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Abstract 

Background: Accumulating evidence suggests a relationship between endometrial cancer and 

ovarian cancer. Independent genome-wide association studies (GWAS) for endometrial 

cancer and ovarian cancer have identified 16 and 27 risk regions, respectively, four of which 

overlap between the two cancers. We aimed to identify joint endometrial and ovarian cancer 

risk loci by performing a meta-analysis of GWAS summary statistics from these two cancers. 

Methods: Using LDScore regression, we explored the genetic correlation between 

endometrial cancer and ovarian cancer. To identify loci associated with the risk of both 

cancers, we implemented a pipeline of statistical genetic analyses (i.e. inverse-variance meta-

analysis, co-localization, and M-values), and performed analyses stratified by subtype. 

Candidate target genes were then prioritized using functional genomic data. 

Results: Genetic correlation analysis revealed significant genetic correlation between the two 

cancers (rG = 0.43, P = 2.66 × 10-5). We found seven loci associated with risk for both 

cancers (PBonferroni < 2.4 × 10-9). In addition, four novel sub-genome wide regions at 7p22.2, 

7q22.1, 9p12 and 11q13.3 were identified (P < 5 × 10-7). Promoter-associated HiChIP 

chromatin loops from immortalized endometrium and ovarian cell lines, and expression 

quantitative trait loci (eQTL) data highlighted candidate target genes for further investigation. 

Conclusion: Using cross-cancer GWAS meta-analysis, we have identified several joint 

endometrial and ovarian cancer risk loci and candidate target genes for future functional 

analysis. 

Impact: Our research highlights the shared genetic relationship between endometrial cancer 

and ovarian cancer. Further studies in larger sample sets are required to confirm our findings.  

Introduction 

Epithelial ovarian cancer accounts for ~90% of ovarian tumors and is commonly divided into 

five major histotypes: high-grade serous, low-grade serous, mucinous, clear cell and 

endometrioid1. Herein, “ovarian cancer” refers to epithelial types of this disease. On both 

histological and molecular levels, it is evident that ovarian cancer is a highly heterogeneous 

disease. Endometrial cancer (cancer of the uterine lining) is a comparatively understudied 

gynecological cancer, although it ranks fifth for cancer incidence in women globally2. 

Endometrial cancer also has several histotypes, the most common being endometrioid (~80% 

of cases) but also includes serous, mucinous and clear cell.  

Comparison of the epidemiology and histopathology of endometrial cancer and ovarian 

cancer has identified a number of similarities suggesting that shared molecular mechanisms 

underlie the pathology of these two diseases. Both cancers are hormone related, with 

epidemiological studies showing concordant direction of effect in relation to exposure to 

estrogen and progesterone (reviewed by Cramer 3). Protective factors for both types of cancer 

include early menopause4,5, late age of menarche6,7, longer periods of breastfeeding8,9, and 

longer use of contraceptives that include progesterone10,11 (i.e. factors that decrease exposure 

to unopposed estrogen). Although more strongly associated with endometrial cancer risk, 

higher body mass index (BMI) has been reported to be associated with increased risk of both 

cancers12,13.  

The histotypes of endometrial cancer mirror those of ovarian cancer, albeit with varied 

frequencies observed across the two cancers. For example, serous histology is found in ~70% 

of ovarian tumors, compared with 10% of endometrial tumors, while endometrioid histology 
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is found in ~10% of ovarian tumors and 80% of endometrial tumors. Clear cell and mucinous 

histologies are found in a relatively low frequency in both ovarian and endometrial tumors. 

Common features have been observed in similar histotypes regardless of the organ of origin. 

Tumors with serous histology from both the endometrium and ovary are characterized by 

somatic defects in the tumor suppressor gene, TP5314,15. Endometrioid endometrial and 

endometrioid ovarian tumors have both been found to contain somatic alterations in PTEN, 

PIK3CA, ARID1A, PPP2R1A and CTNNB1, although the frequencies of these mutations vary 

by tissue type (reviewed by McConechy, et al. 16). Methylation profiling has found 

endometrioid endometrial and endometrioid ovarian tumors cluster together17, and similar 

gene expression patterns have been observed for clear cell endometrial and clear cell ovarian 

tumors18. Further, there is increasing evidence that clear cell and endometrioid ovarian 

tumors arise in part from endometriosis (reviewed by King, et al. 19). Endometriosis is a 

chronic disease affecting reproductive aged women, in which endometrium grows outside of 

the uterus, suggesting these ovarian cancer subtypes and endometrial cancer develop from 

similar precursor endometrial epithelial cells. 

Some, but not all germline cancer risk variants are also shared between endometrial cancer 

and ovarian cancer. Lynch Syndrome, characterized by germline pathogenic variants in the 

mismatch repair genes (i.e. MLH1, MSH2 and MSH6), is associated with 40-60% and 8-15% 

lifetime risks of endometrial cancer and ovarian cancer, respectively20. Additionally, separate 

genome-wide association studies (GWAS) of the two cancer types have identified four 

genetic risk regions common to both cancers21,22. 

Meta-analyses of GWAS datasets across etiologically-related diseases have successfully been 

used to increase statistical power and identify novel genetic risk regions23,24. Hence, in the 

current study, we have performed a joint meta-analysis of the largest endometrial cancer and 

ovarian cancer GWAS datasets to identify novel genetic loci associated with risk of both 

cancers, including risk variation specific to less common ovarian cancer subtypes. To identify 

candidate target genes at such loci, we have intersected risk variation with chromatin looping 

data enriched for promoter-enhancer interactions. We have also assessed associations 

between risk variation and gene expression to provide evidence of candidate target gene 

regulation and reveal further candidate genes. 

