with subsequent scores on the Bayley Scales

of Infant Development more than two standard deviations

below the population average (less than 70) in any domain.

PMA estimates were grouped into normal or abnormal

groups, differences in ICC were compared using a boot-

strap analysis and differences in PMA accuracy were evalu-

ated using Welch’s t-test (testing systematic error) and the

Bartlett test (testing random error).

Results

As detailed in Table S1, 13 infants developed an IVH

(grade 2 or 3), one infant developed PVL (grade 2), two

infants developed NEC, and 18 infants had chronic lung

disease. While recording the first EEG, eight infants

received sedative analgesic or anti-seizure medications.
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While recording the second EEG, four infants received

such medications. While recording the third EEG, two

infants received such medications and while recording the

fourth EEG, one infant received such medications. No

infants were on these medications during the fifth and

sixth EEG.

Visual interpretations were obtained on 179 recordings

from 62 infants using the full EEG or aEEG. This cohort

was used to evaluate inter-rater agreement using the ICC

(ICC cohort). Automated FBA measures were computed

on 177 recordings from 65 infants. A total of 146 record-

ings from 61 infants were interpreted by both human

experts and FBA calculations (the FBA algorithm has

internal artefact detection, see Figs. S1–S4). This cohort

was used to evaluate the accuracy of age estimation

(PMA cohort). A summary of clinical variables within

both cohorts is shown in Table S1. Finally, the accuracy

in tracking maturation of individual infants was evaluated

on a subset of infants from the PMA cohort with serial

EEG recordings.

Comparison of EEG and aEEG
interpretations

The ICC between EEG reviewers was 0.517 (95%CI:

0.311–0.664; n = 179), and the ICC between aEEG

reviewers was 0.724 (95%CI: 0.658–0.781; n = 179). The

levels of agreement were significantly higher among aEEG

reviewers compared to EEG reviewers (DICC = 0.207,

95% CI: 0.149–0.288, n = 179). EEG reviewers had sys-

tematic differences in interpretation that were not appar-

ent in aEEG review (a significant difference in the average

EEG age with respect to reviewer: P < 0.001; no signifi-

cant differences in the average aEEG age with respect to

reviewer: P = 0.10, Kruskal–Wallis test, n = 179). Pairwise

correlations between reviewers of the EEG and aEEG are

shown in Table 1.

Correlation of visual review with PMA

All visual EEG and aEEG interpretations were strongly

correlated with PMA (Fig. 2, Table S2). The average

systematic error was 0.8 weeks for EEG reviewers and

�1.8 weeks for aEEG reviewers. The average random

error was 2.5 weeks for EEG reviewers and 2.3 weeks for

aEEG reviewers. Individual errors are shown in Table S4.

EEG review yielded 1-week accuracy in 10–52% of

recordings, and 2-week accuracy in 28–75% of recordings

(n = 146; Fig. 3E and F). The corresponding values with

the aEEG review were lower, with 1-week accuracy

obtained in 17–30% of infants, and 2-week accuracy in

40–62% of infants (n = 146; Fig. 3E and F). The visual

interpretations of the EEG and aEEG have comparable

random errors (P = 0.22, Pitman–Morgan test; n = 146.

The aEEG interpretation tended to underestimate the

PMA by 1.8 weeks (Cohen’s D = �1.0, P < 0.001, t-test;

n = 146) and the EEG interpretation tended to overesti-

mate the PMA by 0.8 weeks (Cohen’s D = 0.5, P < 0.001,

t-test; n = 146; Fig. 2D). The random error of the ensem-

ble reviewer estimate of age was 1.7 weeks and 1.8 weeks

for the EEG and aEEG, respectively (n = 146; Fig. 2D).

The group average (ensemble) interpretation of the EEG

and aEEG readers showed stronger correlation with PMA

than any individual reviewer (Fig. 3D).

Visual versus computational interpretation

These two methods of visual review were then bench-

marked against the FBA, a computational assessment of

functional brain age (Figs. 2C and 3). Compared to the

ensemble visual interpretation of EEG or aEEG, the FBA

has a lower random error (FBA = 1.1 weeks,

EEG = 1.7 weeks, aEEG = 1.8 weeks, P < 0.001 and

P < 0.001, respectively, Pitman–Morgan test; n = 146,

Fig. 2D and Table S4), and a lower systematic error than

the aEEG interpretation (FBA = �0.1 weeks;

EEG = 0.8 weeks; aEEG = �1.8 weeks: FBA vs. aEEG: t-

test; P < 0.001, FBA vs. EEG: t-test; P = 0.46, n = 146;

Fig. 2D). The visual interpretation of the EEG and aEEG

were, generally, more highly correlated with the FBA than

the PMA; however these differences were not significant

(Dr EEG: 0.030, 95%CI: �0.002–0.069 and Dr aEEG:

0.017, 95%CI: �0.014–0.049; n = 146, respectively – see

Table S3).

Table 1. The correlations between age assessment among the four EEG (left hand side of table) and three aEEG reviewers (right hand side of

table). R refers to each reviewer, values given are the correlation coefficient and range (CI 95%).

