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Abstract 

 

Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and 

cognitive function, and in neurological and psychiatric diseases. We examined heritability, 

genetic correlations and genome-wide associations of cortical measures across the whole 

cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 

individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant 

associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis 

(ENIGMA) consortium, and their biological implications explored using bioinformatic 

annotation and pathway analyses. We identified genetic heterogeneity between cortical 

measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-

catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in 

anthropometric traits, hindbrain development, vascular and neurodegenerative disease and 

psychiatric conditions. These data are a rich resource for studies of the biological 

mechanisms behind cortical development and aging. 
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Introduction 

The cortex is the largest part of the human brain, associated with higher brain functions such 

as perception, thought and action. Brain cortical thickness (CTh), cortical surface area (CSA) 

and cortical volume (CV) are morphological markers of cortical structure obtained from 

magnetic resonance imaging (MRI). These measures change with age1-3 and are linked to 

cognitive functioning4,5. The human cortex is also vulnerable to a wide range of disease or 

pathologies, ranging from developmental disorders and early onset psychiatric and 

neurological diseases to neurodegenerative conditions manifesting late in life. Abnormalities 

in global or regional CTh, CSA and CV have been observed in neurological and psychiatric 

disorders such as Alzheimer’s disease6,7, Parkinson’s disease8,9, multiple sclerosis10,11, 

schizophrenia12,13, bipolar disorder12,14,15,  depression15,16 and autism17,18.  The best method to 

study human cortical structure during life is using brain MRI.  Hence, understanding the 

genetic determinants of the most robust MRI cortical markers in apparently normal adults 

could identify biological pathways relevant to brain development, aging and various diseases. 

Neurons in the neocortex are organized in columns which run perpendicular to the surface of 

the cerebral cortex19; and, according to the radial unit hypothesis, CTh is determined by the 

number of cells within the columns and CSA is determined by the number of columns20. 

Thus, CTh and CSA reflect different mechanisms in cortical development20-24 and are likely 

influenced by different genetic factors25,26.  CV, which is the product of CTh and CSA, is 

determined by a combination of these two measures, but the relative contribution of CTh and 

CSA to CV may vary across brain regions. CTh, CSA and CV are all strongly heritable 

traits22,24-30 with estimated heritability of 0.69 to 0.81 for global CTh, and from 0.42 to 0.90 

for global CSA24-26.  Across different cortical regions however, there is substantial regional 

variation in heritability of CTh, CSA and CV22,24-30. Since CTh, CSA and CV are 

differentially heritable and genetically heterogeneous, we explored the genetics of each of 
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these imaging markers using genome-wide association analyses in large population-based 

samples (GWAS). We studied CTh, CSA and CV in the whole cortex and in 34 cortical 

regions in 22,822 individuals from 21discovery cohorts and replicated the strongest 

associations in 22,363 persons from the ENIGMA consortium. 
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Results  

Genome-wide association analysis 

Global Cortical Measures: The analyses of global CTh, CSA and CV included 22,163, 

18,617 and 22,822 individuals respectively. After a conservative correction for multiple 

testing (pdiscovery<1.09x10-9), we identified no significant associations with global CTh. 

However, we identified 10 independent loci associated with global CSA (n=4) and CV (n=6). 

These are displayed in Table S8 and Supplementary Figures 1 and 2. Five of the 6 CSA loci 

were replicated in an external (ENIGMA) sample (ENIGMA only analyzed CSA and CT). 

Regional Cortical Measures: GWAS of CTh, CSA and CV in 34 cortical regions of interest 

(ROIs) identified 148 significant associations. There were 16 independent loci across 8 

chromosomes determining CTh of 9 regions (Table S9), 54 loci across 16 chromosomes 

associated with CSA of 21 regions (Table S10), and 78 loci across 17 chromosomes 

determining CV of 23 cortical regions (Table  S11). We attempted replication for 70 of these 

148 loci in the ENIGMA sample and were able to replicate 62 of these 70 loci using a 

conservative replication threshold of pReplication=3.1x10-4, 0.05/161. Region-specific variants 

with the strongest association at each genomic locus are shown in Tables 1-3. Chromosomal 

ideograms showing genome-wide significant associations with global and regional cortical 

measures in the discovery stage are presented in Figure 1  

The strongest associations with CTh and CV were observed for rs2033939 at 15q14 (pDiscovery, 

CTh=1.17x10-73 and pDiscovery, CV=4.34x10-133) in the postcentral (primary somatosensory) 

cortex, and for CSA with rs1080066 at 15q14 (pDiscovery, CSA=8.45x10-109) in the precentral 

(primary motor) cortex. Figure 2 shows the lowest p-value of each cortical region. The 

postcentral cortex was also the region with the largest number of independent associations, 

mainly at a locus on 15q14. The corresponding regional association plots are presented in 

Supplementary Figure 3.  
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Associations across Cortical Measures and with Other Traits: Table S12 presents variants 

which are associated with the CSA or the CV across multiple regions. We observed 25 SNPs 

that determined both the CSA and CV of a given region, 4 SNPs that determined CTh and 

CV of the same region, but no SNPs that determined both the CTh and CSA of any given 

region (Table S13). Assessing genetic overlap with other traits, we observed that SNPs 

determining these cortical measures have been previously associated with anthropometric 

(height), neurologic (Parkinson’s disease, corticobasal degeneration, Alzheimer’s disease), 

psychiatric (neuroticism, schizophrenia) and cognitive performance traits as well as with total 

intracranial volume (TIV) on brain MRI (Tables S14-S16). 

 

Gene Identification 

Positional mapping based on ANNOVAR showed that most of the lead SNPs were intergenic 

and intronic (Figure 3). One variant, rs2279829, which was associated with both CSA and 

CV of the pars triangularis, postcentral and supramarginal cortices, is located in the 3’prime 

UTR of ZIC4 at 3q24. We also found an exonic variant, rs10283100, in gene ENPP2 at 

8q24.12 associated with CV of the insula.  