Methods 

GWAS Datasets 

GWAS summary statistics were obtained from the latest meta-analyses performed by the 

Endometrial Cancer Association Consortium (ECAC)21 and the Ovarian Cancer Association 

Consortium (OCAC)22. Because of the low number of non-endometrioid endometrial cancer 

available in ECAC, summary statistics were provided for all endometrial cancer risk 

(including all endometrial cancer cases) and analyses restricted to endometrioid cases only. 

OCAC summary statistics were available for all ovarian cancer risk (including all ovarian 

cancer cases), as well analyses restricted to eight different subtypes: endometrioid histology, 

serous (including borderline, high- and low-grade serous cases), serous high-grade histology, 

serous low-grade histology, serous borderline histology, serous low-grade and borderline 

cases combined, clear cell histology and mucinous histology. Sample sizes for each study and 

subgroups analyzed are provided in Table 1. Details on genotyping, quality control and 

imputation have been previously described21,22. Data for approximately 10 million genetic 

variants (imputation quality score > 0.4 and minor allele frequency > 0.01) were available for 

both cancers for the present study.  
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Genetic Correlation Analyses 

Genetic correlation (i.e. the estimated proportion of variance shared between two traits due to 

genetic factors) between endometrial cancer and ovarian cancer was assessed using linkage 

disequilibrium (LD) Score Regression25. Genetic correlation was also assessed between each 

of the ovarian cancer subtypes analyzed by OCAC and all endometrial cancer as well as 

restricted to endometrioid endometrial cancer. For this analysis, the complete set of GWAS 

variants were pruned to the HapMap3 variant list (~1 million variants) to provide variants 

with high confidence imputation scores. The major histocompatibility complex (MHC) 

region was removed from this analysis because of its complex LD structure. 

Cross-cancer GWAS meta-analyses 

To identify joint endometrial and ovarian cancer genetic risk variants, summary statistics 

from ECAC and OCAC were combined by inverse-variance meta-analysis, adjusting for 

unknown sample overlap using MTAG26. Because of the significant heterogeneity in risk 

estimates observed for genetic variants across ovarian cancer subtypes22, we additionally 

performed meta-analysis combining results from ECAC (all endometrial cancer or 

endometrioid endometrial cancers) with summary statistics from each of the nine ovarian 

cancer subtypes analyzed by OCAC (listed in Table 1). To minimize false positives, output 

variants were restricted to those meeting the following criteria: (i) concordant direction of 

effect on risk of both cancers; (ii) no significant heterogeneity in risk estimates between the 

two cancers (Phet > 0.05); and (iii) associated with each cancer at nominal significance 

(P < 0.05). Counts of variants meeting these criteria are provided in Supplementary Table 

S1. M-values27 were generated for variants reaching suggestive evidence of association 

(P < 5 × 10-7) using METASOFT28. This analysis assesses whether an effect is observed for 

the variant in each study contributing to the meta-analysis. Variants with a posterior 

probability for an effect in each study (M-value > 0.9) were retained for further consideration. 

Loci containing variants with suggestive evidence of association (P < 5 × 10-7) that met all 

the above criteria in the meta-analysis were further evaluated for co-localization by GWAS-

PW29, using all genetic variants at the query locus. Query loci were defined using LD from 

the European 1000 Genomes Phase I reference panel30 and coordinates provided in 

Supplementary Table S3. GWAS-PW estimates Bayes factors and posterior probabilities of 

association (PPA) for four models: (i) a locus associates with risk of endometrial cancer only; 

(ii) a locus associates with risk of ovarian cancer only; (iii) a locus contains a risk signal that 

associates with risk of both endometrial and ovarian cancers; or (iv) a locus contains two risk 

signals that associate independently with risk of either endometrial or ovarian cancer. Risk 

signals located in loci that were classified as meeting model (iii) were considered to be joint 

endometrial and ovarian cancer signals (PPA > 0.5). 

Cell culture  

IOSE11 (immortalized ovarian surface epithelial)31 cells were gifted from Prof S Gayther 

(Cedars-Sinai Medical Center). Cells were authenticated using STR profiling and confirmed 

to be negative for Mycoplasma contamination. IOSE11 were grown in 1:1 

MCDB105:Medium 199 with 15% FBS and antibiotics (100 IU/ml penicillin and 100 µg/ml 

streptomycin). 
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HiChIP library generation 

IOSE11 cells (~80% confluent on 10 cm tissue culture plates) were washed with PBS and 

fixed at room temperature in 1% formaldehyde in PBS. After 10 min, the reaction was 

quenched by washing with 125 mM glycine in PBS and then adding fresh glycine-PBS. Cells 

were removed from the dish with a cell scraper and washed with PBS before storing cell 

pellets at -80ºC. HiChIP libraries were generated as previously32. Sequencing libraries were 

generated using HiChIP libraries and the Nextera DNA preparation kit (Illumina). Size 

selection was performed using Ampure XP beads to capture 300-700 bp fragments. Two 

independent sequencing libraries were pooled to provide 25 µl of library at ≥ 10 nM for 

Illumina HiSeq4000 (AGRF, Brisbane, QLD, Australia) paired-end sequencing with read 

lengths of 75 bp. 

