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Abstract
The major depressive disorder (MDD) working group of the Psychiatric Genomics Consortium (PGC) has published a
genome-wide association study (GWAS) for MDD in 130,664 cases, identifying 44 risk variants. We used these results to
investigate potential drug targets and repurposing opportunities. We built easily interpretable bipartite drug-target
networks integrating interactions between drugs and their targets, genome-wide association statistics, and genetically
predicted expression levels in different tissues, using the online tool Drug Targetor (drugtargetor.com). We also
investigated drug-target relationships that could be impacting MDD. MAGMA was used to perform pathway analyses
and S-PrediXcan to investigate the directionality of tissue-specific expression levels in patients vs. controls. Outside the
major histocompatibility complex (MHC) region, 153 protein-coding genes are significantly associated with MDD in
MAGMA after multiple testing correction; among these, five are predicted to be down or upregulated in brain regions
and 24 are known druggable genes. Several drug classes were significantly enriched, including monoamine reuptake
inhibitors, sex hormones, antipsychotics, and antihistamines, indicating an effect on MDD and potential repurposing
opportunities. These findings not only require validation in model systems and clinical examination, but also show that
GWAS may become a rich source of new therapeutic hypotheses for MDD and other psychiatric disorders that need
new—and better—treatment options.

Introduction
There is an urgent need for new drugs to better treat

major depressive disorder (MDD), with new modes of
action as well as fewer side effects. The Psychiatric
Genomics Consortium (PGC) has conducted a genome-
wide association study (GWAS) of more than 130,664
MDD and broader depression cases and 330,470 controls
identifying 44 loci associated with depression1. Much new
biology is suggested by these findings and we hypothesize
that the collection of loci discovered by GWAS may have

the potential to restart largely paused drug development
pipelines. This is not without considerable technical
challenges. At the moment, time-consuming manual
assessment by expert biologists and geneticists is required
for each GWAS locus. Analyzing all genome-wide results
together may allow better prioritization of potential drug
or therapeutic hypotheses2,3.
GWAS associations between single nucleotide poly-

morphisms (SNPs) and MDD can be used to assess the
association of each gene or sets of genes, such as those
defined by biological pathways. Pathway analysis has also
been used to suggest new drug hypotheses by mapping
drugs to the proteins they bind, and defining the sets of
genes that encode the proteins as “drug gene-sets” whose
association with a phenotype of interest can be esti-
mated2,4. This process is a type of drug repositioning
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analysis aimed at finding potential new uses for existing
drugs2. In this paper, we propose to mine drug-protein/
gene interactions from two main sources: drug-target
relationships or “activity profiles”2 and drug effects on
gene expression or “perturbagen signatures”5. Activity
profiles can be derived from several databases such as
PubChem BioAssays6 or ChEMBL7, while the main
source for perturbagen signatures is the CMAP database5.
Instead of using these resources separately, they can be
used together to identify relevant drugs. However, simply
generating the association between drug-gene-sets and
phenotypes is not enough; each gene-set is a subnetwork
with different interaction types between drugs and pro-
teins. Visualising these interactions could allow better and
more rapid prioritization of drug-gene-sets.
For this purpose, it may be useful to translate activity

profiles into bipartite drug-target interaction networks.
These can be constructed by linking drug nodes to targets
nodes where the links or edges represent the type of drug-
target interaction. Maggiora et al.8 suggested that these
networks could be used to assess drug polypharmacology
—the ability of drugs to interact with several targets—as
well as target polyspecificity—the ability of targets to
exhibit affinity towards multiple dissimilar molecular
compounds.
In this paper, we build drug-target networks relevant to

a given phenotype (MDD), by using the results from a
well-powered PGC MDD GWAS for imputation of tissue-
specific expression levels in patients vs. controls, and to
generate genetic associations of known drug targets with
MDD. Drug-target networks presented in this paper can
be accessed on the Drug Targetor website (drugtargetor.
com), which provides the opportunity to build networks
linking genetic data with a large number of drugs and
drug classes, allowing detailed assessment of drug action
possibly impacting MDD.

