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Movie viewing elicits rich and reliable brain state
dynamics
Johan N. van der Meer 1✉, Michael Breakspear 2,3, Luke J. Chang 4, Saurabh Sonkusare1 &

Luca Cocchi 1✉

Adaptive brain function requires that sensory impressions of the social and natural milieu are

dynamically incorporated into intrinsic brain activity. While dynamic switches between brain

states have been well characterised in resting state acquisitions, the remodelling of these

state transitions by engagement in naturalistic stimuli remains poorly understood. Here, we

show that the temporal dynamics of brain states, as measured in fMRI, are reshaped from

predominantly bistable transitions between two relatively indistinct states at rest, toward a

sequence of well-defined functional states during movie viewing whose transitions are

temporally aligned to specific features of the movie. The expression of these brain states

covaries with different physiological states and reflects subjectively rated engagement in the

movie. In sum, a data-driven decoding of brain states reveals the distinct reshaping of

functional network expression and reliable state transitions that accompany the switch from

resting state to perceptual immersion in an ecologically valid sensory experience.
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A key function of the brain is to integrate dynamic sensory
inputs with internal intentions, motivations, and predic-
tions about the world1. This ability is required for adap-

tive navigation of the world2. The experience of watching a movie
relies upon the dynamic processing of its audiovisual content to
form and update the impressions and expectations of the next
scene. Our understanding of the coordinated patterns of brain
activity that support the evaluation of sensory information has
been advanced by dynamic, multivariate, and network-based
analyses of functional neuroimaging data3,4. However, capturing
brain state dynamics remains a challenging endeavour and their
involvement in perception, evaluation, and action remains
unclear.

The brain manifests coordinated changes of activity across
multiple cortical regions, even in the absence of external tasks5,6.
Dynamic patterns of functional brain connectivity at rest appear
to reflect task-based phenotypes, including processing speed and
fluid intelligence7,8. Dynamic jumps between discrete brain states
can be modelled using the hidden Markov model (HMM), an
analytical framework that posits the existence of distinct states,
whose sequential expression yields observed functional imaging
data9. Here, HMM states define spatial patterns of fMRI signal
magnitude that recur sporadically in time. The recent application
of the HMM to resting-state activity has shown that such discrete,
transitory brain states are linked to genetics and behavioural
factors, including intelligence and personality5. Although the
HMM is a data-driven approach, the sequential expression of
discrete states links naturally to theoretical mechanisms of brain
dynamics, including metastability10 and multistability11,12.

The variability of resting-state neural dynamics across parti-
cipants and their unconstrained nature limits the ability to make
direct inferences about the behavioural relevance of brain state
dynamics. Furthermore, common methods adopted to infer
macroscopic dynamics, including dynamic functional con-
nectivity, are prone to non-neural confounds such as head
motion, cardiac noise, and respiratory artefacts13. Thus, it
remains unclear how brain functions rely on major dynamic
reconfigurations of whole-brain functional patterns14,15. Con-
ventional task designs, which typically comprise discretely pre-
sented, abstract stimuli also impede the assessment of associations
between ongoing stimulus processing and its evaluation such as
the engagement and interest in the narrative of a story or a
movie16.

Naturalistic stimuli, such as movies3 and spoken narratives17,
offer the constraint and replicability that resting state acquisitions
lack while adding greater ecological validity than traditional task
designs18. Recent analyses of movie viewing fMRI data using the
HMM have revealed a hierarchy of timescales, with more fre-
quent state transitions in sensory cortex hierarchically nested
within progressively slower transitions in heteromodal regions19.
Such multiscale dynamics mirror the statistics of the natural
world20 and suggest a remodelling of intrinsic correlations so that
their complexity more closely matches the statistical structure of
naturalistic perceptual streams4,21.

Comparing unconstrained resting-state acquisitions to movie
viewing has the potential to characterise this remodelling process,
and hence to investigate the functional significance of transitory
brain states. Using the HMM approach8, we mapped brain states
in fMRI data associated with both resting state and movie viewing
on two occasions, three months apart. The validity of the inferred
brain states was assessed using cross-session comparisons, movie
annotations, the Neurosynth database22, and concurrently
recorded physiological indices including heart rate (HR) and
pupil diameter (PD). We also investigated if metrics related to
brain state dynamics during movie watching are correlated with
the individual subjective immersion in the movie. This unique

design allowed disambiguation of reliable, stimulus-driven states
from endogenous brain dynamics. movie viewing induces the
reshaping of spontaneous brain dynamics into a reliable sequence
of states whose occurrence are temporally aligned to specific
features of the movie and reflect subjective engagement in
the movie.

Results
Brain states differently expressed in movie compared to rest.
Functional magnetic resonance imaging (fMRI) data were ana-
lyzed for 18 healthy participants who were scanned during 8 min
of resting-state followed by 20 min of movie viewing. HR and PD
were also recorded. All participants completed a questionnaire
immediately following the first neuroimaging session. Fourteen
of these participants repeated this experimental session after
3 months.

Brain states occurring at rest and during movie viewing were
estimated using the HMM, a method which posits that the
observed data arise from a small number of hidden states and
their transitions5. To allow for a direct comparison between the
states during the different experimental conditions (baseline rest
and movie viewing, plus 3-month follow-up rest and movie
viewing), we estimated brain states using concatenated time series
of 14 participants who completed both experimental sessions
(Methods). This allowed obtaining a group estimation of brain
states for each experimental condition and session. The inversion
of the HMM from these data yielded ten distinct states (Fig. 1).
Confirmatory analyses were performed on 8 min of rest and
8 min of movie data, with HMM inversions performed on
concatenated data as well as performed separately (i.e., movie and
rest independently; Supplementary Figs 2–5). To understand the
functional expression of these states, we coded their respective
loadings onto each of 14 widely studied canonical brain networks
(BNs)23 (Supplementary Fig. 1). The expression of network
activity was normalised so that zero corresponds to the average
activity of that network across the movies and rest periods. The
variability was also scaled according to that network’s standard
deviation, allowing insights into the balanced representation of
changes in fMRI signal magnitude across canonical BNs in time.
Each network was normalised separately (Methods). Each brain
state represents structured, recurring patterns of activity, loading
distinctly across these fourteen canonical BNs at any specific
timepoint.