HiChIP bioinformatics analyses 

HiChIP reads (fastq files) were aligned to the human reference genome (hg19) using HiC-Pro 

v2.9.033 and default settings used to filter for valid interactions as previously32. IOSE11 

HiChIP reads and valid interactions can be downloaded from GEO (accession GSE155328; 

https://www.ncbi.nlm.nih.gov/geo/). All valid interactions from Hi-Pro were processed by the 

hichipper pipeline v0.7.034 as previously32. Chromatin interactions were filtered using a 

minimum distance of 5 kb and a maximum of 2 Mb. The final set of chromatin loops used 

were interactions supported by a minimum of two unique paired end tags and with a Mango35 

q-value < 5%. Promoter-associated chromatin loops were defined as HiChIP loops with 

anchors within ± 3 kb of a transcription start site. Promoter-associated chromatin looping data 

was also available from our previous analysis of a normal immortalized endometrial cell line 

(E6E7hTERT)32. 

Credible candidate risk variants 

Using 100:1 log likelihood ratios, “credible variants” (CVs) were identified at each of the 

joint endometrial and ovarian cancer risk regions. To identify genes that could be distally 

regulated by a CV, intersections of CVs with promoter-associated chromatin loops were 

performed using bedtools v2.28.0. Identification of genes whose expression is associated with 

a CV was performed by lookup of publicly available eQTL databases, including precomputed 

eQTL results from 336 endometrial and 318 ovarian tumors from the Cancer Genome Atlas 

(https://albertlab.shinyapps.io/tcga_eqtl)36, and from 101 non-cancerous uterus samples and 

122 ovarian tissue samples from GTEx (data release v7; http://gtexportal.org)37. Additionally, 

due to the substantially increased power the sample size provided over solid tissue analyses, 

we accessed eQTL results from 31,684 whole blood samples (http://eqtlgen.org)38. Genes 

were considered potential targets if their expression associated with CVs that had a p-values 

within two orders of magnitude of the best eQTL variant in any of these eQTL datasets. 

Results 

Significant genetic correlation was observed between all endometrial cancer and all ovarian 

cancer (rG = 0.43, P = 2.66 × 10-5; Table 2). When broken down by ovarian cancer subtype, 

we observed significant correlation between endometrial cancer and the following subgroups; 

endometrioid (rG = 0.53, P = 7.0 × 10-3), serous (rG = 0.42, P = 1.0 × 10-4) and high-grade 

serous ovarian cancers (rG = 0.44, P = 1.0 × 10-4). These correlations remained significant, 

although attenuated, when using endometrioid endometrial cancers only (Table 2). 

https://www.ncbi.nlm.nih.gov/geo/
https://albertlab.shinyapps.io/tcga_eqtl
http://gtexportal.org/
http://eqtlgen.org/
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Seven genetic loci displaying evidence of a joint association with risk of both endometrial 

cancer (all or endometrioid histology) and ovarian cancer (all or one of the subtypes) (i.e. 

PPA > 0.5 for GWAS-PW model iii), passed Bonferroni-correction for multiple testing 

(5 × 10-8/17 tests = 2.9 × 10-9; Table 3). Three of these loci belong to regions that have 

previously been reported as being associated with risk of both cancers (8q24, 17q12 and 

17q21.32), although the 17q21.32 region had not been reported to be associated with the 

specific subtypes of ovarian cancer found in this meta-analysis (Table 3). One of the seven 

loci (2p16.1) has been previously reported as being associated with risk of endometrial 

cancer, but not with ovarian cancer risk. The three remaining loci (5p15.33, 9q34.2 and 

10p12.31) have been previously reported as associated with risk of all ovarian cancer and 

serous ovarian cancer but not with endometrial cancer risk below GWAS significance levels; 

however, associations between endometrial cancer and variants in the 5p15.33 (TERT) region 

have been reported in a candidate-region study39. Additionally, we identified four novel loci 

with sub-GWAS significance levels (P < 5 × 10-7) that had not been previously reported as 

being associated with risk of either cancer at genome-wide levels of significance (7p22.2, 

7q22.1, 9p12 and 11q13.3, Figure 1).  

We identified a total of 22 candidate target genes at the 11 identified joint endometrial and 

ovarian cancer risk loci using a number of approaches (Table 4, Supplementary Table S2). 

Log likelihood ratios identified a median of 20 CVs per locus (range 1-73, Supplementary 

Table S3). Using H3K27Ac-associated chromatin looping data from normal immortalized 

ovarian surface epithelial cells and the same data previously generated from a normal 

immortalized endometrium cell line32, we intersected CVs coincident with putative enhancers 

(marked by H3K27Ac) belonging to promoter-associated loops. We found looping between 

such enhancers and the promoters of 14 genes (at five of the 11 loci) to be common to both 

immortalized endometrium and ovarian surface epithelial cell lines (e.g. Figure 1). Four of 

the 14 candidate target genes identified by chromatin looping also had a CV located in the 

promoter, indicating potential to regulate expression (Table 4). An additional five genes were 

identified as candidate targets with CVs located in the corresponding promoters (Table 4). 

Interrogation of five relevant public eQTL databases revealed CVs to be associated with the 

expression of four genes (ABO, BCL11A, HOXB2 and SNX11), highlighting them as 

candidate targets. One of these, SNX11, had also been identified through the chromatin 

looping analyses and a CV was located in its promoter. Notably, we observed that increased 

expression of ABO associated with risk allele of CVs at the 9q34.2 locus in all five eQTL 

datasets: blood, non-cancerous uterine and ovarian tissues, and endometrial and ovarian 

tumors. 