Materials and methods
Genome-wide association study of major depressive
disorder
The PGC MDD phase 2 analysis was a combined ana-

lysis of an anchor cohort of traditionally ascertained MDD
cases and an expanded cohort of more diversely assessed
depression cases. Briefly, the anchor cohort consisted of
29 samples of European ancestry (16,823 MDD cases and
25,632 controls)1. Cases in the anchor cohort were
required to meet international consensus criteria (DSM-
IV, ICD-9, or ICD-10)9 for a lifetime diagnosis of MDD.
Controls were screened for the absence of lifetime MDD
(22/29 samples). An “expanded” set of six independent,
European-ancestry cohorts (113,841 MDD cases and
304,838 controls) were then considered. Generation
Scotland employed direct interviews; iPSYCH (Denmark)
used national treatment registers; deCODE (Iceland) used

national treatment registers and direct interviews; GERA
used Kaiser-Permanente (health insurance) treatment
records (CA, US); UK Biobank combined self-reported
MDD symptoms and/or treatment for MDD by a medical
professional; and 23andMe used self-report of treatment
for MDD by a medical professional. All controls were
screened for the absence of MDD. A combination of
polygenic scoring and linkage disequilibrium (LD) score
genetic correlation comparisons between the anchor and
expanded cohorts and samples showed strong evidence
for genetic homogeneity between these groups1.

GWAS quality control and analysis
See ref. 1 for full details. SNPs and insertion-deletion

polymorphisms were imputed using the 1000 Genomes
Project multi-ancestry reference panel10. In each cohort,
logistic regression association tests were conducted for
imputed marker dosages with principal components
covariates to control for population stratification.
Ancestry was evaluated using principal components ana-
lysis applied to directly genotyped SNPs11. Summary
statistic for 10,468,942 autosomal SNPs were then avail-
able for the analyses we present.

Gene-based test of association
We used MAGMA v1.0612 to perform a gene-based test

of association with the MDD GWAS summary statistics.
Briefly, MAGMA generates gene-based p-values by
combining adjacent SNP-based p-values within a defined
gene window while accounting for LD. SNPs were map-
ped to genes if they were located 35 kb upstream or 10 kb
downstream of a gene body including regulatory regions,
and the gene p-value is obtained using the “multi= snp-
wise” option, which aggregates mean and top SNP asso-
ciation models. A Bonferroni p-value threshold of 2.63 ×
10−6, accounting for 19,079 ENSEMBL genes, was used to
account for multiple testing. We used 1000 Genomes
European data phase 3 as the reference LD set10.

Transcriptome-wide association
To assess the impact of genetic variation underlying

MDD on gene expression, we performed a transcriptome-
wide association study using the S-PrediXcan software13.
This approach estimates gene expression weights by
training a linear prediction model in samples with both
gene expression and SNP genotype data. The weights are
then used to predict gene expression from GWAS sum-
mary statistics, while incorporating the variance and
covariance of SNPs from a LD reference panel. We used
pre-computed gene expression weights for 13 central
nervous system (CNS) tissues (amygdala, anterior cingu-
late cortex BA24, caudate nucleus, nucleus accumbens,
putamen, cerebellar hemisphere, cerebellum, cortex,
frontal cortex BA9, hippocampus, hypothalamus, cervical
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spine C1, and substantia nigra) generated from the
Genotype-Tissue Expression (GTEx) Consortium v714,
and whole blood using the Depression Genes and Net-
works (DGN) cohort15. Only CNS tissues were considered
to investigate potential drug targets for MDD; however,
the DGN whole blood analysis was also performed
because of its higher sample size (922 whole blood sam-
ples) and higher power to detect associations. 1000
Genomes European data phase 3 was used as the refer-
ence LD set10. These data were processed with beta values
and standard errors from the MDD GWAS summary
statistics to estimate the expression-GWAS association
statistic. A transcriptome-wide significance threshold of P
= 1.12 × 10−6, adjusting for all GTEx CNS tissue and
DGN associations (Bonferroni correction 0.05/44,718),
was used to adjust for multiple testing.

Definition of the druggable genome
Genes were annotated by “druggability” using the col-

lection of 4479 “druggable genes” from Finan et al.16

(henceforth referred to as the “druggable genome”) and
divided into three “tiers” based on their importance in
pharmaceutical development: tier 1 (T1) contains genes
that encode protein targets of approved or clinical trial-
phase drug candidates, tier 2 (T2) contains genes that
encode protein targets with high sequence similarity to
tier 1 proteins or targeted by small drug-like molecules,
and tier 3 contains genes that encode secreted and
extracellular proteins, genes belonging to the main
druggable gene families, and genes encoding proteins with
more restricted similarity to tier 1 targets. In the gene-
based tests of association, genes were investigated whe-
ther or not they were present in this druggable genome;
results in Supplementary Materials are ordered by
druggability tier. It should be noted that targets not
known as “druggable” are also worth investigating
—“druggability” is a mutable concept, which evolves as
more drug-target data is made available. Information on
genes with human or mouse phenotypes were also col-
lected from the human-mouse disease connection data-
base (HDMC), which gathers mouse data from Mouse
Genome Informatics database (MGI)17 and human data
from the National Center for Biotechnology Information
(NCBI) and Online Mendelian Inheritance in Man
(OMIM)18.