Brain states are characterised (see Fig. 1) by their distinct fMRI
signal loadings onto the 14 canonical BNs (Supplementary Fig. 1).
State 1 is defined by high fMRI signal in most networks. States 5
and 9 show a relatively uniform fMRI signal across networks,
whereas State 7 displays a low projection onto all networks
(except for the primary visual network). The remaining brain
states (2–4, 6, 8, and 10) show idiosyncratic fMRI signal across
the 14 BNs. The fMRI signals defining these brain states load
preferentially on one or more specific functional networks such as
those supporting language (state 3), visual-auditory stimuli
processing (state 2, 4, and 10), and interoception (states 6 and
8); see Supplementary Fig. 3 for confirmatory analyses on HMM
inversions on 8 min of rest and movie data separately and
Supplementary Fig. 4 for results on HMM inversions on 8 min
each of concatenated data.

States are consistent over participants during movie watching.
We next assessed the degree of inter-subject consistency in the
expression of these ten states while participants watched the movie
or underwent the resting-state condition. Using a reverse-inference
approach3,24, we investigated whether fluctuations in the level of
between-subject consistency corresponded with the occurrence of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18717-w

2 NATURE COMMUNICATIONS |         (2020) 11:5004 | https://doi.org/10.1038/s41467-020-18717-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


particular events of the movie. Specifically, we counted how many
participants visited a particular brain state in a small window
around each time point and aligned these to independent annota-
tions of the movie’s structure and narrative (Table 1).

As anticipated, movie viewing was associated with greater
consistency across participants, relative to rest (Fig. 2; also
Supplementary Figs 3, 4, and 6). Moreover, the co-occurrence of
brain states across participants reached the highest levels during
specific movie events (Table 1), with complete consistency
observed during the viewing of 11 different scenes in either
session A or session B (Fig. 2). For example, in the third act of the
movie (from 14m:14 s to 14 m:40 s), brain state 6 (high DMN
and language network expression) was visited by all participants
during the first viewing session and 12 participants in the second
session (86% consistency). States 5, 9, and 10 were not often
present during these consistent times. In contrast, high levels of
between-subject consistency did not occur during the resting-
state acquisition (Fig. 2).

We also assessed the inter-session consistency by calculating
the Jaccard index over state visits across session A and session B,
averaged over brain states and participants (see Methods). The
occurrence of brain states was significantly more consistent
during movie viewing than rest (average Jaccard overlap of 0.18

(+/−0.04) in movies and 0.08 (+/−0.07) at rest, p= 0.0020).
This finding is in line with the higher between-session
consistency within each participant during movie compared to
rest (Supplementary Fig. 6). These results highlight the relatively
high (across-session and between-subject) consistency of brain
state dynamics using a naturalistic stimulus, compared to the
unconstrained resting-state condition. Formal comparison
between inter-session consistency (for each subject separately)
and inter-subject consistency (average inter-subject consistency)
showed higher inter-session consistency (paired t-test, t26= 2.85,
p= 0.008; see also Supplementary Fig. 7). This result suggests the
existence of movie-related participant-specific neural signatures.

In contrast, resting-state acquisitions were mainly dominated
by bistable transitions between two states (5 and 9), although
their temporal transitions were poorly aligned between partici-
pants. The higher reliability in the movie condition was linked to
richer brain state transitions between a larger number of states
compared to these bistable dynamics observed at rest (Supple-
mentary Fig. 6).

Brain states map to distinct behavioural profiles. To quantify
the functional relevance of the inferred states, we used association
mapping between their spatial expression and Neurosynth topics
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Fig. 1 fMRI signal profiles for each brain state occurring during resting state and movie viewing. The relative weighting of each brain state onto each of
the 14 canonical networks considered: dorsal and ventral Default Mode Networks (dDMN and vDMN), Precuneus, Anterior Salience Network (ASN),
Posterior Salience Network (PSN), Left and Right Executive Control Networks (lECN and rECN), Basal Ganglia Network (BGN), Auditory Network (AUD),
Primary Visual Network (pVIS), High Visual Network (hVIS), Sensorimotor Network (SMN), Visuospatial Network (VSN), and Language Network (LAN).
These are divided into four main groups: DMN (Default Mode Network); SAL (Salience Network); EXEC (Executive Network); and SENS (Sensory
Network). The colour coding associated to each brain state label is maintained throughout the manuscript. The Blue-Red colour bar indicates the relative
loading to the average activity across both recordings used to infer the HMM model.
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(reverse inference22,24; see Methods). This approach yields a
functional profile of the ten brain states across sixteen selected
topics: anxiety, language, negative, positive, outside, task switch-
ing, inhibition, conflict, feedback, pain, somatosensory, sensor-
imotor, music, auditory, emotion, and face perception (Fig. 3).
Brain states showed distinct functional signatures. States 4 and 7
have patterns that map onto task switching and sensorimotor
functions; State 3 has a strong association with language, emotion,
and auditory processing; State 6 has an association with emotion
processing with both positive and negative loading; and State 10 is
linked to sensorimotor processes, pain, and inhibition.

Brain states link to autonomic indices and movie annotations.
Physiological changes are integral to emotional experiences25, and
naturalistic stimuli are known to evoke reliable physiological
changes26. We, therefore, assessed whether the occurrence of a
given brain state corresponded to distinct electrophysiological
signatures of autonomic function associated with changes in
sensory inputs and level of arousal, namely HR and PD27,28. We
observed several significant associations between the occurrence of
brain states and fluctuations in both HR and PD (Table 2). For
example, lower HR was associated with the occurrence of brain
state 3 (low dDMN and language network activity), which were in
turn characterised by a neutral (i.e. low anxiety and pain) func-
tional profile (Fig. 3). This result supports the link between
changes in movie-induced arousal states and the emergence of
brain states. Smaller PD occurred during the expression of brain
state 4, which was characterised by high visual network activity
linked to face perception. We found a strong negative correlation
between PD and scene total luminance (r=−0.69, p= 10−75),
supporting the notion that changes in PD are linked to changes
in sensory inputs. However, larger PD coincided with the occur-
rence of brain states 1 (high executive, sensory and language) and

2 (high DMN, salience but low executive). In line with high DMN
activity, state 2 is functionally linked to high anxiety29 and pain30.
PD may therefore also link, at least to some extent, to transient
interoceptive mechanisms. Previous work has shown evoked PD
in the absence of visual stimuli may reflect higher-order cognitive
processes, such as updated sensory expectations following sur-
prise31, consistent with the association between larger PD and
State 1.

