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1  | INTRODUC TION

Malaria remains a major public health concern in tropical and sub‐
tropical regions of the world. In 2017, there were an estimated 
219 million cases and 435 000 deaths, mainly affecting young chil‐
dren living in sub‐Saharan Africa. Alarmingly progress in reducing the 
number of malaria cases has halted.1 Infection in mammalian hosts 

is initiated by inoculation of Plasmodium sporozoites into the dermis 
of the skin by the bite of female Anopheles mosquitoes leading to 
the asymptomatic liver stage of the Plasmodium lifecycle. Parasites 
develop in hepatocytes and differentiate into merozoites that are 
released to infect red blood cells (RBCs) and establish the blood 
stage of the lifecycle that is responsible for the clinical symptoms 
of malaria. This relatively complex and multistaged lifecycle of ma‐
laria parasites contributes to the slow development of immunity that 
rapidly wanes in the absence of continuous exposure to parasites.2,3 
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Abstract
Malaria is a major global health problem. Despite decades of research, there is still 
no effective vaccine to prevent disease in the majority of people living in malaria‐
endemic regions. Additionally, drug treatment options are continually threatened 
by the emergence of drug‐resistant parasites. Immune responses generated against 
Plasmodium parasites that cause malaria are generally not sufficient to prevent the 
establishment of infection and can even contribute to the development of disease, 
unless individuals have survived multiple infections. Research conducted in experi‐
mental models, controlled human malaria infection studies, and with malaria patients 
from disease‐endemic areas indicate the rapid development of immunoregulatory 
pathways in response to Plasmodium infection. These “imprinted” immune responses 
limit inflammation, and likely prevent progression to severe disease manifestations. 
However, they also cause slow acquisition of immunity and possibly hamper the de‐
velopment of vaccine‐mediated protection against disease. A major target for and 
mediator of the immunoregulatory pathways established during malaria are CD4+ 
T cells that play critical roles in priming phagocytic cells to capture and kill malaria 
parasites, as well as helping B cells produce functional anti‐parasitic antibodies. In 
this review, we describe mechanisms of CD4+ T cell activation during malaria and 
discuss the immunoregulatory mechanisms that develop to dampen their anti‐para‐
sitic and pathological functions. We also offer some ideas about how host‐directed 
approaches might be applied to modulate CD4+ T cell functions to improve vaccine 
responses and enhance development of natural immunity.
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Furthermore the delay in developing immunity often results in the 
failure to achieve sterile cure in a timely manner, thereby increasing 
the risk of disease.4,5

Successful control of blood‐stage malaria requires a robust anti‐
body response comprising a diverse repertoire of anti‐parasitic anti‐
bodies with a range of functions. These include the ability to inhibit 
parasite invasion of hepatocytes and/or RBCs, attach to antibody 
binding (Fc) receptors on phagocytic cells and fix complement.6 The 
importance of antibody for protection against malaria was conclu‐
sively demonstrated in an earlier study showing that the passive 
transfer of immunoglobulin from immune adults to infected children 
resulted in an increased parasite clearance and a reduced incidence 
of clinical malaria.7 These findings along with subsequent research 
in this area have led to interest in using passive monoclonal antibody 
(mAb) transfer to protect vulnerable populations against malaria.8 
This topic and the role of antibodies in protection against malaria will 
not be discussed further in this review. Similarly, although it is clear 
that components of the innate immune system play important roles 
in malaria (reviewed in Ref. [9,10]) and CD8+ T cells can be important 
in recognizing infected hepatocytes during the liver‐stage infection 
(reviewed in Ref. [11]), our focus will be on the activation and func‐
tion of CD4+ T cells in malaria, with an emphasis on their roles during 
the blood stage of the Plasmodium lifecycle.

The generation of parasite‐specific CD4+ T cells is needed to 
control malaria parasites. In general, two different types of conven‐
tional CD4+ T cells are required to control Plasmodium parasites that 
cause malaria; and the types include IFNγ‐producing, Tbet+ CD4+ T 
helper (Th)1 cells that stimulate phagocytic cells to capture and kill 
parasites12 and T follicular helper (Tfh) cells required for the devel‐
opment of antigen‐specific B cell populations and production of pro‐
tective anti‐parasitic antibodies.13 However, the development and 
maintenance of Th1 and Tfh cell responses can be antagonistic and 
their activities can become dysregulated and contribute to tissue 
damage if not appropriately controlled.13‐16 Whether dysregulation 
is caused by counteracting immunoregulatory networks established 
to prevent excessive inflammation and tissue damage or whether the 
latter arises in response to the former is still not clear. Regardless, 
the balance between regulatory immune mechanisms and inflam‐
mation has a major impact on the magnitude and effectiveness of 
immune responses generated following infection or in response to 
vaccination.17

Our recent work with controlled human malaria infection (CHMI) 
studies showed the rapid development of immunoregulatory net‐
works following the first exposure to submicroscopic levels of ma‐
laria parasites. This finding raised important questions about their 
influence on the development of anti‐parasitic immunity and, in 
particular, their impact on the performance of vaccines in malaria 
endemic areas.18 This was highlighted by the relatively poor perfor‐
mance of vaccines tested in disease endemic regions, compared to 
when tested in healthy volunteers from non‐malaria endemic re‐
gions. For example, the RTS,S/AS01 vaccine in children and infants 
affords 36% and 25% efficacy against clinical malaria, respectively19 
while the efficacy of the same vaccine in healthy volunteers in CHMI 

studies was 52%.20 Similarly, despite greater than 90% protection 
against Plasmodium falciparum challenge in malaria‐naive subjects in 
the USA provided by a radiation‐attenuated P falciparum sporozoite 
(PfSPZ) vaccine,21‐23 efficacy fell to 29% against naturally trans‐
mitted P falciparum in Malian adults24 and 20% in Tanzanian adults 
after mosquito bite CHMI.25 Although many reasons may account 
for this discrepancy, the early establishment or imprinting of potent, 
pathogen‐specific immunoregulatory networks in response to early 
inflammatory signals may be an important factor contributing to this 
problem. Hence, a better understanding about the development of 
CD4+ T cell responses during malaria is needed to develop strate‐
gies aimed at improving anti‐parasitic immunity. Furthermore, this 
knowledge may also help identify new host‐directed strategies to 
transiently modulate immune regulation as part of vaccination or 
drug treatment protocols to allow the generation of robust anti‐par‐
asitic immunity.