Definition of drug-target and drug-gene interactions
We collected two types of drug interactions: activity

profiles (drug-target interactions) and perturbagen sig-
natures (drug-gene interactions). Drug-target interactions
are defined as any type of interaction between a drug and
a protein target. Drug-gene interactions are changes in
gene expression induced by a drug. We built an annota-
tion dataset using interaction profiles from the drug-gene

interaction database DGIdb v2.019, ChEMBL v.237,20, the
psychoactive drug-gene database PDSP Ki DB,
PHAROS21, NCBI PubChem BioAssay6, and DSigDB16,22

(downloaded in June 2017). We subset experimental data
from the annotation dataset to generate a more reliable
bioactivity dataset, with only curated ChEMBL and PDSP
Ki DB data. The broad annotation set was used to rank the
drugs, but the bioactivity subset was used to check which
drug classes were enriched when restricting analyses to
curated experimental data. A description of the data
curation approach is provided in Supplementary Text 1.

Enrichment of drug-gene-sets and therapeutic classes
Approved drugs and their Anatomical Therapeutic

Chemical (ATC) codes were identified by mapping all
drug names to their PubChem compound identifier (CID)
using the PubChem synonym database (ftp.ncbi.nlm.nih.
gov/pubchem/Compound/Extras/CID-Synonym-filtered.
gz), then mapping each CID to the corresponding ATC
codes. The drugs were merged by ATC name, which
could correspond to several CID entries and ATC codes.
Each drug was then mapped to a gene-set using the col-
lected drug-gene and drug-target interactions, and
assigned a p-value generated by competitive pathway
analysis (MAGMA), assessing the association between
drug-gene-set and phenotype. For the annotation set,
1946 drugs corresponding to 1748 individual gene-sets
were tested; for the more reliable bioactivity set of
ChEMBL and PDSP Ki data, 1160 drugs were mapped to
723 gene-sets. The area under the enrichment curve
(AUC) and associated p-value from one-sided
Mann–Whitney–Wilcoxon (MWW) tests were used to
assess the enrichment of drug classes, for each ATC
hierarchical level. Since the annotation and bioactivity sets
generated two different sets of pathway analysis p-values
(drug ranks), MWW enrichment tests were carried out
two times. The drugs were first ranked by MAGMA
pathway analysis p-value, and the MWW test compared
the drugs within one ATC level A to drugs not present in
A, the alternative hypothesis being that the distribution of
drugs in A is shifted to the right. The MWW test is
adapted in this case since we have one continuous
dependent variable (the pathway analysis p-value), and
one independent variable consisting of two independent
groups, with no overlap of instances between the two
groups (drugs outside or inside a specific class). The
Bonferroni threshold was estimated by dividing 0.05 by
the number of tested classes—57 and 141 for the bioac-
tivity and annotation sets, respectively.

Bipartite drug-target networks
Bipartite drug-target networks were built using Drug

Targetor (drugtargetor.com)23. The tool builds networks
using three types of inputs: a drug table with drug-
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phenotype associations, a target table with target-
phenotype associations, and connections between drugs
and targets (cf. Figure 1). The drug-phenotype associa-
tions were obtained using MAGMA pathway analysis,
target-phenotype associations using MAGMA gene-wise
analysis and S-PrediXcan results, and the drug-target
interactions were collected as described in the data col-
lection section (cf. “Definition of drug-target and drug-
gene interactions”). The networks are comprised of drug
nodes and target nodes, the edges of which are connected
based on the type of interaction. Drug Targetor defines
nine types of drug-target interactions: increasing gene
expression, decreasing gene expression, mixed (increasing
or decreasing) gene expression, agonist/activator/positive
allosteric modulator, partial agonist, antagonist/inhibitor/
negative allosteric modulator, modulator (neither negative
nor positive), inverse agonist, and mixed bioactivities
(unknown or both agonist and antagonist). Only bioac-
tivity data were used in the networks generated for this
paper. The drug nodes are ordered by decreasing asso-
ciation with the phenotype in −log10(P) units (from
MAGMA pathway analysis). The target nodes are ordered
by a score based on MAGMA results and S-PrediXcan
results in the tissue family of interest (for more details see
https://drugtargetor.com/help.html). In Drug Targetor,
the data entry for the new PGC MDD GWAS is encoded
as “DEPR01”, and we chose the tissue family “Nervous
System”.