The transitory nature and switching of brain states is likely
linked to the unfolding of the movie. To test this hypothesis, we
calculated the overlap between states and the following movie
annotations: (i) presence of faces with positive or negative
expressions, (ii) presence of positive or negative valence of scenes,
(iii) use of language, and (iv) changepoints (i.e., scene changes).
We observed strong, statistically significant associations (pFWE <
0.05) between the occurrence of brain state 1 and the presence of
positive scenes and facial expressions (Table 3), which were in
turn associated with low anxiety and larger PD (Table 2). Brain
state 6 was associated with the presence of negative facial
expressions and, in turn, with high anxiety. State 3, which
weighted heavily onto the language networks (Fig. 1), was
expressed during scenes involving spoken dialogue. Finally,
changepoints were linked to brain states 2 and 7. These two
brain states were linked to the NeuroSynth constructs of scene
switching (Fig. 3). Brain state 2 linked with inhibition in high
arousal (large PD and high negative emotions and anxiety).

In principle, it would be interesting to understand whether
temporal disruptions in the movie dynamics (e.g., scene changes)
coincide with temporal discontinuities in brain states (i.e. state
transitions). However, movie change-points tend to be clustered
together, frequently occurring several times a second, interspersed
by relatively long continuous scenes (Supplementary Fig. 8). Thus,
the relatively slow temporal resolution of our BOLD-derived brain

Table 1 Annotation of the movie scenes.

State Interval
(start)

State
Interval (end)

Consistency
session A (%)

Consistency
session B (%)

Annotation time Description

5:04 5:19 State 3 79 100 5:03 Turning point: The protagonist (Will) is told by tattooed
man: “You just spat on the showman from The Butterfly
Circus. That was Mendez…”

5:14 He laughs cruelly at Will and we observe Will’s reaction
in close-up as he realises his predicament.

5:19 5:37 State 2 100 100 – (Not in Annotations) Will’s former boss introduces him as
‘The Limbless Man’ and raises the curtain. But Will is gone.

7:00 7:27 State 3 100 86 7:07 Obstacle: Will discovers that he cannot attain his goal of
joining a “fancy show” because The Butterfly Circus does
not have a sideshow and Will has no skills to perform his
own act.

8:00 8:13 State 4 71 100 (Not in Annotations) Circus acts of Acrobat and Strongest
Man. Will looks at the Audience

8:15 8:33 State 2 86 100 (Not in Annotations) Scenes of circus performances: The
Flame Breather and The Houdini Water Tank Escape

9:21 9:39 State 1 100 93 09:38 Obstacle: An African-American boy admires the
Strongman’s muscles and asks Will if he is also in the
Butterfly Circus.

09:40 Will responds to the boy sadly, “No, not exactly”.
12:12 12:39 State 4 100 86 (Not in Annotations) Past scenes of difficult past of other

circus members, contrasted with how they are now
14:14 14:40 State 6 100 86 14:10 Confronts Obstacle: Will falls while trying to cross the

river. As Will shouts for help his circus friends in the
distance cannot hear him over the sound of the river.

14:20 Mendez walks by. Will asks Mendez for help but Mendez
says, “I think you’ll manage.”

15:44 16:08 State 6 100 76 15:34 Confronts Obstacle: Will falls off the log into deep water.
15:46 The circus folk notice Will is missing and search frantically

for him in the water.
16:32 16:39 State 4 100 93 16:20 Overcomes Obstacle: Will overcomes his external obstacle

and bobs to the surface: “Look! I can swim!”
16:43 17:03 State 7 100 86 17:05 Climax: Mendez tells the audience that Will is climbing

50 feet into the air and he will leap from a high platform

These annotations highlight the very high inter-subject consistency either in session A or session B. The time corresponding to the movie is given in minutes:seconds. Further details about the movie are
available in Supplementary Note 1. The brief descriptions provided here match independent movie annotations; i.e., Turning point, Development, Obstacle, or Climax. The full details and annotations are
provided in Supplementary Table 1.
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state transitions does not allow for a meaningful assessment of any
putative temporal relationships. However, given the frequent
occurrence of clustered, bursty dynamics reported in neurophy-
siological recordings32, the use of rapidly sampled data modes
(e.g., M/EEG) could address this question in future studies.

Analyses of brain state dynamics: rest versus movie viewing.
We next quantified the dynamics of the ten brain states by
assessing the following measures: (i) fractional occupancy (FO),
defined as the proportion of total time spent in each given state;
(ii) state dwell time, representing the total amount of time spent
in each state, and (iii) state transition probabilities, representing

the likelihood of specific transitions between distinct brain states
(Fig. 4; see Supplementary Figs. 3–5 for confirmatory analyses).

Relative to rest, movie viewing was characterised by signifi-
cantly higher FO in brain states 1–4 and 6–8 (Fig. 4b). These
states were characterised by high weightings in visual, auditory,
and language networks (Figs. 1 and 3). The duration of the brain
states was in between the annotations with relatively shorter
duration (positive/negative faces: 7.4+/− 5.6 s; positive/negative
valence scenes: 8.2+/− 7.4 s; language: 14.6+/− 13.2 s; and
changepoints: 4.0+/− 1.9 s), and scene descriptions with rela-
tively longer duration (Table 1). As noted above, the situation was
the opposite in the resting state, with higher occupancy of brain
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Fig. 2 Brain state dynamics for rest and movie viewing, for each participant and session. Brain states are colour coded according to the legend (top right,
refer to Fig. 1 for brain state topologies). The temporal consistency across participants, which vary between 50% (chance for the resting state) and 100%
(complete consistency), is also presented (bottom panel of each session). Across-participants and –sessions consistency are relatively low during pre-
movie rest. Conversely, during movie viewing, across-participants and -sessions consistency are high. Specifically, across-participant consistency reaches
100% during the viewing of specific movie scenes (see Table 1 for details).
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states 5 and 9 and lesser occupancy of brain states 1–4 and 6–8.
The inter-subject consistency of the brain state expression was
also lower (Fig. 2 and Supplementary Fig. 6), with each
participant displaying a unique brain state progression through
time during the rest condition. In addition, qualitatively, brain
states 5 and 9 were visited for a longer time (Fig. 4b). Contrary to
resting state, movie-induced brain state dynamics showed an

overall reduction in time spent visiting each specific brain state.
Also, the visited brain states were characterised by strong and
specific patterns of fMRI signal in canonical functional networks.
In other words, movie viewing induced a higher number of
briefer brain state visits compared to rest. These results were
replicated in the second Movie viewing and rest sessions
(Supplementary Fig. 9; confirmatory analyses are presented in
Supplementary Figs. 3 and 5).