Discussion 

In this study, we have performed the first cross-cancer GWAS analysis of endometrial cancer 

and ovarian cancer. Genetic correlation analyses found significant correlation between the 

two cancers, particularly between all endometrial cancer (and its endometrioid subtype) and 

the serous (high- and low-grade combined) or endometrioid ovarian cancer subtypes. Our 

pipeline of genetic analyses, stratifying by subtype, allowed us to identify seven joint 

endometrial cancer and ovarian cancer genetic risk loci. Three of these loci were located in 

regions that had been previously associated with both cancers, one was located in a known 

endometrial cancer risk region and the remaining three were located in known ovarian cancer 

risk regions. Four novel genetic risk loci for these two cancers did not reach the statistical 

threshold for significance but were highlighted as of potential interest, requiring further study 

to confirm their status. 
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Joint endometrial and ovarian cancer risk loci are located in the 8q24.21 and 5p15.33 regions, 

previously described as “cancer GWAS nexus regions”40 since genetic variation at these 

regions has been associated with many different types of cancer. 8q24.21 has been previously 

identified as a genetic risk region for both endometrial cancer and ovarian cancer21,22. CVs in 

a putative enhancer at the 8q24.21 joint endometrial and ovarian cancer risk locus showed 

evidence of chromatin looping to the promoter of the pan-cancer MYC oncogene in the 

endometrial and ovarian cell lines. A previous study of the 5p15.33 multi-cancer risk region, 

containing the TERT gene, identified two independent signals for ovarian cancer risk: one 

(lead variant rs7705526) associated with serous borderline ovarian cancer risk and the other 

(lead variant rs10069690) associated with serous invasive ovarian cancer risk41. Although not 

previously associated with risk of endometrial cancer at genome-wide significance, a 

candidate fine-mapping study of 5p15.33 did highlight three independent endometrial cancer 

risk signals at this locus at study-wide significance39, one of which was shared with the 

serous borderline ovarian cancer risk signal. The present analysis identified this signal as a 

joint endometrial and ovarian cancer risk signal, with CVs in the TERT promoter highlighting 

this gene as a likely target. Moreover, TERT has been heavily implicated in cancer 

development (reviewed in Yuan, et al. 42) and has oncogenic interactions with MYC 

(reviewed in Pestana, et al. 43). 

Our results suggest, at a sub-genome wide significance level, a potential joint endometrial 

and ovarian cancer risk signal at another cancer GWAS nexus region, 11q13.3. Originally 

identified as a prostate cancer risk locus, 11q13.3 also contains risk signals for melanoma, 

breast cancer and renal cancer (https://www.ebi.ac.uk/gwas/). Although the results from the 

present study require validation, the identification of a shared endometrial and ovarian cancer 

risk signal at 11q13.3 provides further evidence that this region is important for cancer 

development. At this locus, chromatin looping data showed that CVs in a putative enhancer 

looped to the promoters of MYEOV and CCND1. CCND1 (encoding cyclin D1) is of 

particular interest as it is frequently amplified in human cancers and has been identified as a 

pan-cancer driver gene44. Cyclin D1 is considered an oncogene due to its central role in cell 

cycle regulation, and ability to promote cell proliferation45. CCND1 has been found to be 

significantly mutated in gynecological (including endometrial and ovarian cancers) and breast 

cancers46. The results of our analyses provide additional support that CCND1 is important in 

the development of endometrial cancer and ovarian cancer. 

Our analysis identified the 17q12 region as a joint endometrial and ovarian cancer risk 

region, associating with clear cell ovarian cancer. The 17q12 region, containing HNF1B, has 

been previously associated with risk of endometrial cancer and ovarian cancer47-50. 

Significant heterogeneity in risk estimates has been observed across ovarian cancer histotypes 

at this locus. The minor allele of the lead ovarian cancer risk variant previously identified at 

this region associated with increased serous (high- and low-grade combined) ovarian cancer 

risk but decreased clear cell ovarian cancer risk49,50. Further genotyping had resolved this 

region into two risk signals for ovarian cancer risk: one in intron 1 of HNF1B for clear cell 

ovarian cancer risk (rs11651775; the same signal for endometrial cancer risk) and another in 

intron 3 for serous ovarian cancer risk (rs7405776)50. Our results confirm that joint 

endometrial and ovarian cancer risk variants at 17q12 map to the same signal as that for that 

previously reported for endometrial cancer and the clear cell ovarian subtype. HNF1B is a 

likely target of endometrial and ovarian cancer risk variation, with CVs located in its 

promoter region. We have previously demonstrated that these variants affect activity of the 

HNF1B promoter47, which may lead to increased secretion of insulin, a risk factor for 

endometrial cancer51. 
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The 17q21.32 region is a known shared endometrial21 and ovarian cancer22 risk region. The 

joint endometrial and ovarian cancer signal found in the present study (lead SNP rs882380) is 

the same as that previously identified for endometrial cancer, but is independent of the signal 

previously found for all invasive and high-grade serous ovarian cancer risk (lead SNP 

rs7207826, r2 = 0.06 with rs882380). The joint endometrial and ovarian cancer signal 

associates specifically with risk of clear cell, endometrioid, serous low-grade, serous 

low-grade and borderline combined, and serous borderline ovarian cancer subtypes. Clear 

cell, endometrioid and serous low-grade ovarian cancers are often referred to as 

endometriosis-associated ovarian cancers due to the increased risk of these ovarian cancer 

subtypes with endometriosis52. Epidemiological and molecular data provide strong evidence 

that clear cell and endometrioid ovarian cancer arise in part from endometriosis (reviewed by 

King, et al. 19). The joint endometrial and ovarian cancer signal identified in the present study 

at 17q21.32 was also found in a joint GWAS analysis of endometrial cancer and 

endometriosis53, and subsequently found to be associated with endometriosis risk 

independently54. Five candidate target genes were identified at this locus, all of which we had 

previously found to be candidate targets of the original endometrial cancer signal through 

chromatin looping studies32.  