Results
Gene-based tests of association
We used MAGMA to map SNP-level association to

individual genes, and annotated results based on

druggability (cf. “Definition of the druggable genome”). A
total of 211 genes achieved genome-wide significance
(MAGMA P ≤ 2.62 × 10−6, cf. Supplementary Tables 1–
3), of which 153 were located outside the major histo-
compatibility complex (MHC) region. 24 of these 153
genes were annotated as druggable in the Finan et al.
classification (Table 1). The MHC region was defined as
the 25–35Mb region on chromosome 6.
To gain insight into the potential functional con-

sequences of DNA sequence variation underlying MDD,
we imputed gene expression using S-PrediXcan. Overall,
12 protein-coding genes outside the MHC were sig-
nificantly up or downregulated in the brain or whole
blood, (Supplementary Table 4). Among these genes, five
were significant in the brain: NEGR1, LRFN5, KCL1,
TMEM33 (upregulation), and SLC30A9 (downregulation),
and three were annotated as druggable: NEGR1, LRFN5,
and ESR2. NEGR1 is positively associated with MDD in
the putamen (Z= 7.06, P= 1.67 × 10−12), LRFN5 in the
cerebellum (Z= 5.21, P= 2.01 × 10−11) and cerebellar
hemisphere (Z= 5.23, P= 1.68 × 10−7), whereas ESR2 is
not significantly associated with MDD in the brain (cer-
ebellum: Z=−1.73, P= 0.0843) but exhibits significant
negative association in whole blood (Z=−5.43, P=
5.66 × 10−8).

Drug classes and their drug-target networks
We tested for the enrichment of MDD GWAS associa-

tion signals within major therapeutic classes defined by
ATC code, using the complete set of drug-gene interac-
tions (“annotation” dataset) or only curated ChEMBL and
PDSP bioactivities (“bioactivity” dataset). We used the
Benjamini and Hochberg false discovery rate (FDR)24 to

Fig. 1 Drug Targetor workflow to build phenotype-informed bipartite drug-target networks (drugtargetor.com)
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correct for multiple testing whilst exploring more
hypotheses (Fig. 2 and Supplementary Table 5). In the
annotation dataset, 13 drug classes were significantly
associated with MDD (FDR q-value < 0.05); in the more
reliable bioactivity dataset, only five classes were identified
as significant (Fig. 2). Both annotation and bioactivity
datasets exhibited enrichment for psycholeptics (ATC
code N05, Pbioactivity= 9.81 × 10−6), antipsychotics (N05A,
Pbioactivity= 1.71 × 10−5), and sex hormones and mod-
ulators of the genital system (G03, Pbioactivity= 5.75 ×
10−5). Non-selective monoamine reuptake inhibitors

(N06AA, a subclass of antidepressants) were only sig-
nificant in the bioactivity dataset (Pbioactivity= 3.23 × 10−3).
Bipartite drug-target networks, which provide an insight

into the mode of action for drugs and their putative tar-
gets, were built for each FDR-significant drug class
(Supplementary Figures 1–15). These networks provide a
visual support for the drug class enrichment analysis, by
highlighting the drug-target interactions driving the
association between drugs in an enriched class and MDD
—they also suggest in which tissues the genes might be up
or downregulated and the potential negative or positive
action of a drug. Phenotypic information from the
human-mouse disease connection (HDMC) database for
prioritized targets was also collected as supplementary
information and provided in Table 2. Four patterns occur
most often among Bonferroni-significant drug classes:
dopamine receptor D2 antagonism/agonism (DRD2),
serotonin receptor 5-HT1D antagonism/agonism
(HTR1D), calcium channels (CACNA2D1 and CACNA1H,
CACNA1C being only FDR-significant) modulation and
antagonism, and estrogen receptor ER-β (ESR2) modula-
tion. Other patterns seen for FDR-significant drug classes
include: cholinergic/acetylcholine receptor M3 antagon-
ism (CHRM3), estrogen receptor ER-α (ESR1) modula-
tion, GABA-A receptor agonism and antagonism
(subunits encoded by GABRA1, GABRG3, GABRA6),
histamine H1 receptor antagonism (HRH1), and gluta-
mate receptor 1 antagonism (GRIA1). A detailed
description of druggable targets and their interactions is
provided in Supplementary Text 2.