We used multiple strategies beyond positional annotation to identify specific genes 

implicated by the various GWAS associated SNPs. FUMA identified 232 genes whose 

expression was determined by these variants (eQTL) and these and other genes implicated by 

chromatin interaction mapping are shown in Tables S17 – S19.  MAGMA gene-based 

association analyses revealed 70 significantly associated (p<5.87*10-8) genes (Tables S20 – 

S22).  For global CSA and CV, 7 of 9 genes associated with each measure overlapped, but 

there was no overlap with global CTh. For regional CSA and CV we found 28 genes across 

13 cortical regions that determined both measures in the same region. Figure 4 summarizes 

the results of GTEx eQTL, chromatin interaction, positional annotation and gene-based 
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mapping strategies for all regions. While there are overlapping genes identified using 

different approaches, only DAAM1 gene (Chr14q23.1) is identified by all types of gene 

mapping for CV of insula. eQTL associations of our independent lead SNPs in the Religious 

Orders Study- Memory and Aging Project dorsolateral frontal cortex gene expression dataset 

are presented in Table S23.    

 

Pathway analysis 

MAGMA gene set analyses identified 7 pathways for CTh, 3 pathways for CSA and 9 

pathways for CV (Table S24). Among them are the Gene Ontology (GO) gene sets ‘hindbrain 

morphogenesis’ (strongest association with thickness of middle temporal cortex), ‘forebrain 

generation of neurons’ (with surface area of precentral cortex), and ‘central nervous system 

neuron development’ (with volume of transverse temporal cortex). However, after Bonferroni 

correction only one significant pathway (p<1.02×10-7) remained: ‘regulation of catabolic 

process’ for CTh of inferior temporal cortex. InnateDB pathway analyses of genes mapped to 

independent lead SNPs by FUMA showed a significant overlap between CTh and CSA genes 

and the Wnt signaling pathway (Supplementary Figures 4 and 5) as well as a significant 

overlap between CV genes and the basal cell carcinoma pathway (Supplementary Figure 6). 

  

Heritability  

Heritability estimates (h2) of global CTh were 0.64 (se=0.12; p=3×10-7) in ASPS-Fam and 

0.45 (se=0.08; p=2.5x10-7) in RS.  For CSA, h2 was 0.84 (se=0.12; p=2.63×10-11) in ASPS-

Fam and 0.33 (se=0.08, p=1×10-4) in RS, and for CV, h2 was 0.80 (se=0.11; p=1.10×10-9) in 

ASPS-Fam and 0.32 (se=0.08; p=1x10-4) in RS. There was a large range in heritability 

estimates of regional CTh, CSA and CV (Table S25). 
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Heritability based on common SNPs as estimated with LDSR was 0.25 (se=0.03) for global 

CTh, 0.29 (se=0.04) for global CSA and 0.30 (se=0.03) for global CV. LDSR heritability 

estimates of regional CTh, CSA and CV are presented in Table S25 and Supplementary 

Figure 7.  For the regional analyses, the estimated heritability ranged from 0.05 to 0.18 for 

CTh, from 0.07 to 0.36 for CSA and from 0.06 to 0.32 for CV. Superior temporal cortex 

(h2
CTh=0.18, h2

CSA=0.30, h2
CV=0.26), precuneus (h2

CTh=0.16, h2
CSA=0.29, h2

CV=0.28) and 

pericalcarine (h2
CTh=0.15, h2

CSA=0.36, h2
CV=0.32) are among the most genetically determined 

regions. 

The results of partitioned heritability analyses for global and regional CTh, CSA and CV with 

functional annotation and additionally with cell-type specific annotation are presented in 

Tables S26 and S27. For global CTh we found enrichment for super-enhancers, introns and 

histone marks. Repressors and histone marks were enriched for global CSA, and introns, 

super-enhancers and repressors for global CV. For regional CSA and CV the highest 

enrichment scores (>18) were observed for conserved regions. 

 

Genetic correlation 

We found high genetic correlation (rg) between global CSA and global CV (rg=0.81, 

p=1.2×10-186) and between global CTh and global CV (rg=0.46, p=1.4×10-14), but not 

between global CTh and global CSA (rg= -0.02, p=0.82). Whereas genetic correlation 

between CSA and CV was strong (rg >0.7) in most of the regions (Table S28 and 

Supplementary Figure 8), it was generally weak between CSA and CTh with rg<0.3, and 

ranged from 0.09 to 0.69 between CTh and CV. The postcentral and lingual cortices were the 

two regions with the highest genetic correlations between both CTh and CV, as well as CTh 

and CSA.   
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Genetic correlation across the various brain regions for CTh (Supplementary Figure 9, Table 

S29), CSA (Supplementary Figure 10, Table S30), and CV (Supplementary Figure 11, Table 

S31) showed a greater number of correlated regions for CTh and greater inter-regional 

variation for CSA and CV. Tables S32 - S34 and Supplementary Figures 12-14 show 

genome-wide genetic correlations between the cortical measures and anthropometric, 

neurological and psychiatric, and cerebral structural traits.   
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Discussion 

In our genome-wide association study of up to 22,822 individuals for MRI determined 

cortical measures of global and regional thickness, surface area and volume, we identified 

161 genome-wide significant associations across 19 chromosomes. Heritability was generally 

higher for cortical surface area and volume than for thickness, suggesting a greater 

susceptibility of cortical thickness to environmental influences. We observed strong genetic 

correlations between surface area and volume, but weak genetic correlation between surface 

area and thickness. We identified the largest number of novel genetic associations with 

cortical volumes, perhaps due to our larger sample size for this phenotype which was 

assessed in all 21 discovery samples.  

It is beyond the scope of our study to discuss each of the 161 associations identified. 