In this article, we will review the activation and differentiation of 
CD4+ T cell subsets during malaria and discuss their roles in disease 
control. Our main focus will be on the blood stage of Plasmodium 
infection. We will discuss the critical roles that dendritic cells (DCs) 
play in this process. Additionally, we will describe known immuno‐
regulatory networks established after infection and discuss how 
these might be manipulated to boost the efficacy of vaccines or drug 
treatment. We will direct our attention on several immunomod‐
ulatory pathways that have been examined by our group over the 
past decade. These include IL‐10 production by IFNγ‐producing Th1 
(type 1 regulatory; Tr1) cells, type I interferons (IFNs) produced in re‐
sponse to Plasmodium infection that not only suppress anti‐parasitic 
Th1 cell response but also promote the expansion of Tr1 cells26,27 
and co‐inhibitory receptor expression by Th1 and Tr1 cells following 
Plasmodium infection, including the immune checkpoint molecules 
which suppress anti‐parasitic activity.17,28

2  | CD4 + T  CELL S IN MAL ARIA

CD4+ T cells play important roles in determining the outcome of 
experimental (rodent) and human malaria. Their activation status 
has been positively correlated with protective immunity following 
natural infection, vaccination and in CHMI studies.22,29,30 For exam‐
ple, the frequency of peripheral blood, IFNγ‐secreting, P falciparum‐
specific CD4+ T cells in humans from The Gambia, West Africa was 
positively associated with protection from infection and malaria.31 
In naive adults immunized with RTS,S/AS, the magnitude of circum‐
sporozoite protein (CSP)‐specific CD4+ T cell response and IFNγ pro‐
duction were correlated with protection following challenge with P 
falciparum‐infected mosquitoes in CHMI studies.32‐34 However, data 
from young children immunized with this vaccine was less clear with 
one study testing the RTS,S/AS vaccine reporting no association be‐
tween CD4+ T cell activation and protection,35 while another study 
found that TNF‐producing CD4+ T cell frequency was positively 
correlated with protection from malaria in vaccinated children.36 
A number of factors may account for these different outcomes, 
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including vaccine formulations, age of study participants, or levels of 
exposure to malaria parasites. Regardless, there is a reasonable body 
of evidence indicating that malaria vaccine efficacy is linked to their 
ability to stimulate robust CD4+ T cell responses.

During Plasmodium infection, naive CD4+ T cells are activated 
following T cell receptor (TCR) recognition of peptide antigen pre‐
sented by major histocompatibility complex (MHC) II molecules on 
the surface of DCs. DC‐derived costimulatory signals are also re‐
quired to initiate CD4+ T cell IL‐2 production and subsequent expan‐
sion.37 Pattern recognition receptors (PRRs) on DCs are critical to the 
recognition of parasite molecules and stimulating the selective pro‐
duction of cytokines that promote the expression of specific tran‐
scription factors (TFs) by CD4+ T cells that determine their Th cell 
lineage and thus functions (Figure 1). For example, IL‐12 produced by 
DCs in response to activation of PRRs stimulates expression of Tbet 

by CD4+ T cells and their subsequent development into Th1 cells 
that produce pro‐inflammatory cytokines such as IFNγ and TNF.38

3  | AC TIVATION OF CD4 + T  CELL S BY 
DENDRITIC CELL S

DCs are highly specialized antigen presenting cells (APC) required 
to initiate adaptive immune response against many pathogens 
including Plasmodium.39‐43 Unlike other APCs such as B cells 
and macrophages, DCs are primarily responsible for presenting 
antigen to naive CD4+ T cells in specialized niches of secondary 
lymphoid tissues and driving their expansion into appropriate Th 
cell subsets to combat invading pathogens.39 Two major DC sub‐
populations found in blood and secondary lymphoid tissues have 

F I G U R E  1   The activation and differentiation of CD4+ T cells during malaria. Pattern recognition receptors (PRRs) on dendritic cells (DCs) 
recognize parasite molecules and stimulate the production of IL‐12 or IL‐6 and IL‐21 that promote the expression of specific transcription 
factors by CD4+ T cells that result in the development of T helper (Th)1 and T follicular helper (Tfh) cell populations, respectively. Th1 cells 
produce pro‐inflammatory cytokines such as IFNγ and TNF that stimulate production of reactive oxygen and nitrogen intermediates (ROI 
and RNI, respectively) by macrophages and promote capture and killing of parasitized red blood cells (pRBCs). Th1 cells can also become 
type 1 regulatory (Tr1) cells that produce IL‐10 that dampens pro‐inflammatory cytokine production, ROI and RNI, as well as suppressing 
antigen presentation by DCs. Tfh cell play critical roles in the initiation and maintenance of germinal centre reactions, the selection and 
maturation of B cells, immunoglobulin class switching and development of high‐affinity antibody responses directed against Plasmodium 
molecules. During the pre‐erythrocytic stages of malaria, CD8+ T cells can migrate from skin and liver draining lymph nodes to the liver and 
recognize and kill infected hepatocytes with help from CD4+ T cells. The activation of Th2 and Th17 cells is limited relative to Th1 and Tfh 
cells in malaria, but they have been reported in experimental models of malaria and human malaria patients. However, their roles are still 
largely unknown. FoxP3+ CD4+ T regulatory (Treg) cells emerge from the thymus or develop in peripheral tissues in response to TGFβ and 
IL‐2 signaling. They appear to dampen inflammation in the early stages of malaria, before Tr1 cell responses develop
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been identified in humans and mice—conventional DCs (cDCs) 
and plasmacytoid DCs (pDCs).44 In mice, DCs expressing B220, 
PDCA‐1, and intermediate levels of CD11c are defined as pDCs, 
while DCs expressing high levels of CD11c and MHCII are iden‐
tified as cDCs. These latter cells can be subdivided into CD8α+ 
CD11b− (cDC1) and CD8α− CD11b+ (cDC2) lymphoid tissue‐resi‐
dent DCs, and migratory CD103+ CD11b−, CD103+ CD11b+, and 
CD103− CD11b+ DCs.45 Additionally, Langerhans cells and other 
skin‐resident DCs play important roles in pathogen sensing, as well 
as antigen capture and delivery to draining lymph nodes,46 while 

monocyte‐derived DCs (mDCs) develop in inflamed tissue from re‐
cruited monocytes and can serve to amplify antigen‐specific CD4+ 
T cell responses locally.47 In humans, HLA‐DR+ CD11c+ cDCs can 
be subdivided into two subsets—cDC1 and cDC2—based on the 
expression of CD141 (BDCA3) and CD1c (BDCA1), respectively, 
while pDCs are classified as HLA‐DR+ CD11c+ CD303 (BDCA2)+ 
CD304 (BDCA4)+ cells.48‐50 Additionally, CD1a+ and CD14+ dermal 
DC along with Langerhans cells comprise three major skin DC sub‐
sets, and mDCs can also develop from monocytes in appropriate 
tissue microenvironments.46

F I G U R E  2   The host immune response to Plasmodium parasites. A, Following the injection of sporozoites into the skin when a female 
Anopheles mosquito takes a blood meal, parasite products cause inflammation leading to recruitment and activation of various inflammatory 
cell populations. Sporozoites can enter the blood and migrate to the liver or enter lymphatics, while dendritic cells (DCs) also capture 
parasite antigen in the skin and transport it to local draining lymph nodes. B, Sporozoites enter the liver and traverse Kupffer cells and enter 
hepatocytes where they develop into pre‐erythrocytic parasite stages. C, DCs in skin‐ or liver‐draining lymph nodes directly capture parasite 
antigen or receive parasite antigen from skin‐migratory DCs that allows them to activate antigen‐specific CD4+ and CD8+ T cells. T follicular 
helper (Tfh) CD4+ T cells move to B cell zones and provide key signals for anti‐parasitic antibody production by B cells. This antibody can 
immobilize sporozoites in the skin during future infections. In addition, antigen‐specific CD4+ and CD8+ T cells can migrate from skin 
and liver draining lymph nodes. Antigen‐specific CD8+ T cells can recognize and kill infected hepatocytes with help from CD4+ T cells. If 
hepatic parasites escape immune detection, then mature and are released into the circulation, they initiate the blood stage of infection. 
D, Parasitized red blood cells (pRBCs) are captured by DCs or marginal zone macrophages (MZM) in the spleen and DCs can again activate 
antigen‐specific CD4+ T cells. Parasite‐specific Tfh cells help B cells produce antibody in splenic B cells follicles (upper panel in D). These 
antibodies mediate compliment‐mediated killing or opsonization of pRBCs by phagocytic cells, as well as blocking merozoite invasion of 
RBC. CD4+ T cells can also develop a regulatory phenotype, including the induction of IL‐10 production by type 1 regulatory (Tr1) cells and 
increased expression of co‐inhibitory receptors, following infection (lower panel in D)
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The role of DCs in malaria has been investigated in both humans 
and experimental models. After encounter with malaria parasites and 
recognition via PRRs, DCs undergo maturation and migrate to the 
T cell zones of secondary lymphoid organs. If the DC has migrated 
from a peripheral tissue site, as would be the case for skin‐resident 
DCs after capturing sporozoite antigens, the captured antigen is 
transferred to lymphoid‐resident cDCs for presentations to naive 
T cells.42 Alternatively, parasitized RBCs (pRBCs) may be captured 
by macrophages or DCs lining the subcapsular sinus of lymph nodes 
or marginal sinus of the spleen during blood‐stage infection.51 The 
removal of pRBCs by tissue‐resident macrophages again requires 
antigen transfer to lymphoid‐resident cDCs, but these cDCs them‐
selves may also directly capture, process, and then present parasite 
peptides following migration from areas of sentinel activity into T 
cell zones (Figure 2). It should be remembered the behavior of APCs 
in tissue is derived from studies in mice, and while similar APC popu‐
lations have been identified in humans, they are not identical and it is 
likely that there are species differences in the cellular and molecular 
mechanisms of antigen presentation to CD4+ T cells.