Another potential joint endometrial and ovarian cancer signal, 9p12, associated with risk of 

serous low-grade ovarian cancer, has also been previously identified as a joint endometrial 

cancer and endometriosis risk locus53. These findings at 17q21.32 and 9p12, add to the body 

of evidence for the relationship between endometriosis and specific ovarian cancer 

subtypes19,52, and provide further support for shared genetic etiology between endometriosis 

and endometrial cancer53. CVs at the 9p12 joint risk locus were located intronic to PTPRD, 

but no candidate target genes were identified. PTPRD is involved in the STAT3 pathway 

which has been implicated as a potential target for both endometrial cancer55 and ovarian 

cancer56.  

The 2p16.1 region is a known endometrial cancer risk locus and was found to associate with 

the risk of clear cell ovarian cancer only. Interestingly, we previously found evidence that this 

locus may have a stronger association with risk of non-endometrioid endometrial cancer, with 

the strongest effect observed for clear cell endometrial cancer subtype (128 cases and 26,638 

controls; rs148261157 OR 2.36; 95% CI 1.07 - 5.19)21. BCL11A was identified as a candidate 

target gene through eQTL analysis of endometrial tumors. We had previously found that 

BCL11A was a candidate target gene at the endometrial cancer risk locus through chromatin 

looping studies in endometrial cancer cells32. The eQTL finding suggested that reduced 

expression of BCL11A may increase endometrial/clear cell ovarian cancer risk. Indeed, some 

studies have shown that BCL11A acts as a proto-oncogene57,58; however, others suggest that 

overexpression of BCL11A results in anti-cancer effects59. Notably, BCL11A has been found 

to be mutated in clear cell ovarian cancer60,61, providing further evidence that BCL11A may 

underlie the risk association with endometrial cancer and clear cell ovarian cancer at this 

locus.  

The 9q34.2 region is a known ovarian cancer risk locus that is highly pleiotropic, having been 

previously associated with gastric and pancreatic cancers, in addition to a wide range of traits 

including blood cell counts, the tumor marker CEA (carcinoembryonic antigen), bone 

mineral density and levels of angiogenic proteins(https://www.ebi.ac.uk/gwas/). eQTL data 

from normal, tumor endometrial and ovarian tissue, as well as blood, provide evidence that 

ABO is a regulatory target of CVs at this locus. ABO encodes an enzyme that determines 
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human ABO blood group antigens. It is not immediately apparent how ABO may mediate 

cancer risk but its encoded glycosyltransferase can affect cell recognition and adhesion, and 

activation of T and natural killer cells (reviewed by Arend 62).  

The 10p12.31 region is another known ovarian cancer risk locus that is also pleiotropic, 

having been previously associated with breast cancer as well as with traits related to obesity 

such as BMI, body fat percentage and physical activity (https://www.ebi.ac.uk/gwas/). 

MLLT10 was identified as a candidate target gene at this locus, through chromatin looping 

analysis and localization of a CV to its promoter, and is a partner gene for chromosomal 

rearrangements that result in leukaemia63. Another biologically relevant candidate target gene 

at this locus is MIR1915 whose expression is upregulated by p53 in response to DNA 

damage, leading to increased apoptosis64. 

Two of the sub-genome wide significant endometrial/ovarian cancer risk regions (7q22.1 and 

7p22.2) may relate to circulating hormone levels or regulation. At 7q22.1, GWAS have 

previously revealed associations with androgen and progesterone levels65. The sole candidate 

target gene at this locus, CYP3A43, encodes a cytochrome P450 enzyme that may be involved 

in androgen metabolism66 and is upregulated in ovarian tumors67. At 7p22.2, the candidate 

target gene GPER1, identified through chromatin looping, encodes an estrogen receptor that 

induces endometrial and ovarian cancer cell proliferation in response to estrogen (reviewed in 

Prossnitz and Barton 68). Further, it appears that androgen can also bind to GPER1 to 

stimulate cancer cell growth69. 

Despite these findings, the present study does have some limitations. The low numbers of 

non-endometrioid endometrial cancers meant we could not explore the relationship of these 

endometrioid histotypes with ovarian cancer. Another limitation was the use of cell lines to 

model chromatin looping that occurs in tissue, with chromatin looping potentially impacted 

by the immortalization and 2D-culturing processes of cell lines, or mutations gained through 

passaging. As only one endometrial and one ovarian cell line were used, these experiments 

should be repeated in additional endometrial and ovarian cell lines, representing tumor 

subtypes. One of the four regions previously identified to be associated with both cancers, 

located at 1p34, was not identified in the present analysis. This locus was originally found in 

a combined analysis of the OCAC with a cohort of BRCA1/2 carriers with ovarian cancer70 

which was not included in the present study, perhaps explaining why it was not identified as a 

joint endometrial and ovarian cancer locus. Future analysis of this region, in the context of 

BRCA1/2 carrier status will be required to explore how this region affects endometrial cancer 

and ovarian cancer risk. 