However, broad patterns emerged showing that genes determining cortical structure are also 

often implicated in development of the cerebellum and brainstem (KIAA0586, ZIC4, ENPP2) 

as well as the neural tube (one carbon metabolism genes DHFR and MSRBB3, the latter also 

associated with hippocampal volumes31). These genes determine development of not only 

neurons but also astroglia (THBS1) and microglia (SALL1). They determine susceptibility or 

resistance to a range of insults: inflammatory, vascular (THBS1, ANXA1, ARRDC3-AS132) 

and neurodegenerative (C15orf53, ZIC4, ANXA1), and have been associated with pediatric 

and adult psychiatric conditions (THBS1).  At a molecular level, the wnt/β-catenin, TGF-β 

and sonic hedgehog pathways are strongly implicated. Gene-set-enrichment analyses revealed 

biological processes related to brain morphology and neuronal development. 

There is a wealth of information in the supplementary tables that can be mined for a better 

understanding of brain development, connectivity, function and pathology. We highlight this 

potential by discussing in additional detail, the possible significance of 6 illustrative loci, 5 of 
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which, at 15q14, 14q23.1, 6q22.32, 17q21.31 and 3q24, associate with multiple brain regions 

at low p-values, while the locus at 8q24.12 identifies a plausible exonic variant. 

The Chr15q14 locus was associated with cortical thickness, surface area and volumes in the 

postcentral gyrus as well as with surface area or volume across 6 other regions in the frontal 

and parietal lobes. Lead SNPs at this locus were either intergenic between C15orf53 and 

C15orf54, or intergenic between C15orf54 and THBS1 (Thrombospondin-1).  C15orf53 has 

been associated with an autosomal recessive form of spastic paraplegia showing intellectual 

disability and thinning of the corpus callosum (hereditary spastic paraparesis 11, or 

Nakamura Osame syndrome). Variants of THBS1 were reported to be related to autism33 and 

schizophrenia34.  The protein product of THBS1 is involved in astrocyte induced 

synaptogenesis35, and regulates chain migration of interneuron precursors migrating in the 

postnatal radial migration stream to the olfactory bulb36. Moreover, THBS1 is an activator of 

TGFβ signaling, and an inhibitor of pro-angiogenic nitric oxide signaling which plays a role 

in several cancers and immune-inflammatory conditions. 

Variants at Chr14q23.1 were associated with cortical surface area and volume of all regions 

in the occipital lobe, as well as with thickness, surface area and volume of the middle 

temporal cortex, banks of the superior temporal sulcus, fusiform, supramarginal and 

precuneus regions, areas associated with discrimination and recognition of language or visual 

form. These variants are either intergenic between KIAA0586, the product of which is a 

conserved centrosomal protein essential for ciliogenesis, sonic hedgehog signaling and 

intracellular organization, and DACT1, the product of which is a target for SIRT1 and acts on 

the wnt/β-catenin pathway. KIAA0586 has been associated with Joubert syndrome, another 

condition associated with abnormal cerebellar development. Other variants are intergenic 

between DACT1 and DAAM1 or intronic in DAAM1. DAAM1 has been associated with 

occipital lobe volume in a previous GWAS. 
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Locus 6q22.32 contains various SNPs associated with cortical surface area and volume 

globally, and also within some frontal, temporal and occipital regions. The SNPs are 

intergenic between RSPO3 and CENPW. RSPO3 and CENPW have been previously 

associated with intracranial37,38 and occipital lobe volumes. RSPO3 is an activator of the 

canonical Wnt signaling pathway and a regulator of angiogenesis. 

Chr17q21.31 variants were associated with global cortical surface area and volume and with 

regions in temporal lobe. These variants are intronic in the genes PLEKHM1, CRHR1, NSF 

and WNT3. In previous GWAS analyses, these genes have been associated with general 

cognitive function39 and neuroticism40,41. CRHR1, NSF and WNT3 were additionally 

associated with Parkinson’s disease42-46 and intracranial volume37,38,47. The NSF gene also 

plays a role in Neuronal Intranuclear Inclusion Disease48 and CRHR1 is involved in anxiety 

and depressive disorders49. This chromosomal region also contains the MAPT gene, which 

plays a role in Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia50,51.  

The protein product of the gene ZIC4 is a C2H2 zinc finger transcription factor that has an 

intraneuronal, non-synaptic expression and auto-antibodies to this protein have been 

associated with subacute sensory neuronopathy, limbic encephalitis and seizures in patients 

with breast, small cell lung or ovarian cancers. ZIC4 null mice have abnormal development of 

the visual pathway52 and heterozygous deletion of the gene has also been associated with a 

congenital cerebellar (Dandy-Walker) malformation53, thus implicating it widely in brain 

development as well as in neurodegeneration.  C2H2ZF transcription factors are the most 

widely expressed transcription factors in eukaryotes and show associations with responses to 

abiotic (environmental) stressors. Another transcription factor, FOXC1, also associated with 

Dandy-Walker syndrome has been previously shown to be associated with risk of all types of 

ischemic stroke and with stroke severity. Thus, ZIC4 might be a biological target worth 

pursuing to ameliorate neurodegenerative disorders. 
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We found an exonic SNP within the gene ENPP2 (Autotaxin) at 8q24.12 to be associated 

with insular cortical volume. This gene is differentially expressed in the frontal cortex of 

Alzheimer patients54 and in mouse models of Alzheimer disease such as the senescence-

accelerated mouse prone 8 strain (SAMP8) mouse. Autotaxin is a dual-function ectoenzyme, 

which is the primary source of the signaling lipid, lysophosphatidic acid. Besides Alzheimer 

disease, changes in autotaxin/lysophosphatidic acid signaling have also been shown in 

diverse brain related conditions such as intractable pain, pruritus, glioblastoma, multiple 

sclerosis and schizophrenia. In the SAMP8 mouse, improvements in cognition noted after 

administration of LW-AFC, a putative Alzheimer remedy derived from the traditional 

Chinese medicinal prescription ‘Liuwei Dihuang’ decoction, are correlated with restored 

expression of four genes in the hippocampus, one of which is ENPP2. 