Potential repurposing candidates
Top individual drugs from pathway analyses that have

interaction with significant targets (Fig. 3) include calcium
channel modulators or blockers (such as pregabalin,
gabapentin, and nitrendipine), dopamine receptor D2
antagonists (alizapride, mesoridazine) or agonists (qui-
nagolide), and hormonal medications such as levo-
norgestrel (inhibitory effect on sex hormone binding
globulin) or diethylstilbestrol, an agonist of estrogen
receptors. Gepirone is the only antidepressant in the top
list and its association with MDD is driven by its dopa-
mine D2 binding and 5-HT1A partial agonism. Other
potentially more interesting candidates can be found by
visualizing each enriched drug class in a bipartite drug-
target interaction network (cf. Supplementary Figures 1–
15 and Discussion).

Discussion
Most antidepressants are only partially effective and not

all patients respond to these treatments, which also have
frequent side effects that contribute to reduced treatment
adherence25. Therefore, the antidepressant suitable for the
individual patient is mostly chosen based on its efficacy

Table 1 “Druggable” genes outside the major
histocompatibility complex significant in major depressive
disorder. The −log10(P) column indicates the significance
level as computed by MAGMA, the DGN whole blood and
GTEx brain regions columns indicate the predicted change
in expression level in the corresponding tissue

Gene name −log10(P) DGN whole blood GTEx bain regions

NEGR1 16.07 +a +, +a

OLFM4 15.54 + +, +

CACNA1E 10.23 −

PXDNL 8.92 − +

ESR2 8.70 −a −

EP300 8.15 +

VRK2 8.10 + −

DRD2 8.04

CACNA2D1 8.03 +, −

CHALD 7.96 + +

ENOX1 7.70 +, −

EMILIN3 7.27 −, −, −

HP 7.08 − +, +

GRM5 6.71 +, +

FEN1 6.66 −

PCDHA2 6.62 +, −

RPS6KL1 6.60 + −

KCNB1 6.56

PCSK5 6.34 + −

HSPD1 6.14 −

GRIK5 6.04 −

WDR1 5.94 + −, −

HTR1D 5.70 +, +, +, +, +, +

LINGO1 5.69 +, +, +,−, −, −

+predicted upregulation in one brain region, −predicted downregulation in one
brain region
aBonferroni-significant
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and side effect profile in a strenuous and time-consuming
process. Using the largest available GWAS, we conducted
systematic analyses for associations of MDD with known
drug targets and drug classes. We find that 13 drug classes
based on the ATC classification are enriched for asso-
ciations in the MDD GWAS data, among which are
antidepressants, antipsychotics as well as sex hormones
and antihistamines. We visualise and explore these drug
classes using our online tool Drug Targetor (drugtargetor.
com), which displays bipartite drug-target networks for
MDD that integrate genetic association and imputed gene
expression information. The imputed gene expression
data may indicate up or downregulation of genes in dif-
ferent tissues, thereby suggesting whether the effect of a
gene or target should be inhibited or enhanced—for
example, an antagonist could counteract the effect of an
overexpressed target in the brain.
We identified association patterns for MDD con-

centrated around key drug-target hubs, including calcium
channels, dopamine, serotonin, histamine, and GABA
receptors, as well as the predominantly female sex hor-
mone estrogen. Many of the top druggable genes encode
subunits of voltage-dependent calcium channels expres-
sed in the brain (CACNA2D1, CACNA1H, CACNA1C), or
are receptors of neurotransmitters and their subunits,
such as GABA (GABRA1, GABRG3, GABRA6), acet-
ylcholine (CHRM3), glutamate (GRIA1, GRM5, GRM8,
GRIK5), serotonin (HTR1D), and dopamine (DRD2).
These neurotransmitter receptors are targeted by many

drugs included in the psycholeptics, psychoanaleptics, and
anesthetics drug classes, many of which are already
approved for the treatment of MDD.
The enrichment of calcium channels confirms that

calcium channel blockers such as verapamil may provide
repurposing opportunities for MDD26, although their
effects on blood pressure may prove problematic27.
Pregabalin and gabapentin, both calcium channel mod-
ulators, are also top ranked repurposing candidates.
Pregabalin has been shown to be an effective adjunctive
treatment for MDD28 and treatment-resistant bipolar
disorder29, and gabapentin is used off-label for bipolar
disorder30. The side effect profile of gabapentin includes
increased suicidality within the first week of treatment31,
which is also seen with antidepressant use. The mood
elevating effect of antidepressants is thought to occur
after about 2–3 weeks, lagging the increase in motiva-
tional behaviour, which could explain the higher risk for
suicidal attempts32,33. It may be that administration of
calcium channel modulators over a longer time period
could lead to a decrease of depressive symptoms after
overcoming an initial ineffective episode.
The association of histamine receptor H1 with MDD

