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ABSTRACT

Background and Aims The non-medical use of over-the-counter or prescribed analgesics (NMUA) is a significant public
health problem. Little is known about the genetic and environmental etiology of NMUA and how these risks relate to other
classes of substance use and misuse. Our aims were to estimate the heritability NMUA and sources of genetic and environ-
mental covariance with cannabis and nicotine use, cannabis and alcohol use disorders and nicotine dependence in Aus-
tralian twins. Design Biometrical genetic analyses or twin methods using structural equation univariate and
multivariate modeling. Setting Australia. Participants A total of 2007 young adult twins [66% female; μage = 25.9,
standard deviation (SD) = 3.6, range = 18–38] from the Brisbane Longitudinal Twin Study retrospectively assessed be-
tween 2009 and 2016. Measurements Self-reported NMUA (non-opioid or opioid-based), life-time nicotine, cannabis
and opioid use, DSM-V cannabis and alcohol use disorders and the Fagerström Test for Nicotine Dependence.

Findings Life-time NMUAwas reported by 19.4% of the sample. Univariate heritability explained 46% [95% confidence
interval (CI) = 0.29–0.57] of the risks in NMUA. Multivariate analyses revealed that NMUA is moderately associated ge-
netically with cannabis (rg = 0.41) and nicotine (rg = 0.45) use and nicotine dependence (rg = 0.34). In contrast, the ge-
netic correlations with cannabis (rg = 0.15) and alcohol (rg = 0.07) use disorders are weak. Conclusions In young male
and female adults in Australia, the non-medical use of over-the-counter or prescribed analgesics appears to have moderate
heritability. NMUA ismoderately associated with cannabis and nicotine use and nicotine dependence. Its genetic etiology is
largely distinct from that of cannabis and alcohol use disorders.
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INTRODUCTION

The non-medical use of over-the-counter (OTC) or pre-
scribed analgesics is one of the fastest-growing drug trends
in the United States [1–3]. However, very little is known
about the sources of individual differences in this emerging
class of substance use or how these differences relate to the
genetic and environmental risks that are known to predict
other major classes of substance use and misuse.

The non-medical use of either prescribed or OTC
analgesics (NMUA) is a clear public health threat. In the
United States, deaths related to NMUA now exceed those
for all other illicit substances including cocaine and heroin,
and continue to increase [4]. Between 1993 and 2005 the
prevalence of the non-medical use of prescribed opioids
among US college students increased by 343% [5]. Among
the 1.2 million emergency department visits in the
United States in 2009 involving non-medical use of
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pharmaceuticals or dietary supplements, approximately
50% involved the non-medical use of prescribed opioid-
based analgesics [6]. In Australia in 2016, prescribed
and OTC analgesics were the most commonly misused
pharmaceuticals in the past 12 months, which made this
class the secondmost illicitly used substance after cannabis
[7]. The non-medical use of opiate or non-steroidal analge-
sics is associated with a variety of negative physical effects,
including tachycardia, seizures, agitation, dependence and
death [8,9]. In terms of comorbid substance use, the non-
medical use of prescribed opioids has been linked to the
risk of transitioning to other classes of illicit SU and SUDs
[10–13].

Despite these trends and consequences, the genetic
epidemiology of this class of substance use remains
completely unknown. Specifically, the degree to which
the genetic risk factors underpinning comorbid licit
and illicit substance use and misuse are also responsible
for individual differences in NMUA remains to be
determined.

We hypothesize that familial aggregation in the
NMUA will be largely explained by genetic risks and that
these risks will be correlated with the genetic risks in
other forms of licit and illicit substance use, including
opioid use as well as common classes of substance use
disorders involving cannabis, alcohol and nicotine. These
predictions are based on widely accepted findings show-
ing heritability estimates ranging from 40 to 70% across
substances [14–17], along with evidence that genetic
risks in licit and illicit substance abuse or dependence,
at least in males, are largely common across substances
[18,19] and indeed are shared more broadly with the
spectrum of externalizing psychopathology [20,21].
Although evidence supports two distinct genetic risk fac-
tors underpinning individual differences in substance use
disorders [22],l with one predisposing to illicit (cannabis
and cocaine) and the other to licit (alcohol, caffeine and
nicotine) drug dependence, both factors are highly corre-
lated [22] and recent studies demonstrate moderate to
high genetic correlations between licit and illicit abuse
and dependence disorders in both males and females
[23]. Because of the degree of shared genetic risks be-
tween licit and illicit substance use, despite their diverse
pharmacology [18,19], we hypothesize that the genetic
correlation between NMUA and common classes of sub-
stance use and misuse will be high.