4  | DC AC TIVATION

The development of Th cell subsets is heavily influenced by the PRR 
cues DCs receive following encounter with pathogen molecules and 
the additional cellular contacts received on their journey to the T cell 
zones of secondary lymphoid tissues.52‐54 Several Plasmodium mol‐
ecules, including hemozoin, glycosylphosphatidylinositol (GPI) an‐
chors and immunostimulatory nucleic acid motifs can stimulate DCs 
through PRRs.55‐57 Additionally, endogenous danger‐associated mo‐
lecular patterns (PAMPs) such as uric acid that accumulates within 
P falciparum and P vivax pRBCs are released following cell rupture 
and can promote the maturation of human dendritic cells in vitro.58

5  | TLRS AND PL A SMODIUM

Innate recognition of Plasmodium is critical to the induction of appro‐
priate immune responses.9,59 Changes in TLR expression on periph‐
eral blood mononuclear cells during Plasmodium infection suggest 
a role for TLRs in recognition of malaria parasites.60,61 TLR2, 4, and 
9 are known to be activated by Plasmodium products.9,59 P falcipa-
rum‐derived GPI can promote TNF production in human peripheral 
blood monocytes via TLR2 or TLR1/6 through a myeloid differentia‐
tion primary response 88 (Myd88)‐dependent signaling pathway.55 
Furthermore, Plasmodium 2‐Cys peroxiredoxin (Prx), an important 
enzyme involved in regulating redox homeostasis in the parasite cy‐
toplasm (reviewed in Ref. [62]), has been identified as an additional 
TLR4 ligand in P berghei ANKA.63 Prx activates mouse macrophages 
and mast cells via a TLR4‐dependent activation pathway to stimulate 
TNF production.63 TLR9 stimulation via Myd88 activation by P falci-
parum‐purified schizonts or schizont extracts is essential for human 
pDC and mouse monocyte‐derived DC activation in vitro.54 In 

humans, a Plasmodium protein‐DNA complex activates TLR9.56,64 In 
mice, Plasmodium‐derived RNA can activate TLR7,65,66 but a human 
TLR7 agonist has not yet been identified.

6  | MOUSE DC S AND MAL ARIA

DCs have been extensively studied in rodent malaria models. 
Studies in mice show that DC function is compromised during le‐
thal Plasmodium infection yet, in non‐lethal malaria models, func‐
tional DCs were present.42 Studies on the pre‐erythrocytic stages 
of infection shows the priming of sporozoite‐specific CD8+ T cells 
is dependent on CD11c+ DCs which present sporozoite antigen in 
either the liver‐draining lymph nodes or spleen.67 Experiments with 
CD11c‐diphtheria toxin receptor mice in which cells expressing high 
levels of CD11c were depleted show that CD11c+ cells were essential 
for generating protective immunity against P yoelli pre‐erythrocytic 
lifecycle stages,68 but also promoted the development of experi‐
mental cerebral malaria in mice infected with blood‐stage P berghei 
ANKA.69 Antigen presentation in tissue‐draining lymph nodes was 
almost exclusively mediated by CD8α+ DC.70 In P chabaudi infection, 
loss of CD8α+ CD103+ DC, which is acutely responsive to Flt3 ligand, 
resulted in impaired CD8+ T cell activation.71

Studies with blood‐stage P chabaudi AS‐infected mice showed 
that following pRBC uptake by splenic CD11c+ DCs, they underwent 
maturation, started producing IL‐12 and primed CD4+ T cell prolifer‐
ation and IFN‐γ production.72 Similar results were reported in mice 
infected with P yoelli 17NL, whereby following an encounter with 
pRBCs, DCs expressed high levels of IL‐12, the costimulatory mole‐
cules CD40 and CD80, as well as MHC class II, thereby supporting 
CD4+ T cell activation, including IL‐2, IFNγ, and TNF production.73 In 
other DC adoptive transfer studies, DCs presenting P yoelii sporo‐
zoite antigens were able to activate antigen‐specific CD4+ and CD8+ 
T cells and initiated protective immune responses against malaria 
in recipient mice.43 Similarly, activation of DCs during P chabaudi 
infection led to increased Th1 cell responses.74 In another study, 
in vivo depletion of phagocytes showed that DCs were crucial for 
protection against blood stages of experimental malaria caused by 
P berghei, P yoelli, or P chabaudi sporozoites.75 Taken together, there 
is a significant body of research from experimental malaria models in 
mice showing critical roles for DCs in CD4+ T cell activation follow‐
ing Plasmodium infection.

7  | HUMAN DC S AND MAL ARIA

Results from studies on human DCs have been less consistent, pos‐
sibly reflecting the restriction of investigating DCs in blood and a 
propensity to try and interpret results to fit paradigms established 
from studies using tissues from disease models. Despite these ca‐
veats, seminal studies using in vitro‐generated monocyte‐derived 
DC show DC maturation is inhibited by contact dependent76 and 
contact‐independent77 mechanisms mediated by the parasite. More 
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recently, in vitro stimulation of isolated classical blood DC subsets 
(excluding CD16+ DCs) with pRBCs revealed atypical DC activation, 
whereby there was increased DC maturation marker expression, but 
a failure to produce cytokines.78 Hence, DC activation and function 
during human malaria are often impaired.