Movie viewing hence imposes a faster overall turnaround of
brain states, primarily due to less occupancy of brain states 5 and
9 that have longer dwell times in the resting state data. To further
understand this observation, we calculated state transition
probabilities (Fig. 5). Significant differences between brain state
transitions at rest and during movie viewing were identified using
Network-Based Statistics (pFWE < 0.05, Methods). These analyses
revealed a significant increase in the likelihood of transitions from
state 9 to state 5 in the resting state compared to movie viewing
(Fig. 5e). The reverse contrast (movie > rest) revealed a higher
number of transitions between a number of specific brain states
associated with movie viewing, particularly among states 1, 2, 3, 7,
and 8 (Fig. 5f). These findings were also replicated across the two
scanning sessions (Supplementary Fig. 10).

We also explored quantitative similarities between the time-
locked individual state-paths across participants—that is, the
detailed sequence of states and the precise timing of individual
transitions. Although such a sequence is a relatively complex path
unfolding on a high-dimensional manifold, the (Jaccard)
dissimilarity index for all subject pairs ranged from 0.72 to
0.88, a moderate level of agreement. That is, despite the
misalignment in the precise timing of the state transition times,
there is still a meaningful commonality of state paths across
participants.

Between subject differences in dynamics link to movie ratings.
We then investigated if brain state dynamics unique to each
participant were associated with their subjective ratings of the
movie. Subjective ratings were obtained using a simple ques-
tionnaire containing questions about (i) boredom, (ii) enjoyment,
(iii) emotional feelings, and (iv) audio quality. All questions could
be answered using a 1 to 5 rating scale. To investigate the link
between movie experience and brain state dynamics, we used an
inter-subject representational similarity analysis (IS-RSA33,34, see
Methods) which looks at the representation across participants
with an inter-subject distance matrix. The IS-RSA tests whether
participants who reported similar subjective experiences also had
comparable brain dynamics.

We first characterised the questionnaire responses using a
multidimensional scaling approach (Methods). In brief, this
method visualises the dissimilarity between individual movie
ratings as distances between points in a two-dimensional plane.
This analyses showed that movie experience was variable across
participants, ranging from high engagement (low boredom, high
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Fig. 3 Probabilistic functional profile of brain states based on meta-
analytic patterns of fMRI activity. ‘Topic maps’ used to match the brain
states were generated to catalogue associations between patterns of brain
activity (fMRI) and topics in the scientific literature22. Scores represent the
correlation between each brain state and Neurosynth topics. anx: anxiety;
lan: language; neg: negative; pos: positive; out: outdoor; switch: task
switching; inh: inhibition; confl: conflict; fb: feedback; somsens:
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face perception.

Table 2 State-specific deviations.

ΔHR (bpm) ΔHR
(p value)

ΔPD (a.u.) ΔPD
(p value)

State 1 45.7 0.014
State 2 90.3 0.023
State 3 −0.42 0.021
State 4 −11.4 0.001*

Deviations from their mean value across the entire movie are given in beats per minute (bpm)
for heart rate (HR) and arbitrary units (a.u.) for pupil diameter (PD).
States 5 to 10 exhibited no significant deviations in HR or PD.
*pFWE < 0.05; one-sample two-sided t-test
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enjoyment, high emotion, and high audio quality) to low
engagement (Fig. 6a). In IS-RSA, movie engagement was
represented with the full subject-by-subject distance matrix of
questionnaire answers (Fig. 6b).

We then applied RSA to compare the representation of
individual differences in brain state dynamics (FO and state
transitions) with the representation of the individual ratings of
the movie (Fig. 7a, “Methods”). Differences in FO and
questionnaire representation were positively correlated (r=
0.174, p= 0.031). We also observed a positive correlation between
the between-subject distance in the pattern of brain state
transitions and answers to the post-movie questionnaire (r=
0.182, p= 0.034) (Fig. 7b). There was no statistically significant
association between the state path dissimilarity and the movie
ratings (r=−0.09, p= 0.27). Whereas the questionnaire repre-
sentation can be divided up into more or less engagement in the
movie (Fig. 6), the brain dynamics representation can be divided

into increased expressions of brain state 1, 7, and 8 combined
with reduced expressions of brain states 2 and 3, and vice versa.
This finding is associated with more transitions from state 3 to
state 4. These results appeared to be specific to movie viewing as
brain state dynamics extracted from the pre-movie resting-state
data did not significantly correlate with movie appraisal.

Discussion
The brain is constantly active, with activity across disparate brain
regions supporting diverse cognitive functions, which in turn
allow appraisal and interaction with the environment6,35–37.
Here, we assessed if the temporal dynamics of distinct brain states
reflect the sensory, cognitive, emotional, and physiological pro-
cesses underpinning the subjective experience of a theatrical
movie. In particular, we contrasted resting state and movie-
viewing acquisitions to understand how perceptual immersion in

Table 3 Brain state profiles, determined by their overlap with story annotations.

Faces positive Faces negative Scenes positive Scenes negative Language Changepoint

State 1 13.17 14.22
State 2 13.08 7.09 11.40 5.58
State 3 24.19 11.96 11.31 39.42
State 4
State 5
State 6 9.31 12.58
State 7 9.70

The t-statistics of the overlap between brain states and movie annotations are significant at pFWE < 0.05 (equivalent to uncorrected p < 0.00083 and t > 3.16).
States 8 to 10 exhibited no significant associations with movie annotations.