Among the other genetic regions identified, many have been linked to neurological and 

psychiatric disorders, cognitive functioning, cortical development and cerebral structure 

(detailed listing in Table S35).   

 

Heritability estimates are, as expected, generally higher in the family-based Austrian Stroke 

Prevention-Family study (ASPS-Fam) than in the Rotterdam Study (RS) for CTh (average 

h2
ASPS-Fam=0.52; h2

RS=0.26), CSA (0.62 and 0.30) and CV (0.57 and 0.23). This discrepancy 

is explained by the different heritability estimation methods: pedigree-based heritability in 

ASPS-Fam versus based on common SNPs that are in LD with causal variants55 in RS.  

Average heritability over regions is also higher for surface area and volume, than for 

thickness. The observed greater heritability of CSA compared to CTh is consistent with the 

previously articulated hypothesis, albeit based on much smaller numbers, that CSA is 

developmentally determined to a greater extent with smaller subsequent decline after young 

adulthood, whereas CTh changes over the lifespan as aging, neurodegeneration and vascular 
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injuries accrue1,3. It is also interesting that brain regions more susceptible to early amyloid 

deposition (e.g. superior temporal cortex, precuneus) have a higher heritability.   

We found no or weak genetic correlation between CTh and CSA, globally and regionally, and 

no common lead SNPs, which indicates that these two morphological measures are 

genetically independent, a finding consistent with prior reports25,26. In contrast, we found 

strong genetic correlation between CSA and CV and identified common lead SNPs for CSA 

and CV globally, and in 12 cortical regions. Similar findings have been reported in a previous 

publication26. The genetic correlation between CTh and CV ranged between 0.09 and 0.77, 

implying a common genetic background in some regions (such as the primary sensory 

postcentral and lingual cortices), but not in others. For CTh, we observed genetic correlations 

between multiple regions within each of the lobes, whereas for CSA and CV we found 

genetic correlations mainly between different regions of the occipital lobe. Chen et al56 have 

also reported strong genetic correlation for CSA within the occipital lobe. There were also a 

few genetic correlations observed for regions from different lobes, suggesting similarities in 

cortical development transcended traditional lobar boundaries. 

 

A limitation of our study is the heterogeneity of the MR phenotypes between cohorts due to 

different scanners, field strengths, MR protocols and MRI analysis software. Therefore, 

association results were combined using a sample-size weighted meta-analysis which does 

not provide overall effect estimates.  Moreover, our sample comprises of mainly European 

ancestry, limiting the generalizability to other ethnicities. Strengths of our study are the 

population-based design, the large age range of our sample (12 – 90 years), use of three 

cortical measures as phenotypes of cortical morphometry, and the replication of our CTh and 

CSA findings in a large and independent cohort. In conclusion, we identified patterns of 

heritability and genetic associations with various global and regional cortical measures, as 
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well as overlap of MRI cortical measures with genetic traits and diseases that provide new 

insights into cortical development, morphology and possible mechanisms of disease 

susceptibility.  
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Methods 

 

Study Population 

The sample of this study consist of up to 22822 participants from 20 population-based cohort 

studies collaborating in the Cohorts of Heart and Aging Research in Genomic Epidemiology 

(CHARGE) consortium57 and the UK Biobank (UKBB)58.  All the individuals were stroke- 

and dementia free, aged between 20 and 90 years, and of European ancestry, except for ARIC 

AA with African ancestry. Table S1 provides population characteristics of each cohort and 

Supplementary Section 1 provides a short description of each study. Each study secured 

approval from institutional review boards or equivalent organizations, and all participants 

provided written informed consent. Our results were replicated using summary GWAS 

findings of 22635 individuals from the Enhancing Neuroimaging Genetics through Meta-

analysis (ENIGMA) consortium59. 

 

Genotyping and Imputation 

Genotyping was conducted using various commercially available genotyping arrays across 

the study cohorts. Prior to imputation, extensive quality control was performed in each 

cohort. Genotype data were imputed to the 1000 Genomes reference panel60 (mainly phase 1, 

version 3) using validated software. Details on genotyping, quality control and imputation 

can be found in Table S2. 

 

Phenotype Definition 

This study investigated CTh, CSA and CV globally in the whole cortex and in 34 cortical 

regions. Global and regional CTh was defined as the mean thickness of the left and the right 

hemisphere in millimeter (mm). Global CSA was defined as the total surface area of the left 
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and the right hemisphere in mm2, while regional CSA was defined as the mean surface area of 

the left and the right hemisphere in mm2. Global and regional CV was defined as the mean 

volume of the left and the right hemisphere in mm3. The 34 cortical regions are listed in 

Table S3. High resolution brain magnetic resonance imaging (MRI) data was obtained in 

each cohort using a range of MRI scanners, field strengths and protocols. CTh, CSA and CV 

were generated using the Freesurfer software package61,62 in all cohorts except for FHSucd, 

where an in-house segmentation method was used. MRI protocols of each cohort can be 

found in Table S4 and descriptive statistics of CTh, CSA and CV can be found in Tables S5, 

S6 and S7.  

 

Genome-wide associations, meta-analysis, replication and annotation  

Based on a predefined analysis plan, each study fitted linear regression models to determine 

the association between global and regional CTh, CSA and CV and allele dosages of single 

nucleotide polymorphisms (SNPs). Additive genetic effects were assumed and the models 

were adjusted for sex, age, age2, and if needed for study site and for principal components to 

correct for population stratification. Cohorts including related individuals calculated linear 

mixed models to account for family structure. Details on association software and covariates 

for each cohort are shown in Table S2. Models investigating regional CTh, CAS and CV 

were additionally adjusted for global CTh, global CSA and global CV, respectively. Quality 

control of the summary statistics shared by each cohort was performed using EasyQC63. 