8  | PL A SMACY TOID DC S AND MAL ARIA

Human blood pDCs express TLR7 and TLR9 allowing them to recog‐
nize single‐stranded RNA79 and DNA,80,81 respectively. Plasmodium‐
derived RNA can trigger type I IFN responses in a TLR7‐dependent65 
and ‐independent fashion66 in mice. In humans, Plasmodium pro‐
tein‐DNA complexes are thought to activate TLR9.56,82 Indeed, 
simulation of human pDC in vitro with P falciparum schizonts up‐
regulated the costimulatory marker CD86 and increased type I IFN 
production.54 However, in P falciparum CHMI studies, pDCs were 
only minor contributors to the early type I IFN production during 
blood‐stage infection.83

9  | CL A SSIC AL DC S AND MAL ARIA

The majority of human DC malarial studies have assessed total 
myeloid DC function.84‐86 However, there are two distinct human 
myeloid DC subsets with unique phenotypic and gene expression 
profiles,87‐89 and as such it is important to understand their specific 
roles in human malaria. Human cDC1 (CD141+ DC) constitute around 
3% of circulating blood DC and are the most efficient cross‐present‐
ing DC subset.90,91 This ability is facilitated by the high expression 
of CLEC9A, a C‐type lectin receptor integral to cross presentation 
of necrotic antigens.91 The importance of cDC1 antigen presenta‐
tion in malaria has been shown in two mouse studies in which cDC1 
(CD8α+ DC) were shown to be the exclusively APCs in draining 
lymph nodes70 and impaired CD8+ T cell activation occurred when 
cDC1 were lost.71 CLEC9A antigen targeting of cDC1 promoted the 
generation of antibody development in mice.92 In humans, CLEC9A 
facilitated antigen presentation by cDC1 to CD4+ and CD8+ T cells.93 
However, despite an increased frequency of peripheral blood cDC1 
in African children with severe malaria, possibly caused by increased 
levels of Flt3 ligand,71 HLA‐DR expression was reduced on this DC 
subset,94 suggesting a reduced ability to present antigen to CD4+ T 
cells in this disease context. In adults with uncomplicated malaria, 
cDC1 numbers were reduced, relative to healthy controls,84,95 but it 
was not clear whether the loss of cDC1 was a result of this DC sub‐
set migrating into tissues such as the spleen. Despite the difficulties 
studying this relatively rare DC subset, their critical roles in CD4+ 
and CD8+ T cell activation makes them an important cell populations 
for further investigation.

Human cDC2 (CD1c+ DC) expresses more HLA‐DR than other 
peripheral blood DC subsets,96,97 indicating an important role in an‐
tigen uptake and presentation to CD4+ T cells. In P falciparum CHMI 
studies, HLA‐DR expression on cDC2 was directly associated with 

capacity for particulate antigen uptake.96 Similarly, phagocytosis of 
P falciparum pRBCs was more efficient in DC with higher levels of 
HLA‐DR in vitro.78 However, HLA‐DR expression was consistently 
reduced in children with severe malaria94 and Papuan adults with 
uncomplicated malaria,95 suggesting Plasmodium may inhibit cDC2 
antigen uptake during malaria. In contrast, in adults with asymp‐
tomatic infection and Malian children considered genetically more 
resistant to malaria than neighboring ethnic groups,98 HLA‐DR ex‐
pression on cDC2 was increased.95 Together, these studies suggest 
that by retaining cDC2 antigen uptake and presentation functions, 
Plasmodium infection may be better controlled.

In addition to reduced HLA‐DR expression on cDC2 in ma‐
laria,94,95 HLA‐DR and CD86 expression were also decreased on 
Plasmodium‐experienced cDC2 after in vitro TLR stimulation,96 
indicating a reduced capacity to respond to PAMPs. This was also 
found in mouse studies, where pre‐incubation of DC with intact P 
yoelii pRBCs inhibited DC maturation following TLR stimulation.99 
Inhibition of human cDC2 maturation following TLR activation with 
a broad range of agonists during submicroscopic P falciparum infec‐
tion96 suggests that Plasmodium may affect downstream signaling 
cascades common to different TLR activation pathways.59 cDC2 
express a broad range of TLRs, including TLRs1‐7,100 indicating an 
extensive pathogen recognition repertoire. Upon in vitro TLR stim‐
ulation, naive cDC2 produce a diverse range of cytokines including 
IL‐10,101 IL‐12,102 IL‐8,100 TNF,91 IL‐6,91,100 and IL‐1β.91 Following P fal-
ciparum infection, cDC2 increased TNF, but not IL‐12 production.96 
Increased TLR2 and TLR4 expression by myeloid DC and monocytes 
during acute malaria has previously been reported and may explain 
the increased TNF production observed.60,103 Similarly, increased 
TNF production by PBMCs in response to TLR1, 2, or 4 stimulation 
has also been reported following P falciparum infection,61 although 
the specific cell sources of cytokine were not identified. TNF can 
promote DC maturation and survival in vitro,104,105 but is not suffi‐
cient for full functional maturation,100 defined as the DCs ability to 
induce effector T cell responses.106

Reduced cDC2 subset maturation and altered cytokine produc‐
tion during Plasmodium infection is likely to impact T cell differen‐
tiation, activation, and proliferation. The functional properties of 
DC are dependent on their activation; Th1 cells are induced after 
stimulation with mature DC. In contrast, immature DC promotes 
the development of IL‐10 producing regulatory CD4+ T cells.107 
Impaired HLA‐DR expression, increased TNF and limited IL‐12 pro‐
duction in subpatent malaria,96 suggests cDC2 have reduced ability 
to prime effector T cell responses and may instead be more likely 
drive regulatory CD4+ T cell responses.107 We have previously re‐
ported dysfunctional cDC2 in clinical malaria84,95 and also in pri‐
mary Plasmodium infection.96,108 The disarmament of cDC2 during 
Plasmodium infection may provide increased opportunity for pos‐
sible co‐infections, such as bacteremia109 during malaria. Indeed, 
the importance of functional peripheral blood cDC2 is highlighted 
in Staphylococcus aureus infection,110 in which cDC2 are the sole 
DC subset to respond to S aureus. cDC2 increase HLA‐DR expres‐
sion alongside enhanced phagocytosis, consequently inducing 
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appropriate T cell activation and proliferation.110 The Plasmodium 
parasite‐induced impairment of cDC2 function may provide some 
insights into the exacerbated clinical outcome of children with 
Plasmodium and bacteremia co‐infections.109

10  | CD4 + T  CELL SUBSETS IN MAL ARIA

The recognition of parasite peptide expressed on DC MHC II by an 
antigen‐specific TCR on CD4+ T cells in secondary lymphoid tissue 
results in the formation of an ordered immunological synapse.111 In 
addition to TCR‐peptide/MHC class II interactions (signal 1), the syn‐
apse also comprises costimulatory molecules, integrins, and other 
cell surface signaling molecules expressed by interacting DC and 
CD4+ T cell (Reviewed in Ref. [112]). The affinity and avidity of inter‐
actions in signal 1, as well as integrin composition in the synapse, de‐
termines the interaction time between the DC and CD4+ T cell, that 
in‐turn, establishes the strength of signal transmitted into the CD4+ 
T cells. This strength of signal is further amplified and shaped by 
costimulatory signals (signal 2), most notably those received by bidi‐
rectional signaling from CD28 and CD40 ligand (CD40L) on CD4+ T 
cells following engagement with CD80/CD86 or CD40, respectively, 
on DCs. The former interaction stimulates IL‐2 production, expres‐
sion of IL‐2 receptors, and the initiation of cell proliferation, while 
the latter enables the CD4+ T cell to differentiate into a bona fide 
Th cell subset (Reviewed in [113). Signals 1 and 2 activate key signal‐
ing pathways in CD4+ T cells that mobilize and activate molecules 
able to enter the cell nucleus and start the process of modifying the 
genomic landscape to allow transcription factors to access gene pro‐
moters. The third critical signal (signal 3) that determines CD4+ T cell 
fate comes from cytokines produced by cDC presenting antigen or 
other proximal APC that have been activated by parasite molecules 
(Figure 1). These PRR and DAMP signals received by the APC dur‐
ing an encounter with pathogens and their products determine the 
cytokines produced.114,115