* * * * * * * * *

M
ov

ie 
S1

Res
t S

1

D
w

el
l t

im
e 

(s
)

20

40

10

30

0

50

Res
t S

2

M
ov

ie 
S2

Res
t S

3

M
ov

ie 
S3

Res
t S

4

M
ov

ie 
S4

Res
t S

5

M
ov

ie 
S5

Res
t S

6

M
ov

ie 
S6

Res
t S

7

M
ov

ie 
S7

Res
t S

8

M
ov

ie 
S8

Res
t S

9

M
ov

ie 
S9

Res
t S

10

M
ov

ie 
S10

O
cc

up
an

cy
 (

%
)

20

40

80

60

0

a

b

Fig. 4 Dynamic characteristics of brain states across rest and movie viewing for session A. Session B is presented in Supplementary Fig. 3. Asterisks
indicate statistical significance (paired two-sided t-tests, pFWE < 0.05; corrected for multiple comparison across 10 states; n= 14 participants examined
over two consecutive sessions: rest session A and movie session A). a Fractional occupancy. States 1–4 and 6–8 have higher occupancy in movie viewing,
while the opposite is true for states 5 and 9. The exact p values for states S1–S10 are: 1.8e−7; 7.0e−7; 1.6e−4; 8.7e−4; 3.7e−3; 7.2e−5; 4.7e−5; 3.3e−3; 0.13.
b State dwell times. Qualitatively, the dwell time for states 5 and 9 are higher in rest condition. Grey lines show how occupancy and dwell times are paired
within participants. Boxplots: upper (lower) box edge: 25th (75th) percentile; central line: median; dotted lines: 1.5× interquartile length; whiskers extend to
the most extreme data points not considered outliers; red plus: outliers.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18717-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5004 | https://doi.org/10.1038/s41467-020-18717-w | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


an engaging naturalistic stimulus reshapes whole-brain state
transitions. Using a meta-analytic approach, we first found that
movie-viewing elicited a richer repertoire of HMM brain states
than at rest, which matched distinct functional profiles. The
temporal expression of these profiles recapitulated the content of
movie scenes, was associated with distinct physiological changes
and correlated with the subjective appraisal of the movie. These
results demonstrated that characterisation of brain state transi-
tions can inform our understanding of exteroceptive and inter-
oceptive processes that support the appraisal of an ecologically
valid sensory experience.

Movie viewing allows the study of transitory brain states linked
to an immersive sensory stimulation3,38. This experimental
paradigm provides a unique opportunity to capture complex
brain dynamics that may not otherwise be detectable through the
lens of traditional task designs18. Due to the complexity of cap-
turing meaningful brain states and temporal dynamics, neuroi-
maging research has thus far largely adopted resting-state
paradigms6,39,40. Using a number of complementary techniques,
these recent studies have suggested the existence of discrete brain
states that are characterised by the differential expression of
patterns of brain activity in regions comprising canonical brain
networks (BNs)3,6,9,41–43. However, the functional relevance of
these spontaneous brain states and their context-driven temporal
expression has not yet been resolved. To address this, we adopted
an approach that allows the characterisation of whole-brain
transitions between inferred brain states5. This method has
recently been used to describe slow (seconds44) and fast

(milliseconds39,45) resting-state dynamics that reflect genetic and
behavioural traits, including intelligence5. The current work
demonstrates that this generative modelling technique can cap-
ture subject-specific brain state transitions that are temporally
aligned to perceptual, semantic, and narrative features of a movie.

The expression of brain states is thought to support defined
functional network profiles required for the current sensory
context. Hence, such brain states should reliably emerge during
similar sensory experiences. We tested these hypotheses by
adopting a multi-session protocol involving repeated resting state
and movie viewing tasks, each interleaved by three months. Our
findings firstly support recent observations that resting-state
brain dynamics are predominantly bistable, converging with prior
models of resting-state EEG46 and fMRI data5. Specifically, we
found that two dominant states at rest whose network expressions
reflected only subtle modulations of the mean network activities
across all acquisitions. These findings are broadly compatible with
results showing structured fluctuations in resting-state fMRI
data47, while also highlighting that such dynamics are sig-
nificantly less rich and structured than those induced by complex
audiovisual stimuli. Indeed, movie viewing imposed richer brain
state dynamics that were characterised by distinct functional
profiles, with stronger perturbation away from the global mean
activity, which is consistent with deeper attractor networks48.
These state transitions were temporally aligned with the narrative
structure of the movie, displayed a close association with
corresponding sensory, perceptual, and emotional content, and
mirrored changes in HR variability and PD. The link between
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physiological changes and brain state dynamics suggest that the
sensory properties of a movie, as well as the content of its nar-
rative, could be manipulated to evoke discrete brain processes.
These findings motivate further investigations into the use of
structured naturalistic stimuli to induce sequences of brain states
underpinning a broad range of sensory and cognitive processes.

Notably, our data showed that subject-specific idiosyncrasies in
brain states FO and state transitions correlated with the subjective
rating of the movie. In particular, the correlation only involved
brain states that were more expressed during movie viewing
compared to rest. This result adds weight to the notion that
HMM brain states and dynamics reflect subjective sensory and
perceptual computations and their integration with higher-order
cognitive and emotional processes. This finding also highlights
that discrete snapshots of patterns of brain activity, isolated using
relatively simple low dimensional representations, can capture the
complex brain dynamics underpinning our rich subjective
experience. Previous work has shown that the recall of a movie’s
content is associated with inter-subject correlation in fMRI time
series during movie viewing49. Our work adds to this by showing
that recall of emotional responses are also linked to common
brain state transitions.

We sought to assess if structured departures from patterns of
spontaneous brain activity that emerge when viewing an ecolo-
gically valid sensory experience are functionally meaningful and
reproducible. To this end, we focused on 14 canonical BNs
because such large-scale systems have been consistently impli-
cated at rest and during cognitive, emotional, motor, and per-
ceptual tasks50–52. These prior findings suggest that these
canonical networks capture core properties of functional brain
organisation53,54. This spatial scale of description for whole-brain
dynamics has become ubiquitous in the field of cognitive and
clinical sciences, facilitating the link between our findings and the
existing literature and its future translation to clinical investiga-
tions. Other approaches have started from higher dimensional
representations43 or have chosen a data-driven, adaptive
dimension reduction55. Although we identified rich multi-state
dynamics during movie viewing, it is likely that the coarse-
grained dimension reduction to 14 networks contributed to the
restriction of resting-state dynamics largely to two states, less than
previously observed43,56. Similarly, defining HMM states across
large networks and estimating the model from whole-brain data
imposes coordinated, whole-brain transitions. This precludes the
identification of hierarchically nested time scales previously
reported in movie viewing fMRI when HMM models were esti-
mated regionally and not globally19,57. In sum, our choice of the
spatial aperture of large functional networks is well tuned to
highlight the transition from resting-state dynamics to those
evoked by movie immersion. Alternative approaches reveal other
complex features of these rich neuronal dynamics, including the
role of state transitions in scene completion58,59, narrative seg-
mentation60, and memory encoding19.