Genetic Variants with a minor allele frequency (MAF) < 0.05, low imputation quality 

(R2<0.4), and which were available in less than 10000 individuals were removed from the 

analyses. Details on quality control are provided in Supplementary Section 2. 

We then used METAL64 to perform meta-analyses using the z-scores method, based on p-

values, sample size and direction of effect, with genomic control correction. We performed 
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10.000 permutation tests based on cortical measurements from Rotterdam Study to estimate 

the number of independent tests. Based on the permutation test results, the genome-wide 

significance threshold was set a priori at 1.09×10−9 (= 5×10-8 /46). We used the clumping 

function in PLINK65 (linkage disequilibrium (LD) threshold: 0.2, distance: 300kb) to identify 

the most significant SNP in each LD block. 

For replication of our genome-wide significant CTh and CSA associations, we used GWAS 

meta-analysis results from the ENIGMA consortium for all SNPs that were associated at a p-

value < 5×10−8 and performed a pooled meta-analysis. The p-value threshold for replication 

was set to 3.1×10−4 (nominal significance threshold (0.05) divided by total number of lead 

SNPs (161)). CV was not available in the ENIGMA results.  The NHGRI-EBI Catalog of 

published GWAS66 was searched for previous SNP-trait associations at a p-value of 5×10-8  

of lead SNPs.  

Regional association plots were generated with LocusZoom67, and the chromosomal 

ideogram with PHENOGRAM (http://visualization.ritchielab.org/phenograms/plot). 

Annotation of genome-wide significant variants was performed using the ANNOVAR 

software package68 and the FUMA web application69.  FUMA eQTL mapping uses 

information from three data repositories (GTEx, Blood eQTL browser, and BIOS QTL 

browser) and maps SNPs to genes based on a significant eQTL association. We used a false 

discovery rate threshold (FDR) of 0.05 divided by number of tests (46) to define significant 

eQTL associations. Gene-based analyses, to combine the effects of SNPs assigned to a gene, 

and gene set analyses, to find out if genes assigned to significant SNPs were involved in 

biological pathways, were performed using MAGMA70 as implemented in FUMA. The 

significance threshold was set to 5.87×10-8 for gene-based analyses (FDR threshold (0.05) 

divided by number of genes (18522) and number of independent tests (46)) and to 1.02×10-7 

for the gene-set analyses (FDR threshold (0.05) divided by the number of gene sets (10651) 
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and by the number of independent tests (46)). Additionally, FUMA was used to investigate a 

significant chromatin interaction between a genomic region in a risk locus and promoter 

regions of genes (250 bp upstream and 500 bp downstream of a TSS). We used an FDR of 

1×10−6 to define significant interactions. 

 We investigated cis (<1Mb) and trans (>1 MB or on a different chromosome) expression 

quantitative trait loci (eQTL) for genome-wide significant SNPs in 724 post-mortem brains 

from the Religious Order Study and the Rush Memory and Aging Project (ROSMAP)71,72 

stored in the AMP-AD database. The samples were collected from the gray matter of the 

dorsolateral prefrontal cortex. The significance threshold was set to 0.001 (FDR threshold 

(0.05) divided by the number of independent tests (46)).  

For additional pathway analyses of genes that were mapped to independent lead SNPs by 

FUMA, we searched the InnateDB database73. The STRING database74 was used for 

visualizing protein-protein interactions. Only those protein the subnetworks with five or more 

nodes are shown. 

 

Heritability  

Additive genetic heritability (h2) of CTh, CSA and CV was estimated in two studies: the 

Austrian Stroke Prevention Family Study (ASPS-Fam; n=365) and the Rotterdam Study (RS, 

n=4472). In the population based family study ASPS-Fam, the ratio of the genotypic variance 

to the phenotypic variance was calculated using variance components models in SOLAR75. In 

case of non-normalty, phenotype data were inverse-normal transformed. In RS, SNP-based 

heritability was computed with GCTA76,77. These heritability analyses were adjusted for age 

and sex. 

Heritability and partitioned heritability based on GWAS summary statistics was calculated 

from GWAS summary statistics using LD score regression (LDSC) implemented in the ldsc 
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tool (https://github.com/bulik/ldsc). Partitioned heritability analysis splits genome-wide SNP 

heritability into 53 functional annotation classes (e.g. coding, 3’ UTR, promoter, transcription 

factor binding sites, conserved regions etc.) and additionally to 10 cell-type specific classes 

(e.g. central nervous system, cardiovascular, liver, skeletal muscle etc.) as defined by 

Finucane et al.78 to estimate their contributions to heritability. The significance threshold was 

set to 2.05x10-5 (0.05/number of functional annotation classes (53) / number of independent 

tests (46)) for heritability partitioned on functional annotation classes and 2.05<10-6 

(0.05/number of functional annotation classes (53) / number of cell types (10) / number of 

independent tests (46)) for heritability partitioned on annotation classes and cell types. 

 

Genetic correlation 

LDSR genetic correlation79 between CTh, CSA and CV was estimated globally and within 

each cortical region. The significance threshold was set to 7.35×10-4 (nominal threshold 

(0.05) divided by number of regions (34) and by number of correlations (CSA and CV, CSA 

and CTh). Genetic correlation was also estimated between all 34 cortical regions for CTh, 

CSA and CV, with the significance threshold set to 8.91×10-5 (nominal threshold (0.05) 

divided by number of regions (34) times the number of regions -1 (33) divided by 2 (half of 

the matrix). Additionally, the amount of genetic correlation was quantified between CTh, 

CSA and CV and physical traits (height, BMI), neurological and psychiatric diseases (e.g. 