11  | TH1 CELL S

As previously discussed, encounters between blood‐stage malaria 
parasites and DCs stimulates IL‐12 production, which in‐turn, pro‐
motes polarization of CD4+ T cells into Th1 cells (Figure 1). In mice 
infected with P chabaudi, this development pathway was reinforced 
following ATP released by pRBCs binding P2X7 receptors on CD4+ 
T cells, but to the detriment of Tfh cell development.38 Th1 cells are 
thought to be critical to control of blood‐stage malaria. However, 
direct evidence for this is lacking, and this conclusion is based on the 
assumption that CD4+ T cells are the main source of IFNγ following 
Plasmodium infection. Although this is generally correct when IFNγ 
is measured in parasite antigen re‐stimulation assays, other cellular 
sources of IFNγ, including CD8+ T cells, NK cells, and γδ T cells have 
also been widely reported following infection.116 In fact, frequencies 
of IFNγ‐producing γδ T cells were correlated with protection against 

blood‐stage malaria,117 and primate PfSPZ vaccine studies revealed 
an accumulation of liver tissue‐resident, Pf‐specific IFNγ‐produc‐
ing CD8+ T cells following vaccination in protected animals.22 NK 
cells also rapidly produce IFNγ following contact with Pf pRBCs in 
culture,118 as well as in CHMI studies,119 but it is not clear whether 
this contributes to anti‐parasitic immunity in vivo. Instead, recent 
evidence points to an important role for NK cells in malaria in anti‐
body‐dependent cellular cytotoxicity, rather than as a major cellular 
source of IFNγ.120,121

Nevertheless, an important role for IFNγ in controlling the growth 
of Plasmodium has been reported in many studies. Mice receiving 
neutralizing anti‐IFNγ mAbs were much less efficient at controlling 
the growth of lethal122 and non‐lethal123 rodent Plasmodium species, 
and IFNγ blockade in mice with established protective immunity re‐
sulted in less efficient control of parasite growth following a second 
parasite challenge.124 These results were supported by experiments 
with IFNγ‐deficient mice showing diminished control of non‐lethal 
Plasmodium species.125,126 In mice, IFNγ has been shown to promote 
the activation of macrophages following encounters with pRBC and 
enhance the production of anti‐microbial reactive oxygen and nitro‐
gen intermediates.125,127 Additionally, IFNγ‐deficient mice infected 
with P chabaudi AS produced less parasite‐specific IgM, IgG2a, and 
IgG3, but more IgG1, compared to wildtype control mice.125 In CHMI 
studies with P falciparum, there was a strong association between 
parasite biomass measured by estimating the area under the blood 
parasitemia curve, and the amounts of IFNγ produced by PBMCs in 
response to parasite antigen.13,125,128‐130 It should be noted that the 
majority of IFNγ produced in the latter assays comes from antigen‐
specific CD4+ T cells (ie, Th1 cells). Finally, the magnitude of early 
IFNγ production in these assays was found to be a correlate of nat‐
ural malaria immunity in the Fulani people of West Africa, an ethnic 
group with increased resistance to P falciparum infection, relative to 
other ethnic groups in this part of the continent.131

Th1 cells also produce other pro‐inflammatory molecules that 
contribute to their functions. These include IL‐2 and TNF, the for‐
mer being important for driving lymphocyte expansion during infec‐
tion, as well as for maintaining FOXP3+ natural regulatory (Treg) cell 
populations.113 TNF was originally shown to inhibit the growth of 
P vinckei in mice, although the cellular source of TNF in this study 
was attributed to macrophages.132 In several RTS,S vaccine studies, 
the frequency of CSP‐specific IL‐2‐producing CD4+ T cells increased 
after vaccination,33,36,133,134 and in two of these studies, CSP‐spe‐
cific IL‐2+ CD4+ T cells and TNF+ CD4+ T cells were associated with 
protection against malaria.33,36 IL‐2 from antigen‐specific CD4+ T 
cells also appears to be important for the rapid activation of NK cells 
in individuals immunized with RTS,S/AS01.135

The anti‐parasitic functions of Th1 cells and their cytokine 
products are important for protection against malaria, but an un‐
checked Th1 cell response or the activity of Th1 cell cytokines in 
sensitive tissues can also contribute to the development of severe 
malaria syndromes. In particular, IFNγ and TNF stimulate vascular 
endothelium to increase the expression of a range of integrins and 
other adhesion molecules that enable pRBCs to sequester and/or 
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accumulate. This in turn results in the recruitment of immune cells, 
production of pro‐inflammatory mediators that cause collateral 
tissue damage associated with malaria complications such as ce‐
rebral malaria and respiratory distress syndrome (reviewed in Ref. 
[136‐138]). Additionally, Th1 cell cytokines can also impact other 
anti‐parasitic immune responses. For example, IFNγ produced by 
Th1 cells can stimulate high Tbet expression by atypical memory B 
cells in P falciparum‐exposed children in Africa, resulting in reduced 
B cell receptor signaling and skewing toward the production of IgG3 
antibodies, although this latter outcome may not be detrimental for 
anti‐parasitic immune responses.139 In mice, Tbet‐dependent Th1 
cell development helps control blood parasitemia, but also promotes 
the development of experimental cerebral malaria following P ber-
ghei ANKA infection.140 Additionally, Th1 cell‐derived IFNγ and TNF 
can suppress B cell responses by inhibiting Tfh cell differentiation 
and stimulating the expression of Th1 cell molecules such as Tbet 
and CXCR3 during Tfh cell development.15 There have also been re‐
ports of IFNγ promoting the depletion of antigen‐specific CD4+ T 
cells in lethal and non‐lethal rodent Plasmodium infections, as well 
as shaping the magnitude and tissue migration properties of these 
cells.141,142 Thus, although Th1 cell cytokines play important roles in 
preventing malaria, they may also contribute to disease pathogene‐
sis if not appropriately regulated.

12  | TH2 AND TH17 CELL S

Less is known about the role of Th2 and Th17 cells in Plasmodium 
infection than Th1 cells. The dominant polarization of CD4+ T cells 
into Th1 cells during Plasmodium infection may limit the generation 
of other Th cell subsets. For example, mice infected with H polygyrus 
normally generate a strong anti‐helminth Th2 response, but this was 
suppressed and converted into a dominant Th1 cell response follow‐
ing co‐infection with P chabaudi.143 Initially it was presumed that P 
chabaudi infection in mice was characterized by a predominant Th1 
cell response during the acute/early phase of infection, but then 
Th2 cells dominated during the later chronic phase of infection and 
helped B cells produce parasite‐specific antibodies.144,145 This was 
supported by studies on P falciparum immune individuals in which 
there was a positive correlation between Pf155/RESA‐specific CD4+ 
T cell IL‐4 production and serum anti‐Pf155/RESA antibodies. IL‐4 
was important for immunoglobulin class switching in mice infected 
with P chabaudi,146 but the absence of IL‐4 had little impact on blood 
parasitemia.147 However, it is most likely that these studies were de‐
scribing what we now define as Tfh cells and their influence on anti‐
body production. Nevertheless, IL‐4 produced by Th2 cells has been 
reported to provide help for CD8+ T cell responses during liver‐stage 
malaria, as well as for the maintenance of memory CD8+ T cells.148 
In addition, Th2 cell‐derived IL‐4 can suppress the ability of human 
macrophages to kill P falciparum.149

There are few reports on Th17 cells in malaria. However, they 
were elevated in the blood of people infected with P vivax.150 CD4+ 
T cells co‐expressing IFNγ and IL‐17 were also observed in African 

children with P falciparum‐induced anemia, but IL‐17 levels were not 
associated with clinical disease, whereas IFNγ levels were associ‐
ated with anemia.151 Studies in mice have shown the development 
of Th17 cells in acute P berghei ANKA and P yoelii infections,152 but 
again there was no association with the development of severe dis‐
ease.153 Thus, although there is evidence for the emergence of Th17 
cells as part of the inflammatory response associated with malaria, 
there is limited evidence for any anti‐parasitic or pathogenic role for 
these cells.