may indicate an involvement of the histaminergic system
in MDD and depressive symptoms. Brompheniramine
and chlorphenamine, which have very similar structures,
are the top antihistamines associated with MDD. Inter-
estingly, brompheniramine is the precursor of one of the
first marketed antidepressant compounds, zimelidine, the

Fig. 2 Drug classes significantly enriched (FDR or Bonferroni) in major depressive disorder when using the complete annotation set (“all
drug-gene connections”), or using only the curated bioactivity set (“curated bioactivities”), which contains ChEMBL and PDSP Ki data. The
drug class enrichment was tested using Mann–Whitney–Wilcoxon (MWW) rank tests, on drugs ordered by MAGMA pathway analysis p-value. The
Bonferroni correction is based on the number of tested classes: 57 for the curated bioactivity set, 141 for the complete connection set

Gaspar et al. Translational Psychiatry           (2019) 9:117 Page 6 of 9

http://drugtargetor.com
http://drugtargetor.com


first selective serotonin reuptake inhibitor (SSRI), paten-
ted in 197234, although no longer in use due to its side
effect profile35. These medications are first-generation
antihistamines, which exhibit sedating effects of different
intensities, which may help with disrupted sleep, a
symptom common in MDD patients36.
A female preponderance in MDD is well-

established37,38, making sex hormones interesting candi-
dates for the treatment of MD. We saw associations
between the estrogen receptors (ERs) ESR1 and ESR2 and
MDD. This finding was further supported by a significant
association of decreased whole-blood ESR2 expression
and MDD, indicating that ER-β agonism could be possibly
beneficial. However, no significant associations with
altered expression levels in brain regions were found—
which could be due to a lack of power. Lasofoxifene was a
top ranked selective estrogen receptor modulator (SERM)
identified in our drug-target networks. SERMs are hypo-
thesised to function as neuroprotective and antiin-
flammatory agents in the central nervous system39 and the
SERM raloxifene has been reported to decrease anxiety40

and depression41. Among sex hormones, levonorgestrel is
one of our top repurposing candidates. The use of a
levonorgestrel in intrauterine systems was associated with
lower risk of postpartum depression42; however, another
study showed increased risk of antidepressant use and
first diagnosis of MDD43.
Ketamine, a member of the drug class of anesthetics, is

used off-label for depression via intravenous infu-
sions44,45; our results suggest that its D2 partial agonism
might be one possible explanation for its antidepressant
effect, together with its serotonin and glutamate receptor
antagonism46 and interaction with other neurotransmitter
systems47. In our analyses of druggable genes, the dopa-
mine receptor 2 (D2) gene (DRD2) is clearly associated
with MDD. In addition, antipsychotics as well as anti-
depressants targeting D2 are usually antagonists; anti-
psychotics are used as augmentation therapies in patients
with MDD if initial antidepressant therapies do not result
in remission of symptoms48. However, we note that
mesoridazine, a neuroleptic and D2 antagonist in our top
list for repurposing opportunities, was withdrawn from
the US market due to major side effects49.
Our analyses suggest that HTR1D overexpression is

associated with MDD in six brain regions (although none
of these associations is significant). HTR1D over-
expression could either be leading to depressive symp-
toms, suggesting that 5-HT1D antagonism could
counteract them, or could be a compensatory mechanism
due to low serotonin levels, suggesting a beneficial effect
of 5-HT1D agonists on depressive symptoms. The first
hypothesis is supported by the 5-HT1D antagonist activity
displayed by vortioxetine, an antidepressant and serotonin
modulator50.Ta
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These results, while interesting, have considerable
caveats. Specifically, a key point when using GWAS data is
the direction of effect. The relationship between a drug
and a phenotype cannot easily be inferred; an association
may reflect either a depression-inducing effect or an
antidepressant effect. We partially address this issue via
imputation and prediction of gene expression, but phar-
macological, molecular and clinical validation will be
needed before drawing definitive conclusions. However,
we suggest that our findings may represent a source of
new therapeutic hypotheses for MDD—a common and
currently only partially treatable disorder.
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