Alzheimer’s disease, Parkinson’s disease), cognitive traits and MRI volumes (p-value 

threshold (0.05/46/number of GWAS traits). As recommended by the ldst tool developers, 

only HapMap3 variants were included in these analyses, as these tend to be well-imputed 

across cohorts. 
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Table 1. Genome-wide significant associations (pDiscovery < 1.09×10-9) of regional cortical 
thickness (lowest p-value of each cortical region at each genomic locus) 

Lobe Region Locus Position Lead SNP Nearest gene Annotation N pDiscovery pReplication ppooled 

temporal 

superior 
 

16q24.2 87225139 rs4843227 LOC101928708 intergenic 21887 2.79E-12 9.93E-05 1.02E-14 
superior 

 
17q21.31 44861003 rs199504 WNT3 intronic 21887 1.30E-10 5.63E-04 2.14E-12 

middle temporal 14q23.1 59072144 rs10782438 KIAA0586 intergenic 21559 2.17E-13 2.69E-08 6.89E-20 
inferior temporal 2q35 217332057 rs284532 SMARCAL1 intronic 21885 1.03E-09 0.2673 2.23E-07 

banksts 14q23.1 59074878 rs160458 KIAA0586 intergenic 18342 9.39E-10 2.77E-09 1.56E-17 

parietal 
superior parietal 16q24.2 87225101 rs9937293 LOC101928708 intergenic 21886 2.68E-14 1.65E-12 3.11E-25 
superior parietal 1q41 215141570 rs10494988 KCNK2 intergenic 21886 2.60E-12 2.30E-07 6.98E-18 

postcentral 15q14 39633904 rs2033939 C15orf54 intergenic 21885 1.17E-73 4.44E-63 1.04E-134 

occipital lateral occipital 5q14.1 79933093 rs245100 DHFR intronic 21886 2.68E-11 7.93E-07 2.11E-16 
cuneus 14q23.1 59624317 rs4901904 DAAM intergenic 21885 4.02E-14 1.18E-08 5.92E-21 

 
insula 9q31.3 113679617 rs72748157 LPAR1 intronic 21560 1.46E-10 6.33E-05 1.70E-13 
insula 16q12.1 51449978 rs7197215 SALL1 intergenic 21560 1.45E-13 0.005499 5.63E-13 

N: number of individuals in meta-analysis; pDiscovery: p-value of discovery GWAS meta-analysis in 

CHARGE;  pReplication: p-value of replication meta-analysis in ENIGMA; ppooled: p-value of pooled 

discovery and replication meta-analysis; in bold: pReplication<3.1×10-4 (=0.05/Nl, Nl=161, total number of 

lead SNPs); banksts: banks of the superior temporal sulcus. 
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Table 2. Genome-wide significant associations (pDiscovery < 1.09×10-9) of global and regional cortical 
surface area (lowest p-value of each cortical region at each genomic locus) 

Lobe Region Locus Position Lead SNP Nearest gene Annotation N pDiscovery pReplication ppooled 

 global 

17q21.31 44787313 rs538628 NSF intronic 18617 1.78E-23 4.35E-20 1.09E-41 
6q22.32 126792095 rs11759026 MIR588 intergenic 18617 5.21E-22 3.33E-14 6.75E-34 
6q22.33 127204623 rs9375477 RSPO3 intergenic 18617 4.86E-13 7.15E-08 5.81E-19 
6q21 109000316 rs9398173 FOXO3 intronic 18617 6.84E-10 0.001047 3.78E-11 

frontal 

superior frontal 5q14.3 92187932 rs17669337 NR2F1-AS1 intergenic 18272 1.40E-11 2.11E-06 7.12E-16 
caudal middle frontal 6q22.32 126876580 rs9388500 RSPO3 intergenic 17891 2.35E-11 5.34E-12 3.12E-21 
pars opercularis 5q23.3 128734008 rs12187568 ADAMTS19 intergenic 16632 1.19E-16 NA NA 
pars triangularis 3q24 147106319 rs2279829 ZIC4 UTR3 18265 6.32E-20 5.05E-29 4.07E-47 
pars triangularis 7q21.3 96212105 rs58314581 LOC100506136 intergenic 10070 9.88E-10 NA NA 
precentral 15q14 39634222 rs1080066 THBS1 intergenic 18267 8.45E-109 1.14E-90 2.94E-196 
precentral 6q15 92002569 rs9345124 MIR4643 intergenic 18267 5.50E-11 3.16E-14 1.21E-23 

temporal 

superior temporal 2p16.3 48274592 rs38664584
 

FBXO11 intergenic 18269 9.51E-12 1.78E-05 6.16E-15 
superior temporal 4q26 119249835 rs55699931 PRSS12 intronic 18269 2.08E-11 0.02489 4.52E-10 
superior temporal 2q23.2 150022681 rs13008194 LYPD6B intronic 18269 5.94E-11 4.05E-07 2.86E-16 
middle temporal 6q22.32 126964510 rs4273712 RSPO3 intergenic 18269 6.93E-10 4.24E-05 5.32E-13 
banksts 14q23.1 59072226 rs186347 KIAA0586 intergenic 18265 4.11E-10 3.28E-08 9.72E-17 
fusiform 17q21.31 43910088 rs17689918 CRHR1 intronic 17077 6.61E-12 9.84E-09 6.15E-19 
transverse temporal 2q23.2 150012936 rs2046268 LYPD6B intronic 18264 9.09E-10 1.14E-11 6.10E-20 