13  | TFH CELL S

The production of IL‐6 and IL‐21 by APCs following encounter with 
malaria parasites promotes the development of Tfh cells (Figure 1). 
These cells express high levels of CXCR5, programmed cell death 
protein 1 (PD‐1), and the transcription factor Bcl6. They are essen‐
tial for the initiation and maintenance of germinal centre (GC) reac‐
tions, the selection and maturation of B cells, immunoglobulin class 
switching and development of high‐affinity antibody responses.154 
As mentioned earlier, antibody responses are essential for mediat‐
ing protection against malaria by suppressing parasite replication 
and sequestration, thus preventing disease. Antibody responses 
to both pre‐eyrthrocytic and erythrocytic antigens are associated 
with protection against infection and disease.155 Furthermore, 
these responses are also associated with efficacy of the RTS,S vac‐
cine,19,156,157 and experimental models of malaria shows a strong 
correlation between antibody response and protective immunity to 
re‐infection in mice.158

In both experimental mouse models and human Plasmodium in‐
fection, Tfh responses have important roles in driving the produc‐
tion of protective antibodies required for protection.13,15,16,159,160 
Tfh cell differentiation is stimulated by multiple DC subsets with 
IL‐6 and ICOSL driving upregulation of Bcl6 during early Tfh devel‐
opment. PD‐1 is required for optimal GC localization of Tfh cells, 
where activation of B cells occurs via multiple Tfh cell costimulator 
markers (including ICOS, CD40L, and CD28) and cytokine produc‐
tion (including IL‐21, IL‐4, and IL‐6) (reviewed in Ref. [154]). After 
providing help to B cells, Tfh cells downregulate Bcl6 expression, 
convert to a memory phenotype and re‐circulate in the blood.161 In 
humans, blood circulating Tfh cells share phenotypic, functional, 
and transcriptional profiles of lymphoid Tfh cells, allowing for a 
general understanding of human Tfh cell responses during infec‐
tion from readily available blood samples.162,163 Circulating human 
Tfh cells can be differentiated into Tfh cell subsets based on 
chemokine receptor expression into Th1‐ (CXCR3+ CCR6−), Th2‐ 
(CXCR3− CCR6−), Th17‐ (CXCR3− CCR6+) and Th1/17‐like (CXCR3+ 
CCR6+) populations, and share transcription factor and cytokine 
profiles of their conventional CD4+ T cell counterparts.163 The 
transcriptional profile of CXCR3− circulating Tfh cells (Th2‐ and 
Th17‐like) is most closely related to tonsil Tfh cells,162 and these 
Th2‐ and Th17‐like subsets have the greatest capacity to activate 
naive B cells.163
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We recently reported that CD4+ T cell activation during P cha-
baudi AS infection in mice results in bifurcation of cells into Tfh and 
Th1 cell linages.164 Tfh cell development and function in rodent 
malaria models was dependent on IL‐6.165 Although ICOS was dis‐
pensable for Tfh cell differentiation in early infection, it was needed 
for sustained responses and high‐affinity antibody development.166 
ICOS‐driven Tfh cell responses were hampered by cell extrinsic type 
I IFN signaling167 and negatively regulated by cell intrinsic IRF‐3.168 
In humans, there is preferential induction of Th1‐like Tfh cell sub‐
sets which have reduced capacity to activate naive and memory B 
cells in both P falciparum infection in Malian children,13 and P vivax 
infection in Brazilian adults.160 The development of Th1‐like Tfh cells 
in malaria is thought to be mediated by IFNγ and other inflamma‐
tory cytokines, and in mice, IFNγ signaling results in increased Tbet 
and CXCR3 expression in Tfh cells, associated with reduced GC 
reaction and impaired B cell responses.15 In humans, Th1‐like Tfh 
cells promoted Tbet expression in naive B cells and Tbet expression 
was higher in atypical memory B cells which are thought to be dys‐
regulated memory B cells.139 Taken together, current data suggest 
that inflammatory responses caused by malaria are detrimental to 
robust Tfh cell activation, and consequently, anti‐parasitic antibody 
generation.

14  | IMMUNOREGUL ATORY NET WORKS 
ESTABLISHED DURING MAL ARIA

14.1 | Tr1 cells

The inflammatory cytokines produced by Th1 cells following 
Plasmodium infection can damage tissues, and as such, these 
CD4+ T cell responses need to be tightly regulated. Thymus‐de‐
rived FoxP3+ regulatory T (Treg) cells were thought to play impor‐
tant regulatory roles during malaria, but Th1 cells that initiate an 
IL‐10 production program (Tr1 cells) have now been recognized as 
major regulators of inflammation during malaria, as well as many 
other infectious diseases.17,169 Tr1 cells develop from Th1 cells 
that acquire regulatory functions following exposure to inflamma‐
tory conditions.170,171 This transition to a regulatory phenotype 
requires the transcription factors Blimp‐1 and Tbet, and results 
in the co‐expression of IFNγ and IL‐10.172 Although the precise 
mechanism of Tr1 cell development during infection has not been 
fully elucidated, recent studies indicate that type I IFN signaling 
is critical to their development. In humans participating in P falci-
parum CHMI studies, stimulation of PBMCs by pRBCs stimulated 
type I IFN production by multiple immune cell populations, which 
in turn promoted Tr1 cell development and suppression of inflam‐
matory cytokines, including IFNγ, TNF, IL‐1β, IL‐17, and IL‐6.18 In 
mice infected with P yoelii, type I IFNs were also shown to be im‐
portant for the development of Tr1 cells and suppression of hu‐
moral immunity.173 In addition to suppressing inflammation and 
antibody responses, IL‐27‐dependent Tr1 cell development was 
also shown to be important for protection against immune‐me‐
diated tissue pathology in mice infected with P chabaudi AS.174 

DC‐derived IL‐10 has also been reported to be required for Tr1 
cell development during P yoelii infection, suggesting an autocrine 
signaling loop whereby APC‐derived IL‐10 reinforces IL‐10 produc‐
tion by Tr1 cells in malaria.175

Tr1 cells have been identified as a dominant antigen‐specific 
CD4+ T cell population in African children with P falciparum ma‐
laria,176‐178 as well as in healthy volunteers participating in CHMI 
studies, as described above.18 A study in children living in eastern 
Uganda showed that the frequency of Tr1 cells in young children was 
positively correlated with high parasite burden, but significantly, also 
associated with a reduced risk of developing clinical malaria after 
infection.179 Remarkably, a relatively high frequency of antigen‐spe‐
cific Tr1 cells was also found in neonates whose mothers had active 
placental malaria during pregnancy,180 suggesting that these cells in‐
fluence anti‐parasitic immunity from very early in life.181 Thus, IL‐10 
production by Tr1 cells is important to minimize host tissue damage 
caused by inflammation during malaria, but may also contribute to 
the slow development of natural immunity, as well as poor responses 
to vaccination with Plasmodium antigens.