EEG aEEG

R2EEG R3EEG R4EEG R2aEEG R3aEEG

R1EEG 0.532 (0.379–0.638) 0.724 (0.604–0.797) 0.616 (0.491–0.736) R1aEEG 0.800 (0.753–0.844) 0.722 (0.675–0.778)

R2EEG 0.615 (0.500–0.689) 0.721 (0.647–0.781) R2aEEG 0.749 (0.700–0.803)

R3EEG 0.687 (0.597–0.768)
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Accuracy in tracking individual brain
maturation

When measuring an infant’s “developmental trajectory”

via serial recordings of the EEG (n = 47), the intra-infant

error, which is predominantly a random error, is the

most important factor, as systematic errors should be

constant as they are assumed to result from inter-infant

differences. The maturational trajectories drawn using

visual estimates of the EEG or aEEG were strikingly vari-

able, while FBA trajectories were clearly differentiated and

consistent (Fig. 3A–C). The FBA had significantly lower

“per infant” random error than the visual interpretation

of the EEG and aEEG (FBA = 0.6 � 0.5 weeks,

EEG = 1.2 � 0.8 weeks, aEEG = 1.3 � 0.9 weeks:

ANOVA; P < 0.001; post-hoc comparisons showed differ-

ences between FBA vs. EEG, P = 0.001, and FBA vs.

aEEG, P < 0.001). The random error was not significantly

different between the visual interpretation of the EEG and

aEEG (P = 0.89).

The effect of abnormal neurology on ICC
and PMA estimation

The effects of three different definitions of pathologic

conditions on PMA estimation were examined. The

Figure 2. Accuracy of age estimates in the visual EEG (A) and aEEG (B) reviews, and the computational FBA (C), n = 149. The filled markers in A

and B denote the average estimated age across reviewers for each recording and the associated vertical lines denote the range (minimum to

maximum) of estimated ages per reviewer. The diagonal dashed line delineates perfect PMA estimation. (D) Overall comparison of the error

distributions of each interpretation type and all reviewers, collapsed over the datasets shown in A–C. The distributions are kernel density

estimates.
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records were first divided into recordings without patho-

logic annotations (n = 97) versus those with (n = 49).

The records were next divided into recordings with IVH

or PVL (n = 112) versus those without (n = 34). Finally,

the records were divided into recordings with abnormal

neurodevelopmental outcome (n = 97) versus those with-

out (n = 30); infants with 19 EEG recordings were lost to

follow-up.

There were no differences in ICC, systematic or ran-

dom error with respect to annotations of abnormality as

defined by the visual interpretation of the aEEG/EEG

groups (Table 2). The random error was significantly

higher in infants with abnormal neurodevelopmental out-

come for EEG and significantly lower for aEEG review

(Table 2).

Discussion

This study assessed the inter-rater agreement of, and

accuracy of PMA estimation using exclusively the visual

interpretation of EEG/aEEG recordings by internationally

recognized experts. We showed moderate agreement

between expert interpretation of functional brain maturity

from the EEG or aEEG. Interpretations of the EEG and

aEEG were highly correlated with PMA at the individual

level, and this correlation was increased when the average

of several independent experts was observed. There was,

nevertheless, high intra-subject variability in the PMA

estimate for visual EEG/aEEG review. Our work extends

beyond the clinical tradition with visual EEG reviews, and

we show that an automated computational measure of

functional brain age may provide a more accurate esti-

mate of brain maturity.

There was moderate agreement among expert EEG and

aEEG readers’ estimations of PMA in preterm infants.

The visual interpretation of the EEG and aEEG was highly

correlated with PMA. As such, the common posit that an

experienced reader should be able to assess EEG maturity

with an accuracy of 2 weeks was confirmed. The presence

of concurrent pathologic conditions did not significantly

impair the estimation of PMA using EEG or aEEG,

although the variability in the visually determined PMA

estimate was altered in infants with respect to neurodevel-

opmental outcome for both EEG and aEEG review. There

was, nevertheless, high intra-subject variability in the

PMA estimates by visual EEG/aEEG review. This brings

Figure 3. Comparison of age estimates. (A–C) Growth trajectories from infants with serial recordings (n = 47). (A) The visual interpretation of

the EEG, (B) the visual interpretation of the aEEG and (C) the FBA versus PMA. Trajectories are colored according to the predicted age difference

(lag, or bias between the true age and the FBA estimate). (D–E) Summary of the correlation of the visual interpretation of the EEG/aEEG and the

FBA with PMA for individual raters (R1, R2, R3 and R4 for the EEG and R1, R2 and R3 for the aEEG) and the ensemble age estimate (Av). (D)

Correlation with PMA, (E) Percentage of recordings within 1 week of PMA, (F) Percentage of recordings within 2 weeks of PMA. All values are

shown as actual value (circular marker; EEG (blue), aEEG (green) and FBA (red) are colored) and 95% CI (whiskers).
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into question the validity of creating maturation trajecto-

ries in individual infants using the visual interpretation of

EEG or aEEG alone. In contrast, this study showed that a

novel, algorithm-based, computational measure of FBA

provided more accurate estimates of brain maturity from

which stable maturational trajectories could be calculated.