parietal 

superior parietal 15q14 39632013 rs71471500 C15orf54 intergenic 18270 3.85E-24 9.30E-19 8.45E-41 
superior parietal 19p13.2 13109763 rs68175985 NFIX intronic 17324 8.84E-11 7.20E-16 6.60E-25 
inferior parietal 20q13.2 52448936 rs6097618 SUMO1P1 intergenic 18267 1.78E-16 1.22E-13 3.60E-27 
inferior parietal 12q14.3 65797096 rs2336713 MSRB3 intronic 18267 1.24E-12 1.29E-11 1.23E-22 
inferior parietal 2p25.2 4563477 rs669952 LINC01249 intergenic 18267 4.47E-10 7.17E-09 2.19E-17 
supramarginal 15q14 39633904 rs2033939 C15orf54 intergenic 18272 9.07E-27 7.80E-27 7.74E-52 
supramarginal 14q23.1 59627631 rs2164950 DAAM1 intergenic 18272 1.25E-13 1.61E-13 1.45E-25 
supramarginal 3q24 147106319 rs2279829 ZIC4 UTR3 18272 7.38E-12 4.74E-15 2.45E-25 
postcentral 15q14 39634222 rs1080066 C15orf54 intergenic 18265 5.65E-47 4.95E-32 6.23E-76 
postcentral 3q24 147106319 rs2279829 ZIC4 UTR3 18265 1.90E-21 1.41E-23 2.36E-43 
postcentral 9q21.13 76144318 rs67286026 ANXA1 intergenic 18265 3.58E-12 4.61E-06 3.08E-16 
precuneus 14q23.1 59628609 rs74826997 DAAM1 intergenic 18270 2.40E-24 2.92E-17 2.85E-39 
precuneus 6q23.3 138866268 rs9376354 NHSL1 intronic 18270 7.80E-13 2.25E-08 2.97E-19 
precuneus 3q26 190666643 rs1159211 SNAR-I intergenic 18270 4.49E-10 6.30E-06 3.41E-14 

occipital 

lateral occipital 14q23.1 59627631 rs2164950 DAAM1 intergenic 18269 3.04E-26 3.02E-15 1.55E-38 
lingual 14q23.1 59628679 rs76341705 DAAM1 intergenic 18270 1.57E-20 5.48E-14 2.95E-32 
cuneus 14q23.1 59625997 rs73313052 DAAM1 intergenic 18267 1.90E-32 2.52E-15 1.02E-43 
pericalcarine 14q23.1 59628679 rs76341705 DAAM1 intergenic 18267 4.67E-24 1.76E-19 1.72E-41 
pericalcarine 5q12.1 60117723 rs6893642 ELOVL7 intronic 18267 1.40E-13 1.10E-07 4.82E-19 
pericalcarine 3q13.11 104724787 rs971550 ALCAM intergenic 18267 2.18E-10 2.07E-06 6.62E-15 
pericalcarine 6q22.33 127185801 rs9375476 RSPO3 intergenic 18267 2.20E-10 1.76E-08 3.00E-17 
pericalcarine 1p13.2 113239478 rs2999158 MOV10 intronic 18267 6.46E-10 3.48E-10 1.34E-18 
pericalcarine 13q31.1 80191873 rs9545155 LINC01068 intergenic 18267 7.51E-10 9.76E-10 4.47E-18 

  posterior cingulate 5q12.3 66104105 rs17214309 MAST4 intronic 18268 7.84E-11 7.71E-05 2.51E-13 
  insula 10q25.3 118704077 rs1905544 SHTN1 intronic 17599 4.06E-12 0.01149 5.94E-11 

N: number of individuals in meta-analysis; pDiscovery: p-value of discovery GWAS meta-analysis in 

CHARGE, pReplication: p-value of replication meta-analysis in ENIGMA;  ppooled: p-value of pooled 

discovery and replication meta-analysis; in bold: pReplication<3.1×10-4 (=0.05/Nl, Nl=161, total number of 

lead SNPs); banksts: banks of the superior temporal sulcus. 
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Table 3. Genome-wide significant associations (pDiscovery < 1.09×10-9) of global and regional 
cortical volume (lowest p-value of each cortical region at each genomic locus) 

Lobe Region Locus Position Lead SNP Nearest 
 

Annotation N pDiscovery 

 global 

6q22.32 126792095 rs11759026 MIR588 intergenic 22121 1.33E-18 
6q22 109002042 rs4945816 FOXO3 3‘UTR 22495 5.11E-10 
17q21.31 44790203 rs169201 NSF intronic 22495 8.71E-14 
17q21.32 43549608 rs149366495 PLEKHM1 intronic 21810 5.03E-13 
12q14.3 66358347 rs1042725 HMGA2 3‘UTR 22495 1.80E-10 
12q23.2 102921296 rs11111293 IGF1 intergenic 22495 9.14E-10 

frontal 

superior frontal 5q14.3 92186429 rs888814 NR2F1-AS1 intergenic 22692 3.29E-13 
rostral middle frontal 15q14 39636227 rs17694988 C15orf54 intergenic 22793 3.15E-11 
caudal middle frontal 2q12.1 105460333 rs745249 LINC01158 ncRNA_intronic 22726 2.35E-11 
caudal middle frontal 6q22.32 127068983 rs853974 RSPO3 intergenic 22351 4.82E-11 
pars opercularis 5q23.3 128734008 rs12187568 ADAMTS19 intergenic 20753 4.27E-18 
pars opercularis 15q14 39639898 rs4924345 C15orf54 intergenic 22758 1.97E-14 
pars triangularis 3q24 147106319 rs2279829 ZIC4 UTR3 22759 3.16E-23 
pars triangularis 7q21.3 96196906 rs67055449 LOC100506

 
intergenic 22759 4.03E-19 

pars triangularis 15q14 39633904 rs2033939 C15orf54 intergenic 22759 8.49E-14 
pars triangularis 7q21.3 96129071 rs62470042 C7orf76 intronic 22759 7.38E-13 
pars triangularis 6q15 91942761 rs12660096 MAP3K7 intergenic 22759 4.74E-10 
lateral orbitofrontal 14q22.2 54769839 rs6572946 CDKN3 intergenic 22801 2.29E-10 
precentral 15q14 39634222 rs1080066 C15orf54 intergenic 22699 5.84E-125 
precentral 10q25.3 118648841 rs3781566 SHTN1 intronic 22699 4.68E-11 