Several caveats need to be considered when interpreting our
findings. The HMM is a statistical technique that is not grounded
on biophysical models of neural activity. The detected dynamics
are the result of a statistical fitting of the data that imposes a strict
assumption of discretely expressed, not continually mixed, brain
states. In the resting state, fMRI dynamics have been previously
described using twelve distinct brain states5. Our selection of ten
states was based on control tests assessing the minimum number
of brain states necessary to describe the data without redundancy.
This was formally done by fitting the model and computing the
Akaike Information Criterion, as well as assessing changes in the
free energy under permutation-based testing56 (see Methods).
Moreover, we performed the HMM inversions numerous times,
with each inversion revealing similarly structured brain state

dynamics across both participants and sessions. Due to the
complex multi-session and multi-modal nature of the design, the
current study comprises a relatively small sample size. Although
our analyses were replicated across two temporally distinct
recordings in the same participants, it is likely that more nuanced
differences in brain states and their links to physiology and
behaviour would be evident in a larger data set. Finally, the vexed
issue of physiological confounds on functional BNs needs to be
acknowledged61. Notably, these effects have most often been
identified in resting-state acquisitions which, by virtue of their
less constrained nature, challenge the disambiguation of nuisance
effects from those due to visceral efferents such as the autonomic
correlates of suspense, fear, or surprise62,63. Movie viewing may
mitigate some of this concern because it comprises structured,
emotionally salient material, which engenders physiological
effects that are correlated with activity in central visceral centres
such as the anterior insula18.

Our findings recapitulate the need to consider distinct, non-
stationary, patterns of brain activity to characterise the neural
underpinnings of complex perceptual processes. Clinical trans-
lation of neuroimaging protocols place a heavy emphasis on
test–retest reliability to make sure that variance between mea-
surements can be reliably attributed to a disease state or pro-
gression64. Contrary to the commonly used resting-state
paradigm, we demonstrate that brain state dynamics isolated
using a movie paradigm have markedly higher test–retest relia-
bility. This finding encourages the uptake of ecological paradigms
and time-resolved methods by clinical studies interested in
assessing changes in whole-brain brain dynamics as a function of
disease state and progression.

Methods
Participants. Twenty-one healthy participants (11 females, right-handed, 21–31
years, mean age 27 ± 2.7 years) were recruited for the study’s two movie viewing
sessions. 17 participants completed both movie viewing sessions. Three participants
were excluded because of in-scanner head motion.

The study was approved by the human ethics research committee of the
University of Queensland and written consent was obtained for all participants.

Experimental paradigm. The experiment comprised two scanning sessions, three
months apart. For each session, fMRI data were acquired from participants during
an 8-min eyes closed resting state session, followed by viewing of a 20-min short
movie called the The Butterfly Circus using the Presentation 16.3 software. Details
regarding the experimental design have been reported elsewhere42. In short, the
Butterfly Circus narrates an intense, emotionally evocative story of a man born
without limbs who is encouraged by the showman of a renowned circus to over-
come obstacles of self-worth and reach his own potential. The narrative archi-
tecture of The Butterfly Circus map onto three distinctive drama acts with
significant developments, complications, and turning points for each act42 (Sup-
plementary Table 1). Moreover, the following basic annotations were provided with
the data: (i) the use of language, (ii) change of scenes, (iii–v) Positive/Negative
Faces, and (vi–viii) Positive/Negative Scenes (details in Supplementary Fig. 11).

Image and electrophysiological acquisition. Data were acquired using a Siemens
TIM Trio scanner equipped with a 12-channel head coil42. The gradient-echo echo
planar-imaging (EPI) scanning sequence had a repetition time (TR) of 2200 msec
and a resolution of 3 mm3. For the rest condition, 220 EPI brain volumes were
acquired, whereas, for the movie viewing, 535 volumes were acquired. A T1-
weighted structural image covering the entire brain was also collected (resolution of
1 mm3).

Concurrent with functional imaging, (electro-)physiological recordings were
also acquired: (i) HR was obtained from a Brain Products MR-compatible
BrainAmp amplifier (Brain Products GmbH, Gilching, Germany) with a sampling
frequency of 5000 Hz; (ii) respiration was obtained from the Scanner’s Personal
Monitoring Units system with a sampling frequency of 50 Hz; and (iii) PD was
recorded using an MR-compatible Eyelink eyetracker (EyeLink SR Research) with a
sampling frequency of 1000 Hz. Due to the recording quality, only the HR and PD
were used to link brain state dynamics with physiological changes.

Image and electrophysiological data processing. Image preprocessing was
performed using fMRIPrep version 1.1.565, which is based on the Python toolbox
Nipype. Structural images were first corrected for intensity non-uniformity and
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spatially normalised to MNI space (ICBM 152 Nonlinear Asymmetrical template
version 2009c). Brain tissue segmentation of cerebrospinal fluid (CSF), white
matter (WM), and grey-matter (GM) was also performed. Functional images were
slice-time corrected, motion corrected, co-registered to the structural image, nor-
malised to MNI space, and spatially smoothed with a 6 mm Gaussian kernel. ICA-
AROMA was subsequently performed using non-aggressive denoising66. Two
confounding time-series were obtained from functional image preprocessing: glo-
bal signal in WM, and global signal in the CSF. After spatial preprocessing, tem-
poral preprocessing was performed with the toolbox Nilearn version 0.5.0.
Temporal preprocessing included filtering the data between 0.01 and 0.15 Hz to
capture the neural signal associated to both rest and task67 and regression of global
WM and CSF signals.

HR was preprocessed using FMRIB FastR68 to detect heart-beat events. The
Tapas IO Toolbox version 201669 was used to measure HR at the same temporal
resolution as the fMRI time series (2200 ms). PD preprocessing was done using
custom MATLAB scripts (available here: [https://github.com/brain-modelling-
group/MovieBrainDynamics]) to detect eyeblinks and bad data segments. These
data were then interpolated and downsampled from 100 Hz to the same time
resolution as the fMRI time series.

Hidden Markov Model (HMM). The basic premise of the HMM is that dynamic
fluctuations in BOLD-inferred neural activity within brain regions comprising the
14 canonical BNs can be decomposed into a sequence of discrete hidden brain
states that switch and recur over time according to a time-invariant transition
probability. Therefore, each time point can be classified as belonging to a single
brain state, which represents a whole-brain configuration of average fMRI signal
across the 14 BNs.