In summary, using endometrial and ovarian cancer GWAS summary statistics we have 

identified seven joint risk loci for these cancers, with an additional four novel potential risk 

regions at a sub-GWAS significance level. Further studies are required to validate these 

findings in larger sample sets. Notably, we also found significant genetic correlation between 

the two cancers, supported by the observed epidemiological and histopathological 

similarities. These findings support the need for larger GWAS of endometrial and ovarian 

cancer, in particular focusing on their minor subtypes to further explore shared genetic 

etiology. Integration of CVs with chromatin looping and eQTL data has identified several 

plausible candidate target genes, including those at potentially novel risk loci. Although the 
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role of these genes in endometrial and ovarian cancer development should be explored in 

future studies, the current findings provide insights into the shared biology of endometrial 

and ovarian cancer.  
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Table 1: Details of samples included in the meta-analysis, by histotype 

 

Phenotype ECAC (N) OCAC (N) 

All Cases* 12906 23342 

Endometrioid cases 8578 2810 

Serous cases NA 16003 

          Serous high grade cases NA 13037 

          Serous low grade cases NA 1012 

          Serous borderline cases NA 1954 

          Serous low grade and borderline cases NA 2966 

Clear cell cases NA 1366 

Mucinous cases NA 2566 

Controls 108979 40941 

 

Abbreviations – ECAC: Endometrial Cancer Association Consortium; OCAC: Ovarian Cancer 

Association Consortium; N: sample counts 

*All cases also includes those with unknown or mixed histology 
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Table 2: Genetic correlations between epithelial ovarian cancer subtypes and endometrial 

cancer (all and endometrioid) from LD score regression analysis  

 

Ovarian Cancer 
Subtype 

All Endometrial Cancer Endometrioid Endometrial Cancer 

(40,941 controls) (12,906 cases, 180,979 controls) (8,578 cases, 46,126 controls) 

 
rG (SE) P rG (SE) P 

Clear cell 
0.13 (0.21) 0.53 0.05 (0.23) 0.82 

(1,366 cases) 

Endometrioid 
0.53 (0.20) 7.00E-03 0.45 (0.22) 0.04 

(2,810 cases) 

Mucinous 
0.03 (0.16) 0.85 -0.12 (0.18) 0.51 

(2,566 cases) 

Serous 
0.42 (0.11) 1.00E-04 0.37 (0.11) 9.00E-04 

(16,003 cases) 

Serous borderline 
0.49 (0.56) 0.4 0.68 (0.72) 0.34 

(1,954 cases) 

Serous HG 
0.44 (0.11) 1.00E-04 0.39 (0.12) 8.00E-04 

(13,137 cases) 

Serous LG & borderline 
0.28 (0.25) 0.25 0.32 (0.28) 0.25 

(2,966 cases) 

All Ovarian 
0.43 (0.10) 2.66E-05 0.36 (0.11) 1.40E-03 

(23,342 cases) 

 

Abbreviations – rG: genetic correlation estimate; SE: standard error; HG: high grade.  

Results with a significant genetic correlation (P<0.05) have been bolded. The genetic 

heritability couldn’t be estimated for one ovarian cancer subtype (serous low grade); 

therefore it couldn’t be included in the genetic correlation analyses. 

 



 

 

23 
 

Table 3: Results from GWAS meta-analysis of endometrial cancer and epithelial ovarian cancer 

 

                Endometrial Cancer Ovarian Cancer Meta-analysis   

Region 
ECAC 
Phenotype 

OCAC 
Phenotype 

Lead 
Variant 

Chr:Pos  
(hg19) EA/OA 

Freq EA 
(ECAC/OCAC) 

OncoArray 
INFO Score 

(ECAC/OCAC) OR (95% CI) P-value M-value OR (95% CI) P-value M-value OR (95% CI) P-value 
Model 3 

PPA 

Known endometrial and ovarian cancer risk regions 

8q24.21 endometrioid all rs10103314 8:129560744 C/A 0.13/0.13 1.00/0.99 
0.86 

(0.82-0.91) 9.05E-08 1.00 
0.85 

(0.82-0.88) 4.91E-16 1.00 
0.85 

(0.82-0.88) 1.49E-20 0.90 
                                  

17q12 all clear cell rs11263763 17:36103565 A/G 0.55/0.52 1.00/1.00 
1.15 

(1.12-1.19) 4.01E-20 1.00 
1.25 

(1.15-1.35) 3.46E-08 1.00 
1.16 

(1.13-1.2) 2.46E-24 1.00 

17q12 endometrioid clear cell rs11263763 17:36103565 A/G 0.55/0.52 1.00/1.00 
1.15 

(1.11-1.19) 1.23E-14 1.00 
1.25 

(1.15-1.35) 3.46E-08 1.00 
1.17 

(1.13-1.21) 2.20E-19 1.00 
                                  

17q21.32 all clear cell rs882380 17:46294236 A/C 0.61/0.60 0.99/0.97 
1.10 

(1.06-1.13) 4.66E-09 1.00 
1.09 

(1.00-1.18) 0.04 0.94 
1.10 

(1.06-1.13) 1.91E-09 0.85 

17q21.32 endometrioid clear cell rs882380 17:46294236 A/C 0.61/0.60 0.99/0.97 
1.11 