Multiple studies have examined the inter-rater variability

of the visual interpretation of neonatal EEG and aEEG. In

the study by Massey et al. (2019), there was substantial

agreement for the categorization of EEG voltage but poor

to inconsistent agreement for the presence of pathological

sharp waves.23 Clancy et al. (2011), showed a moderate,

positive association between grades of EEG and aEEG

background, although the distribution of grades was signif-

icantly different.24 Inter-rater agreement of seizure detec-

tion by experts using EEG was generally high (j = 0.827)

but reduced when seizures were infrequent or of short

duration.25,26 There was significant differences between the

visual review of aEEG and EEG for the detection of neona-

tal seizures;27 differences that could be resolved using a

joint interpretation.28 In seizure detection, the density of

EEG electrodes also has some influence on agreement.29 In

the present study, there was moderate agreement among

experts (ICC aEEG = 0.724; ICC EEG = 0.517). PMA esti-

mates based on the aEEG had a higher level of agreement,

but were less accurate, compared to PMA estimates based

on the EEG. The higher agreement but lower accuracy

among aEEG-based estimates is likely related to the sim-

plicity of the aEEG trend presenting with fewer degrees of

freedom for visual interpretation.30

The rapid developmental changes in the EEG were evi-

dent using a machine learning–based algorithm. The FBA

algorithm was, however, trained on the database of EEG

recordings used in this study. While the PMA estimates

used cross-validation, somewhat mitigating to problem of

overfitting, further validation of the FBA on an indepen-

dent population showed similar correlations with PMA as

individual experts in this study (see Table S2).13 This was

not a limitation for EEG and aEEG review, where readers

had not seen the recording before and were applying a

generalized understanding of EEG/aEEG maturation to

the visual interpretation.

The conduct of an inter-rater study of EEG or aEEG

assessment is challenged by many issues. The most obvi-

ous is that visual interpretation is inherently a subjective,

pattern-recognition task, so it may be influenced by the

visual appearance of the review software and the display

settings selected by each reader. The study cohort repre-

sented a typical population of preterm infants who were

clinically stable at the time of EEG recording but were

subjected to common adversities of prematurity such as

IVH, PVL, chronic lung disease and CNS-active drugs.

These coincident conditions could confound estimates of

PMA but would not likely disturb measures of inter-rater

agreement. This study, therefore, can be assumed to offer

a lower bound on the accuracy of the clinical estimate of

PMA using the visual interpretation of EEG/aEEG. This

study used, exclusively, the visual interpretation of EEG/

aEEG recordings by internationally recognized experts.

This does not reflect typical clinical practice in which

Table 2. The influence of abnormality on visual PMA assessment (averaged across experts).

Visual Interpretation Brain lesions Neurodevelopmental outcome

Normal (n = 97) Abnormal (n = 49) Normal (n = 112) Abnormal (n = 34) Normal (n = 97) Abnormal (n = 30)

PMA 30.9 (3.0) 31.8 (3.1) 31.5 (3.0) 31.2 (3.5) 31.6 (3.2) 31.7 (3.0)

EEG

ICC 0.427

(0.238–0.603)

0.489

(0.254–0.661)

0.456

(0.258–0.614)

0.552

(0.310–0.737)

0.499

(0.313–0.646)

0.481

(0.193–0.706)

Systematic error 0.7 0.9 0.8 1.0 0.7 0.4

Random error 1.7 1.7 1.8 1.5 1.5c 2.2c

aEEG

ICC 0.713

(0.586–0.815)

0.687

(0.587–0.770)

0.710

(0.625–0.781)

0.699

(0.535–0.822)

0.694

(0.595–0.775)

0.708

(0.536–0.837)

Systematic error �2.1 �1.7 �2.0 �1.2 �1.7 �2.5

Random error 2.0 1.7 1.8 1.5 1.9c 1.2c

FBA

Systematic error 0.0 �0.1 �0.1 0.1 0.0 �0.5

Random error 1.0 1.1 1.1 0.9 1.0 1.3

Abnormality was defined in three ways (columns, respectively): visual interpretation of abnormal features in the aEEG/EEG, the presence of brain

lesions and abnormal neurodevelopmental outcome. PMA is expressed as mean (standard deviation), ICC is expressed as ICC (95%CI), all errors

are in weeks. Significant differences at the 0.05 level between normal and abnormal groups are denoted in bold and with superscripts: aconfi-

dence interval of differences did not span 0, bunpaired t-test, cBartlett test. P-values/CIs were corrected for three different groupings using Bonfer-

roni’s method.
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readers must judge EEG maturity in a subject with known

PMA. A priori knowledge of the PMA would, however,

introduce a bias into any assessment of the accuracy or

reliability of visual review.

In conclusion, this study shows that tracking of func-

tional brain maturation is possible using EEG and aEEG.

However, developmental trajectories may not be suffi-

ciently accurate or stable for clinical or research purposes.

Computational measures hold promise for improving

developmental tracking and as a biomarker to benchmark

novel therapeutic interventions.31–33
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