For each of the 14 BNs23, time series were obtained by: (i) calculating the mean
signal within the ROIs comprising the network; (ii) removing time series associated
to the first five volumes; (iii) demeaning the signal; and (iv) scaling the resulting
time series by its standard deviation. Thus, network-averaged fMRI time series of
zero mean and unit standard deviation were calculated for each participant and
session (two movies and two resting-state conditions). Next, each participant’s time
series were temporally concatenated to a time × BNs matrix (14 participants, each
with 215 volumes (8 min) of rest A, 530 volumes (20 min) of first movie viewing,
215 volumes (8 min) of rest B, and 530 volumes (20 min) of second movie viewing:
20,860 × 14 matrix). The HMM was then fitted to the temporally concatenated time
courses (allowing for covariance between the time series) to yield a single set of 10
model parameters (brain states). This concatenation strategy allows participants to
have the same set of brain states across movies and rest periods, maintaining the
ability to assess brain state dynamics across conditions. These are assessed in terms
of the: (i) total time spent in a state over a longer time period (FO); (ii) time spent
by each participant in a given state before switching (dwell time); and (iii)
likelihood of switching between specific states (transition probability).

The HMM-MAR MATLAB toolbox ([https://github.com/OHBA-analysis/
HMM-MAR]; commit version 7a5915c) was used to perform Variational Bayes
inversion on the HMM using 500 training cycles, according to previously
established procedures5,43,56. The HMM assumes that fMRI time series can be
described using a dynamic sequence of a limited number of brain states5. The total
number of states needs to be specified a priori. Previous studies modelling fMRI
dynamics in healthy individuals considered between 5 and 12 states5,54,56. In our
analysis the HMM input was a 20,860 (14 participants with every 1490 timepoints)
by 14 (average signal from 14 network masks) matrix. In this particular
instantiation of the HMM, each brain state was defined by a multivariate Gaussian
distribution, which was described by the mean within each voxel, and covariance
between voxels, when each state is active5. Similar to the procedure found in
previous work56, we used the Akaike Information Criterion (AIC) metric to infer
the HMM with 10 states. In addition, we also inferred the HMM with 6, 8, 12, 14
and 25 states, with each state choice decoded 15 times. We found that using
12 states or more yielded HMM results in which several states were not occupied.
Therefore, the use of 12 or more likely reached a practical limit on what the HMM
could decode in our current dataset.

HMM inversion yields three different types of output; i.e., structural, temporal,
and dynamic. The structural output is a heat map for each brain state with the
fMRI signal across the 14 BNs (Fig. 1), together with the functional connectivity/
covariance matrices. The variability in the fMRI signal was used to estimate distinct
patterns of BN activity (brain states). The temporal output is the state path (Fig. 2)
for each participant and session56. This output provides information on the most
expressed brain state at each time point during rest and movie watching. The
dynamic output is generated from the state paths and parameterises the dynamics
across the rest or movie periods with: (i) fractional occupancy and state dwell-times
per brain state (Fig. 4) and (ii) state transition matrices (one for each participant
and session) encoding for the probability of transitioning from one state to another
(Fig. 5, note that the matrix is not symmetric).

Spatial definition of the 14 canonical BNs. The HMM was used to model the
temporal dynamics of 14 canonical BNs during the first and second movie viewing
sessions, as well as the rest condition. The spatial extent of these BNs were defined
according to an established reference definition that maximally disambiguates
cognitive states23 (Supplementary Fig. 1). For each participant and BN, the fMRI

signal was averaged across all voxels to construct an N (time points)-by- M (14
BNs) matrix containing the time courses of each BN. These time courses were then
normalised to have zero mean and unit standard deviation across time. Normal-
isation was done separately for each BN and participant. Thus, per participant, we
obtained two matrices (535 × 14) for movie viewing and two matrices (220 × 14)
for the resting state.

Reverse Inference of brain states with Neurosynth decoding. The Neurosynth
database contains nearly 14,300 fMRI studies and 507,000 reports of BOLD-
inferred brain activity ([www.neurosynth.org]). By mapping keywords (topics)
extracted from the literature body to the locations of the brain activity, it enables
broad cognitive functions/states to be decoded from brain activity in entire studies
or individual participants22. The decoding itself is an association test such that it
reflects the probability of a psychological process being present given the pattern of
activity over several regions in the brain. The Neurosynth framework provides a
comprehensive set of whole-brain term-to-activation ‘topic’ maps that allow one to
calculate either forward associations (P(Activation|State)) or reverse associations (P
(State|Activation)). In the present study, we forward associated the brain state of
our HMM model (Fig. 1) to the topic maps of 16 general terms chosen to
encompass a variety of brain processes applicable to movie viewing24.

We correlated the spatial distribution of each brain state (Fig. 1) to the topic
maps, effectively de-coding the range of mental states associated with each brain
state during watching of the Butterfly Circus movie (Fig. 3). Decoding was
performed using a python notebook obtained from the Neurosynth’s Github
webpage ([https://github.com/neurosynth/neurosynth]; commit version 948ce7).

Consistency of state paths over participants and sessions. In order to calculate
the consistency between participants of each brain state’s path over time (Fig. 2),
we used a sliding window of nine consecutive BOLD volumes (19.8 s). Within this
window, for each of the 10 brain states, we counted the number of participants that
had this state expressed at least once and identified the most frequently expressed
state. This information is displayed in the bottom trace of Fig. 2. We then con-
trasted the states expressed during movie watching with those of the resting-state
scans. Even though there were fewer states expressed during resting state, the
consistency count was markedly lower (only reaching 50–65%, i.e., 7–9 out of 14
participants, at certain times). However, during movie viewing, the count reached
100% multiple times (Table 1).

In order to calculate the consistency of brain states over sessions, for each state
and each participant, we constructed a binary vector of 0 (brain state not
expressed) and 1 (brain state is expressed) for each time-point during movie
viewing (530 scans) and rest (215 scans) for both session A and session B. To assess
the consistency over sessions (A and B), we calculated the Jaccard Overlap index
between the binary vectors for each brain state and averaged them. A paired t-test
was performed on these values to test whether Movie viewing has more consistent
brain-state overlaps than resting state.