(1.07-1.15) 1.25E-08 1.00 
1.09 

(1.00-1.18) 0.04 0.94 
1.11 

(1.07-1.15) 4.67E-09 0.90 

17q21.32 all endometrioid rs882380 17:46294236 A/C 0.61/0.60 0.99/0.97 
1.10 

(1.06-1.13) 4.66E-09 1.00 
1.09 

(1.03-1.15) 3.44E-03 0.99 
1.09 

(1.06-1.13) 2.90E-10 0.91 

17q21.32 endometrioid endometrioid rs882380 17:46294236 A/C 0.61/0.60 0.99/0.97 
1.11 

(1.07-1.15) 1.25E-08 1.00 
1.09 

(1.03-1.15) 3.44E-03 0.99 
1.11 

(1.07-1.14) 6.91E-10 1.00 

17q21.32 all 
serous 
borderline rs12950225 17:46145200 G/A 0.58/0.57 1.00/1.00 

1.08 
(1.05-1.12) 1.98E-07 1.00 

1.10 
(1.03-1.18) 5.64E-03 0.99 

1.09 
(1.06-1.12) 1.26E-08 1.00 

17q21.32 endometrioid 
serous 
borderline rs882380 17:46294236 A/C 0.61/0.60 0.99/0.97 

1.11 
(1.07-1.15) 1.25E-08 1.00 

1.15 
(1.07-1.23) 9.56E-05 1.00 

1.12 
(1.08-1.16) 2.88E-11 0.99 

17q21.32 all 
serous LG & 
borderline rs882380 17:46294236 A/C 0.61/0.60 0.99/0.97 

1.10 
(1.06-1.13) 4.66E-09 1.00 

1.14 
(1.08-1.21) 6.73E-06 1.00 

1.11 
(1.08-1.14) 3.10E-12 0.98 

17q21.32 all serous LG rs882380 17:46294236 A/C 0.61/0.60 0.99/0.97 
1.10 

(1.06-1.13) 4.66E-09 1.00 
1.12 

(1.02-1.23) 0.02 0.96 
1.10 

(1.07-1.13) 1.84E-09 0.99 

Known endometrial cancer risk regions 

2p16.1 all clear cell rs148261157 2:60897579 A/G 0.04/0.04 0.89/0.87 
1.26 

(1.16-1.36) 3.39E-08 1.00 
1.37 

(1.11-1.69) 3.18E-03 0.99 
1.27 

(1.18-2.78) 1.85E-09 0.96 

2p16.1 endometrioid clear cell rs7579014 2:60707894 A/G 0.64/0.63 0.99/0.98 
1.10 

(1.06-1.14) 6.16E-07 1.00 
1.13 

(1.04-1.22) 4.24E-03 0.99 
1.10 

(1.07-1.57) 2.92E-08 0.71 

Known ovarian cancer risk regions 

5p15.33 all all rs7725218 5:1282414 A/G 0.36/0.35 0.97/0.94 
1.07 

(1.04-1.11) 1.12E-05 1.00 
1.10 

(1.07-1.13) 1.76E-11 1.00 
1.09 

(1.07-1.11) 2.71E-14 1.00 

5p15.33 endometrioid all rs7726159 5:1282319 A/C 0.34/0.34 0.98/0.94 
1.08 

(1.04-1.12) 7.90E-05 1.00 
1.10 

(1.07-1.13) 1.04E-11 1.00 
1.09 

(1.07-1.12) 5.23E-14 1.00 

5p15.33 all serous rs6897196 5:1280938 G/A 0.40/0.39 1.00/0.98 
1.07 

(1.03-1.10) 6.46E-05 0.99 
1.11 

(1.08-1.15) 2.07E-11 1.00 
1.09 

(1.07-1.12) 2.21E-13 1.00 
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                Endometrial Cancer Ovarian Cancer Meta-analysis   

Region 
ECAC 
Phenotype 

OCAC 
Phenotype 

Lead 
Variant 

Chr:Pos  
(hg19) EA/OA 

Freq EA 
(ECAC/OCAC) 

OncoArray 
INFO Score 

(ECAC/OCAC) OR (95% CI) P-value M-value OR (95% CI) P-value M-value OR (95% CI) P-value 
Model 3 

PPA 

5p15.33 endometrioid serous rs7725218 5:1282414 A/G 0.36/0.35 0.97/0.94 
1.08 

(1.04-1.12) 6.12E-05 0.99 
1.13 

(1.09-1.16) 1.5E-13 1.00 
1.11 

(1.08-1.14) 1.40E-15 1.00 

5p15.33 all serous HG rs7725218 5:1282414 A/G 0.36/0.35 0.97/0.94 
1.07 

(1.04-1.11) 1.12E-05 1.00 
1.12 

(1.09-1.16) 4.4E-12 1.00 
1.10 

(1.07-1.12) 1.07E-14 1.00 

5p15.33 endometrioid serous HG rs7725218 5:1282414 A/G 0.36/0.35 0.97/0.94 
1.08 

(1.04-1.12) 6.12E-05 0.99 
1.12 

(1.09-1.16) 4.4E-12 1.00 
1.10 

(1.08-1.13) 2.34E-14 1.00 

5p15.33 all 
serous LG & 
borderline rs2853672 5:1292983 A/C 0.48/0.49 1.00/1.00 

0.94 
(0.91-0.96) 1.30E-05 1.00 

0.88 
(0.83-0.93) 5.72E-06 1.00 

0.92 
(0.90-0.95) 1.03E-08 1.00 

5p15.33 endometrioid 
serous LG & 
borderline rs2853672 5:1292983 A/C 0.48/0.49 1.00/1.00 