temporal 

superior temporal 3q26.32 177296448 rs13084960 LINC00578 ncRNA_intronic 22681 1.12E-11 
banksts 14q23.1 59072226 rs186347 KIAA0586 intergenic 22727 1.15E-15 
fusiform 14q23.1 59833172 rs1547199 DAAM1 intronic 22605 4.58E-10 
fusiform 1p33 47980916 rs6658111 FOXD2 intergenic 22605 7.78E-10 
transverse temporal 2q23.2 150012936 rs2046268 LYPD6B intronic 22786 2.55E-12 
parahippocampal 2q33.1 199809716 rs966744 SATB2 intergenic 22747 2.23E-10 

parietal 

superior parietal 15q14 39633904 rs2033939 C15orf54 intergenic 22723 4.28E-23 
superior parietal 16q24.2 87225139 rs4843227 LOC101928

 
intergenic 22723 1.16E-13 

superior parietal 19p13.2 13109763 rs68175985 NFIX intronic 21777 3.27E-11 
superior parietal 5q15 92866553 rs62369942 NR2F1-AS1 ncRNA_intronic 21664 4.32E-10 
inferior parietal 20q13.2 52448936 rs6097618 SUMO1P1 intergenic 22701 2.09E-17 
inferior parietal 12q14.3 65797096 rs2336713 MSRB3 intronic 22701 2.47E-13 
inferior parietal 3q13.11 104724634 rs971551 ALCAM intergenic 22701 2.34E-10 
supramarginal 15q14 39632013 rs71471500 THBS1 intergenic 22645 9.71E-28 
supramarginal 14q23.1 59627631 rs2164950 DAAM1 intergenic 22645 3.59E-20 
supramarginal 3q24 147106319 rs2279829 ZIC4 UTR3 22645 5.36E-18 
postcentral 15q14 39633904 rs2033939 THBS1 intergenic 22662 4.34E-133 
postcentral 3q24 147106319 rs2279829 ZIC4 UTR3 22662 2.54E-17 
postcentral 9q21.13 76144318 rs67286026 ANXA1 intergenic 22662 5.03E-11 
postcentral 2q36.3 226563259 rs16866701 NYAP2 intergenic 22545 5.69E-11 
precuneus 14q23.1 59628609 rs74826997 DAAM1 intergenic 22803 4.85E-20 
precuneus 3q28 190663557 rs35055419 OSTN intergenic 22428 2.02E-10 
precuneus 2p22.2 37818236 rs2215605 CDC42EP3 intergenic 22803 3.43E-10 
precuneus 3q13.11 104713881 rs12495603 ALCAM intergenic 22803 9.71E-10 

occipital 

lateral occipital 14q23.1 59627631 rs2164950 DAAM1 intergenic 22799 6.89E-16 
lingual 14q23.1 59625997 rs73313052 DAAM1 intergenic 22805 1.06E-20 
lingual 6q22.32 127089401 rs2223739 RSPO3 intergenic 22805 1.75E-10 
cuneus 14q23.1 59625997 rs73313052 DAAM1 intergenic 22799 4.59E-43 
cuneus 11p15.3 12072213 rs11022131 DKK3 intergenic 22799 5.96E-12 
cuneus 13q31.1 80192236 rs9545156 LINC01068 intergenic 22799 4.09E-10 
pericalcarine 14q23.1 59628679 rs76341705 DAAM1 intergenic 22824 1.39E-29 
pericalcarine 13q31.1 80191873 rs9545155 LINC01068 intergenic 22824 2.25E-13 
pericalcarine 11p14.1 30876113 rs273594 DCDC5 intergenic 22824 3.51E-13 
pericalcarine 1p13.2 113208039 rs12046466 CAPZA1 intronic 22824 2.36E-12 
pericalcarine 1p33 47980916 rs6658111 FOXD2 intergenic 22824 3.85E-11 
pericalcarine 11q22.3 104012656 rs1681464 PDGFD intronic 22824 7.51E-11 
pericalcarine 6q22.32 127096181 rs9401907 RSPO3 intergenic 22824 2.11E-10 
pericalcarine 7p21.1 18904400 rs12700001 HDAC9 intronic 22824 2.12E-10 
pericalcarine 5q12.1 60315823 rs10939879 NDUFAF2 intronic 22824 2.92E-10 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/409649doi: bioRxiv preprint first posted online Sep. 9, 2018; 

http://dx.doi.org/10.1101/409649
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 

 

  caudal anterior cingulate 5q14.3 82852578 rs309588 VCAN intronic 22748 2.60E-10 

  insula 11q23.1 110949402 rs321403 C11orf53 intergenic 22543 9.58E-12 
insula 8q24.12 120596023 rs10283100 ENPP2 exonic 21481 8.29E-11 

 

N: number of individuals in meta-analysis; pDiscovery: p-value of discovery GWAS meta-analysis in 

CHARGE; banksts: banks of the superior temporal sulcus. 
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Figure 1. Chromosomal ideogram annotated with genome-wide significant associations 

(pDiscovery<1.09×10-9) and corresponding genomic loci.  
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Figure 2. Lowest p-value of cortical surface area (A), thickness (B) and (C) volume of each cortical 

region.  
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Figure 3. Proportion of functional annotation categories for global and regional cortical 
thickness, surface area and volume assigned by ANNOVAR. 
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Figure 4. Number of overlapping genes between FUMA eQTL mapping, FUMA chromatin 
interaction mapping, ANNOVAR chromosome positional mapping and MAGMA gene based 
analysis for all cortical regions combined for cortical surface area (A), thickness (B) and 
volume (C). 
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