Comparison of state dynamics between rest and movie viewing. In order to
assess brain state dynamics between rest and movie viewing, we compared the
dynamic metrics (FO and state dwell time) for each brain state. Significant dif-
ferences between these conditions were assessed with paired t-tests and marked in
the figures with an asterisk. We also compared the state transition probabilities
(averaged over participants) between the conditions in Fig. 5. A threshold of 20%
was applied to identify the most frequent transitions (middle column, Fig. 5c, d).
Finally, the Network-Based Statistics toolbox (version 1.2) was used to reveal the
network of state transitions that are significantly more expressed during movie
watching compared to rest, and conversely during resting state compared to movie
viewing (right column).

Link between brain states and electrophysiological data. In order to examine
whether HR and PD were consistently increased or decreased during brain state
visits, the following procedure was used. The HR and PD values were segmented
according to the brain state path, and averaged across time to calculate (for each
brain state) the value during a visit to brain states 1–10. Then, across the entire
movie averages were calculated for HR and PD to obtain a baseline, which was
subtracted from the brain state-specific value to generate the deviation value for
heart rate (ΔHR) and pupil diameter (ΔPD); see Table 2. This produced 14
deviation values for each brain state (one for each participant). A one-sample two-
sided t-test was then used to assess the likelihood of the observed deviations against
zero deviation.

Association between brain states and movie annotations. To obtain informa-
tion about the putative connection between HMM brain states and movie anno-
tations reflecting the unfolding narrative, we calculated the Szymkiewicz–Simpson
overlap70 between two state vectors as shown in Supplementary Fig. 12. The HMM
brain state vector composed of values 0 and 1 when the HMM brain state is not
expressed or expressed, respectively (Supplementary Fig. 12b). The story annota-
tions were also converted to vectors of 0 and 1 according to their onset and offset
times (Supplementary Fig. 11). Annotations vectors were generated for Positive
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Faces, Negative Faces, Positive Scenes, Negative Scenes, Language, and
Changepoint.

In order to calculate the significance, the averaged overlap index across
participants was compared to a null distribution of overlap indices generated by
5000 permutations of the brain state vectors and their overlaps with the annotation
vector. For each iteration, the movie annotation vector was randomly shuffled, the
overlap between the HMM state vector and annotation vector was re-calculated,
and finally averaged over participants to create a new random value. The
permutations yielded a null distribution that allowed for a comparison with the
observed overlap index to infer statistical significance via a t-score (Supplementary
Fig. 12c). All significant findings are reported in Table 3.

Post-movie questionnaire. The post-movie questionnaire had eight questions.
Four questions assessed the following: whether the participants had seen the movie
before (none had watched it before), if English was their native language (yes for all
participants), how participants rated their English fluency (two participants indi-
cated their fluency as 4 out of 5, whereas the remaining participants indicated 5 out
of 5), and how well the participants understood the movie content (all indicated an
understanding of 100%). These questions were omitted for the RSA analysis due to
the lack of variability across participants. The four remaining questions more
closely assessed the subjective appraisal of the movie and were used for the RSA:

1. Did you get bored during the 1st movie session?
Not at all: 1 2 3 4 5: very bored

2. How well did you enjoy the 1st movie session?
Not at all: 1 2 3 4 5: very enjoy

3. How emotional did you feel during the 1st movie?
Very sad: 1 2 3 4 5: very happy

4. How was the audio quality for the 1st movie?
Very poor: 1 2 3 4 5: very good

Pertaining to question 4, the audio quality itself did not change during
recordings and all participants reported that they understood the movie content
in a similar fashion. Participants likely rated this scale differently depending on
their own engagement. To quantify participant differences in movie evaluation,
a multidimensional scaling approach was applied to plot the questionnaire
answers as points in a two-dimensional representation (engagement by evoked
emotion). This approach revealed that there was a group of participants who
were more engaged with the movie (i.e., low boredom score combined with high
enjoyment, emotional and audio quality scores) and another group who were
less engaged (i.e., having high boredom or a low score on the other three
questions); see Fig. 6.

Association between movie ratings and brain state dynamics. We used the
inter-subject representational similarity analysis (IS-RSA) to assess how the brain
and behavioural data are represented in a group sample. Four inter-subject distance
matrices (each 18 × 17) were constructed for representations of brain dynamics
(FO and state transition), brain state Viterbi path, and movie impressions (Fig. 7).
To calculate the inter-subject distances for movie impression (session A), the
Euclidean distance of questionnaire ratings between each possible pair of partici-
pants was measured producing the 18 (participants) × 17 matrix. For the FO
representation, for every possible pair of participants, the correlation between the
10 FO values (one for each state) was calculated to produce the inter-subject
distance matrix. For the state transition representation, for every possible pair of
participants, the correlation between the state transition matrices (10 states × 9
transitions to another state) was calculated to produce the inter-subject distance
matrix. Finally, for the brain state (Viterbi) path, the Jaccard dissimilarity index (1-
Jaccard index) was used. In this way we generated a single representation for movie
impressions, two representations for brain state dynamics (one for FO and one for
state transitions) and one representation for brain state paths. In order to assess the
strength of associations between the brain states and movie rating representations,
we calculate the Pearson’s correlation between the lower triangular parts of the
matrices shown in Fig. 7a. Statistical significance was assessed using permutations
(i.e., re-calculating the correlation 5000 times, with each permutation shuffling the
participants in the movie rating matrix). From the null distribution, Z score (and
associated p-values) were obtained.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Extracted fMRI time-series used to infer the HMM, regions of interest, extracted
physiological parameters, questionnaire answers and movie annotations are available in
the “data” folder of the following Github repository: [https://github.com/brain-
modelling-group/MovieBrainDynamics]. The Github repository has the following DOI:
[https://zenodo.org/badge/latestdoi/244780030]. The repository contains all preprocessed
fMRI and physiological data needed to reproduce the results. The original functional and
structural MR images will be made available upon reasonable request to the authors with
mandatory ethics approval and data sharing agreement with QIMR Berghofer.

The web interface to the Neurosynth database is available here: [www.neurosynth.org].
The Neurosynth database is also accessible using the python interface mentioned in the
Code availability section.

A reporting summary for this Article is available as a Supplementary Information
file. Source data are provided with this paper.

Code availability
The code used to run the HMM inversions and generate Figs. 1–7 is provided in the
following Github repository: [https://github.com/brain-modelling-group/
MovieBrainDynamics]. This repository contains forks of (a) the Github repository
containing the Matlab code used to perform HMM inversions located at [https://github.
com/OHBA-analysis/HMM-MAR] and (b) the Github repository containing the python
code used to query the Neurosynth database, located at [https://github.com/neurosynth/
neurosynth].
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