0.93 
(0.89-0.96) 2.27E-05 1.00 

0.88 
(0.83-0.93) 5.72E-06 1.00 

0.91 
(0.88-0.94) 7.20E-09 1.00 

                                  

9q34.2 all all rs635634 9:136155000 T/C 0.20/0.20 1.00/1.00 
1.06 

(1.02-1.10) 1.48E-03 0.99 
1.10 

(1.07-1.14) 3.08E-09 1.00 
1.09 

(1.06-1.11) 3.46E-10 0.91 

9q34.2 all serous rs687289 9:136137106 A/G 0.35/0.34 1.00/1.00 
1.07 

(1.03-1.10) 6.39E-05 1.00 
1.10 

(1.06-1.13) 1.35E-08 1.00 
1.08 

(1.06-1.11) 4.15E-11 0.80 
                                  

10p12.31 all all rs564819152 10:21820650 G/A 0.32/0.32 1.00/0.97 
1.05 

(1.02-1.08) 2.55E-03 0.97 
1.09 

(1.06-1.12) 2.52E-10 1.00 
1.08 

(1.05-1.10) 8.73E-11 0.99 

10p12.31 all serous rs7090708 10:21929179 G/A 0.33/0.33 1.00/0.99 
1.05 

(1.02-1.08) 2.6E-03 0.96 
1.09 

(1.06-1.13) 1.92E-08 1.00 
1.07 

(1.05-1.10) 3.62E-09 0.99 

10p12.31 all serous HG rs7090708 10:21929179 G/A 0.33/0.33 1.00/0.99 
1.05 

(1.02-1.08) 2.6E-03 0.92 
1.10 

(1.07-1.14) 5.02E-08 1.00 
1.07 

(1.05-1.10) 7.63E-09 0.99 

Novel regions 

7p22.2 all all rs13221982 7:3865621 C/T 0.06/0.06 0.98/0.98 
1.13 

(1.06-1.21) 1.32E-04 1.00 
1.12 

(1.06-1.18) 6.85E-05 1.00 
1.13 

(1.08-1.18) 1.57E-07 0.90 
                                  

9p12 endometrioid 
serous LG & 
borderline rs2475339 9:10262484 T/C 0.83/0.83 0.99/0.99 

0.89 
(0.85-0.93) 8.64E-07 1.00 

0.90 
(0.84-0.97) 4.50E-03 0.99 

0.89 
(0.86-0.93) 4.36E-08 0.94 

                                  

7q22.1 all 
serous 
borderline rs139380031 7:98911827 A/C 0.03/0.03 0.97/0.95 

0.77 
(0.70-0.85) 5.98E-07 1.00 

0.77 
(0.61-0.97) 0.03 0.95 

0.77 
(0.70-0.85) 1.28E-07 0.57 

                                  

11q13.3 endometrioid all rs7118966 11:69019272 C/T 0.24/0.25 1.00/1.00 
0.93 

(0.89-0.97) 4.30E-04 0.99 
0.94 

(0.91-0.97) 1.96E-05 1.00 
0.93 

(0.91-0.96) 1.25E-07 0.82 

 

Abbreviations – EA: Effect Allele; OA: Other Allele; EAF: Effect Allele Frequency; OR: Odds Ratio; CI: Confidence Interval; PPA: Posterior Probability of 
Association; HG: High grade; LG: Low grade 
Italicized results meet suggestive association (P< 5 × 10-7) 
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Table 4: Candidate target genes at joint endometrial cancer and epithelial ovarian cancer risk loci. 

 

Region Candidate Target Gene/s (Evidence) 

Known endometrial and ovarian cancer risk regions 

8q24.21 MYC (chromatin looping) 

17q12 HNF1B (promoter CV) 

17q21.32 
CBX1 (chromatin looping), HOXB2 (blood eQTL), HOXB8 (chromatin looping), MIR1203 (promoter CV), SNX11 (blood eQTL, 
promoter CV, chromatin looping) 

Known endometrial cancer risk regions 

2p16.1 BCL11A (UCEC eQTL) 

Known ovarian cancer risk regions 

5p15.33 TERT (promoter CV) 

9q34.2 ABO (blood eQTL, UCEC & OVCA eQTL, Uterus & Ovary eQTL), CACFD1 (promoter CV),  

10p12.31 
CASC10 (promoter CV, chromatin looping), MIR1915 (promoter CV, chromatin looping), MLLT10 (promoter CV, chromatin 
looping), SKIDA1 (chromatin looping) 

Novel regions 

7q22.1 CYP3A43 (promoter CV) 

7p22.2 
COX19 (chromatin looping), ENSG00000229043 (chromatin looping), GPER1 (chromatin looping), ZFAND2A (chromatin 
looping) 

9p12 Nil 

11q13.3 CCND1 (chromatin looping), MYEOV (chromatin looping) 
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Figure 1. Promoter-associated chromatin looping by HiChIP identifies candidate target genes at the 

11q13.3 locus. Promoter-associated loops were intersected with joint endometrial and ovarian cancer risk 

CVs (colored red), revealing chromatin loops that interact with the promoter of CCDN1 in both an 

immortalized endometrium epithelial cell line (E6E7hTERT, colored blue) and an immortalized ovarian 

surface epithelial cell line (IOSE11, colored green). 