14.2 | Treg cells

Increased frequencies of thymus‐derived FoxP3+ Treg cells have 
been reported in many infectious diseases and following vaccina‐
tion.182 Treg cells exert their suppressive functions following an‐
tigen‐specific stimulation through the TCR.183 During infection, 
Treg cells limit immune‐mediated pathology, but may also facilitate 
pathogen persistence and associated chronic infection by suppress‐
ing inflammation.184 They inhibit CD4+ T cell proliferation and IL‐2 
production via the expression of immune checkpoint molecules such 
as CTLA‐4, production of anti‐inflammatory cytokines such as IL‐10 
and TGFβ or by their high expression of IL‐2 receptors to consume 
local IL‐2 supplies and depriving other T cells of this vital growth 
factor.183,185‐187 Studies on Treg cells in malaria have reported con‐
flicting results.188,189 We reported a detrimental role for Treg cells in 
experimental cerebral malaria caused by P berghei ANKA infection by 
showing that depletion of these cells using an anti‐CD25 mAb prior 
to infection protected mice from disease and increased antigen‐spe‐
cific CD4+ T cell responses.190 These results were supported by the 
findings of others;191 however, another study using the same model 
found no protection from disease after Treg cell depletion.192 We 
also reported that expansion of Treg cells using IL‐2 provided protec‐
tion against experimental cerebral malaria via a CTLA‐4‐dependent 
mechanism,193 highlighting the potential of these cells in protecting 
against disease. Depletion of Treg cells in mice infected with a lethal 
strain of P yoelii protected mice from death and increased antigen‐
specific T cell responses.194 However, others have reported minimal 
impact of Treg cells on disease outcome in this model, and instead, 
showed that Tr1 cells had a greater influence on immune responses 
and survival.195 These inconsistencies in experimental models of ma‐
laria can be attributed to several factors, including incomplete char‐
acterization of regulatory T cell populations at the time studies were 
conducted and limitations in the methodologies used to manipulate 
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Treg cells in vivo, as well as differences in the reagents and infection 
models examined.137

Increased Treg cell frequencies have been associated with high 
parasitemia in malaria patients. Experimental sporozoite infection 
of human volunteers via mosquito bite showed a rapid expansion 
of Treg cells associated with a burst of TGF‐production, increased 
blood‐stage parasite growth, but decreased pro‐inflammatory cy‐
tokine production and antigen‐specific T cell responses.196 Studies 
in Gambian children showed increased frequencies of Treg cells in 
severe and uncomplicated malaria during convalescence. This was 
associated with increased parasitemia, but negatively associated 
with the magnitude of Th1 cell responses.197 A study in Brazil found 
individuals with uncomplicated malaria caused by P falciparum and 
P vivax had an increased frequency of Treg cells expressing CTLA‐4 
that was positively associated with blood parasitemia.85 Adults with 
uncomplicated and severe malaria living in a malaria‐endemic region 
of Indonesia also showed elevated Treg cell frequencies, relative to 
exposed, asymptomatic controls, and again Treg cell frequency cor‐
related positively with blood parasitemia and total parasite biomass 
in patients with severe malaria.198 In the same study, the authors 
reported the presence of a TNFRII+ Treg cell subset that was as‐
sociated with severe malaria and hyper‐parasitemia in adults. This 
same Treg cell subset has also been shown to emerge at peak of 
parasitemia in a CHMI study with P falciparum.199 In a malaria‐en‐
demic region of Thailand, an increased frequency of Treg cells was 
reported in patients with acute P vivax infection, compared to en‐
demic and immune controls.86 In children residing in a malaria‐en‐
demic region of Uganda, both the frequency and absolute numbers 
of Treg cells in peripheral blood declined with increased malaria ex‐
posure.200 Together, these findings support a role for Treg cells for 
controlling parasite‐mediated inflammation and protecting host tis‐
sue during early encounters with malaria parasites. However, their 
influence declines as alternative regulatory mechanisms such as 
Tr1 cells emerge in response to specific types of pro‐inflammatory 
responses.

15  | E XPRESSION OF CO ‐INHIBITORY 
RECEPTORS BY CD4 + T  CELL S

Co‐inhibitory receptors such as CTLA‐4, LAG‐3, TIM‐3, and PD‐1 
are often found on T cell populations following chronic antigen ex‐
posure, including in experimental malaria models and malaria pa‐
tients.17 A high percentage of CTLA‐4 expressing CD4+ T cells were 
found in mice infected with P berghei ANKA, and these restricted 
parasite‐specific T cell responses, but also prevented immune‐medi‐
ated pathology.201 Another study in BALB/c mice‐infected P berghei 
ANKA showed higher expression of CTLA‐4 and PD‐1 on CD4+ T 
cells. Blockade of CTLA‐4 or PD‐1/PD‐L1 resulted in increased T 
cell activation, but caused mice to develop experimental cerebral 
malaria, despite BALB/c mice normally being resistant to this dis‐
ease manifestation.202 CTLA‐4 expression on CD4+ T cells has also 
been reported in humans infected with P falciparum and P vivax.203 

Patients with acute P falciparum malaria showed increased expres‐
sion of CTLA‐4 and PD1 on CD4+ T cells, relative to healthy control 
subjects, and patients with cerebral malaria had higher frequencies 
of CTLA‐4+ CD4+ T cells than patients with uncomplicated ma‐
laria.204 The authors of this study also reported that CD4+ T cells 
expressing both CTLA‐4 and PD‐1 were the main antigen‐specific 
cell populations following stimulation with pRBCs, and co‐produced 
IFNγ and IL‐10. Another study in Malian children showed that P fal-
ciparum infection was associated with PD‐1 expression on CD4+ 
T cells in individuals presenting with clinical malaria.159 Additional 
work from this study in mice infected with P yoelii found prolonged 
infection led to enhanced expression of PD‐1 and LAG‐3 on antigen‐
specific CD4+ T cells, and only blockade of both PD‐L1 and LAG‐3 
led to improved control of parasite growth.159 In P falciparum CHMI 
studies, Tr1 cells expressing several different immunoregulatory 
molecules rapidly developed after anti‐parasitic drug treatment, 
but only PD‐1 blockade altered CD4+ T cell responses to parasite 
antigen ex vivo, and in this instance both IFNγ and IL‐10 production 
increased.28 These data suggest that blockade of one immunoregu‐
latory pathway may result in compensatory expansion of other reg‐
ulatory pathways.

A study from Ghana reported an increased frequency of CD4+ 
T cells expressing CTLA‐4, PD‐1, LAG‐3, and TIM‐3 in children with 
uncomplicated malaria, compared to afebrile, healthy children, and 
higher frequencies of CTLA‐4+ or PD‐1+ CD4+ T cells in children with 
severe malaria, compared to those with uncomplicated malaria.205 In 
Kenyan children living in rural areas with persistent P falciparum ex‐
posure, there was an increased frequency of CD4+ T cells expressing 
PD‐1 and LAG‐3, which negatively correlated with frequencies of 
activated and classical memory B cells, suggesting that P falciparum‐
associated expression of co‐inhibitory receptors on CD4+ T cells 
impacts the development of B cell responses.206 These data were 
consistent with findings in P yoelii‐infected mice showing that block‐
ade of PD‐L1 and LAG‐3 not only restored CD4+ T cell functions, but 
also increased Tfh cell numbers and germinal center B cell responses, 
resulting in rapid parasite clearance.159

TIM‐3 expression was upregulated in the spleen of P berghei 
ANKA‐infected mice,207 as well as on CD4+ T cells from P falciparum‐
infected individuals.208 TIM‐3 blockade improved lymphocyte ac‐
tivity and accelerated parasite clearance in infected mice, while in 
vitro blockade of TIM‐3 in PBMC cultures from P falciparum patients 
reduced cell apoptosis and increased IFNγ, TNF, IL‐4, and IL‐10 gene 
transcription,208 suggesting that TIM‐3 blockade may enhance both 
inflammatory and anti‐inflammatory responses. Taken together, the 
co‐inhibitory receptors expressed by CD4+ T cells during malaria 
have a profound influence on their functional capacities.

16  | TFH CELL REGUL ATION

Similar to Th1 cells, Tfh cell activation is heavily influenced by 
immunoregulatory pathways. For example, FoxP3+ Tfh (Tfr) cells 
with regulatory functions, including IL‐10 production209 have 
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been reported in mice and humans.210 In mice infected with P 
yoelii, CTLA‐4+ Tfr cells suppress GC B cell responses.211 To date, 
there have been no reports of Tfr cells in human malaria and their 
influence on antibody production during infection remains un‐
known. Given the central role of Tfh cells in antibody production, 
and therefore protective immune responses against malaria, it has 
been proposed that optimizing Tfh cell activation may help boost 
vaccination efficacy.155 Indeed, multiple host targets for modula‐
tion to improve Tfh cell responses have been identified, includ‐
ing CTLA‐4 discussed above,211 as well as PD‐L1 and LAG‐3.159 
However, care needs to be taken with these approaches because 
they can lead to adverse outcomes. For example, simultaneous 
activation of OX40 and blocking of PD‐1 signaling in mice in‐
fected with P yoelii increased Th1 cell responses, but restricted 
Tfh cell responses and the generation of anti‐parasitic antibod‐
ies.16 Similarly, combining a viral vector vaccine with RTS,S re‐
sulted in a diminished RTS,S‐mediated antibody response caused 
by the strong Th1 cell response induced by the viral vector vac‐
cine.212 Nevertheless, changing vaccine composition by different 
adjuvants can overcome some of these problems and expand par‐
asite‐specific Tfh cell responses.213 Taken together, these studies 
identify possible pathways to manipulate Tfh cells in humans to 
improve the efficacy of vaccines targeting malaria, but also high‐
light some of the potential pitfalls.

17  | TARGETING CD4 + T‐ CELL MEDIATED 
REGUL ATORY NET WORK FOR HOST‐
DIREC TED THER APY

Attempts to block co‐inhibitory receptor activity for clinical advantage 
will need to proceed with caution. The emergence of compensatory 
immunoregulatory mechanisms that are even more potent than those 
already established should be avoided, as well as preventing the de‐
velopment of inflammation that causes disease. Careful consideration 
will need to be given to the modality of drugs employed for host‐di‐
rected therapies. For example, monoclonal antibodies (mAbs) have 
relatively long half‐lives and if adverse reactions are encountered may 
be difficult to reverse. In contrast, small molecule inhibitors often have 
shorter half‐lives, but thought needs to be given to practical dosing 
frequency. A common theme emerging in the malaria field is that de‐
spite increased expression of co‐inhibitory receptors on T cell subsets 
during malaria, blockade of any single molecule often has variable effi‐
cacy at modulating immune responses among human populations. This 
is not that surprising given similar experiences in targeting these mol‐
ecules in cancer therapy.214 Although combining blockade of different 
co‐inhibitory receptors is proving a promising approach in cancer,215 
such an approach for tropical diseases may prove more challenging 
given the resource constraints, as well as heterogeneity among human 
populations and the malaria parasites responsible for disease.

F I G U R E  3   Type I interferons (IFNs) are important immunoregulators during malaria. Type I IFNs are produced by many different cell 
types following encounter with Plasmodium molecules. They suppress the ability of dendritic cells (DCs) to present antigen to T cells. They 
also promote the development of IL‐10‐producing type 1 regulatory T (Tr1) cells from T helper (Th)1 cells. The IL‐10 produced by these cells 
inhibits pro‐inflammatory cytokine production, and T follicular helper (Tfh) cell expansion, thereby limiting anti‐parasitic antibody production
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A different approach could involve targeting pathways ini‐
tiated early after infection that promote the expression of co‐in‐
hibitory receptors and other immunoregulatory molecules. For 
example, type I IFN production by host cells following exposure 
to Plasmodium products impairs the ability of cDC2 to drive Th1 
cell expansion,216,217 as well as restricting Tfh cell development and 
suppressing parasite‐specific antibody production.173 Furthermore, 
type I IFNs promote the development of Tr1 cells that not only ham‐
per Th1 and Tfh cell responses during human and rodent malaria, 
but also constrain pro‐inflammatory cytokine production by phago‐
cytic cells18,167,173 (Figure 3). Type I IFNs bind to a cell surface IFNα 
receptor (IFNαR) comprising IFNαR1 and IFNαR2 chains, making 
targeting this signaling pathway with antibodies directed against 
one of the receptor chains relatively straight forward. However, 
as mentioned previously, the long half‐life of antibodies may make 
this approach risky given the likelihood of latent viruses residing 
in many people living in malaria‐endemic areas. An alternative way 
to modulate this pathway could be to target downstream signaling 
molecules. For example, several Janus Activated Kinase (JAK) in‐
hibitors have recently been licensed as orally available drugs with 
relatively short half‐lives.218 These drugs have been used to treat 
children with a type I interferonopathies associated with gain of 
function mutations in TMEM173 (encoding STING).219 In addition, 
they have been reported to reduce serum type I IFN levels and 
interferon‐inducible gene scores in dermatomyositis patients.220 
Thus, these types of drugs may be one way to target the type I 
IFN signaling pathway in a transient manner, and given the grow‐
ing safety profiles of these treatments, they could potentially be 
incorporated into vaccination programs or mass drug administra‐
tion strategies. This latter approach may be especially attractive 
given recent findings in intermittent preventative treatment trials 
with anti‐parasitic drugs in Ugandan children that showed those re‐
ceiving drug at 4 weekly intervals had reduced incidence of malaria, 
compared to children receiving drug every 12 weeks, suggestive 
of more rapid development of immunity to malaria in the former 
group.221 Therefore, host‐directed treatments to enhance this ef‐
fect may have significant clinical impact.

18  | CONCLUDING REMARKS

Results from malaria vaccine trials in the past decade have high‐
lighted the need for a new and significant change in approach. The 
rapid imprinting of anti‐inflammatory pathways in people following 
exposure to Plasmodium parasites appears to not only protect them 
from developing severe forms of disease, but also makes responses 
to malaria vaccines poor. Our increased understanding about the im‐
munoregulatory pathways established during malaria provides op‐
portunities to try and manipulate these responses to our advantage. 
Key to these approaches will be directing CD4+ T cell responses to 
effectively activate phagocytic cells to capture and kill pRBCs and 
help B cells produce the types of antibody responses that are effec‐
tive and long‐lived without contributing to disease. We are seeing 

great strides being made in the cancer and other inflammatory dis‐
eases, and there is no reason why the malaria field cannot make simi‐
lar inroads over the next decade.
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