The degree to which environmental risk factors related
to NMUA are shared with other drug classes is unclear.
Quantifying heritability and establishing if the genetic and
environmental pathways leading to NMUA are linked to
other major classes of substance use and misuse will pro-
vide valuable insight into the etiology of NMUA which
may, in turn, inform future intervention and prevention
programs.

Aims

This report has two aims. The first is to estimate the contri-
bution of genes and environment to the NMUA. This in-
cludes determining if there are significant sex differences
in the prevalence of use, including sex differences in the rel-
ative proportions of genetic and environmental risks. The
second aim is to determine if the genetic and environmen-
tal risks in life-time cannabis and nicotine use are corre-
lated with NMUA. This aim will also determine if the
genetic and environmental risks in cannabis use disorder,
nicotine dependence and alcohol use disorder are similarly
correlated with NMUA.

METHODS

Participants

The sample consists of male and female adult twins from
the ongoing and population-based Brisbane Longitudinal
Twin Study (BLTS) [24–26]. Participants are of European
ancestry, predominately Anglo Saxon, who were
ascertained beginning 1992 to study melanocytic naevi,
and have since been followed-up on multiple occasions.
The BLTS is a longitudinal, phenotypically rich collection
of psychiatric phenotypes, environmental and psychologi-
cal risk factors, and neurobiological correlates of psychiat-
ric disorders [24–26]. The sample comprises 2900 twins
(including 700 siblings and 2100 parents) with assess-
ments at 12, 14, 16 and 21 years. Typical response rates
across the BLTS projects since 1992 range from 73 to
85% [24–26].

BLTS data for this report come from the 19UP Project
[66% female; μage = 25.9, standard deviation (SD) = 3.6,
range = 18–38] collected between 2009 and 2015 and
which relied on a combination of telephone and on-line
self-report surveys to assess SU and SUDs [25–27]. The
19UP was a US National Institute on Drug Abuse (NIDA)
and Australian National Health and Medical Research
Council (NHMRC)-funded project to study the pathways
to cannabis use and misuse [25,26], comorbid substance
use and misuse, internalizing and externalizing disorders
along with a wide array of general health, behavioral and
life-style measures [27].

Measures

The non-clinical data used to test our hypotheses included
life-time nicotine, cannabis and opioid use (e.g. heroinmor-
phine, methadone, codeine, etc.), as well as the non-
medical use of OTC or prescribed analgesics (NMUA).
NMUA included codeine-based and non-steroidal anti-
inflammatory drugs (e.g. cough medicine, acetaminophen,
codeine phosphate hemihydrate, doxylamine succinate,
ibuprofen, acetaminophen, acetaminophen and codeine
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phosphate hemihydrate, codeine, hydrocodone, etc.). Non-
medical use was defined as substances not taken in quanti-
ties or in a manner prescribed by a medical practitioner. All
four life-time use measures were assessed as dichotomous
outcomes beginning with the phrase: ‘In your life, have
you ever used [substance]’. Alcohol use was not included
because the life-time prevalence was 98% at the time of
assessment.

Diagnostic data included criteria for the Fagerström
Test for Nicotine Dependence (FTND) [28], DSM-Valcohol
use disorder and DSM-V cannabis use disorder (CUD) [mar-
ijuana, hashish, tetrahydrocannabinol (THC) or ganja]
[29]. All three diagnoses were based on the period(s) when
subjects reported using each substance the most. Subjects
answered the AUD psychiatric criteria only if they endorsed
having consumed five (males)/four (females) or more
drinks at least once a week for 1 month or more. Subjects
answered the CUD psychiatric criteria if they endorsed hav-
ing smoked cannabis six or more times life-time or 11 or
more times in a month. Finally, subjects answered FTND
psychiatric criteria if they reported having smoked 100 or
more cigarettes life-time.

In order to avoid sparse data and improve computa-
tional efficiency when using raw ordinal data methods,
we recoded the AUD, CUD and FTND criteria sum scores.
The total AUD and CUD criteria were recoded onto three-
point ordinal scales (0–1, 2–3, ≥ 4), which combined the
DSM-V categories of ‘moderate’ and ‘high’. The total FTND
criteria were also recoded onto a three-point ordinal scale
(0–1, 2–3, ≥ 4). Here, we combined (i) ‘low’ and ‘low to
moderate dependence’ and (ii) ‘moderate dependence’
and ‘high dependence’.

For the FTND and CUD diagnoses, nicotine and
cannabis non-users were excluded and their diagnosis
coded asmissing. Our rationalewas based on the possibility
that non-users are potentially heterogeneous and comprise
individuals with varying degrees of environmental risk
(including exposure opportunities) and levels of genetic
liability that cannot be accurately assessed here. Recoding
non-users to ‘zero’, instead of missing, falsely assumes
that knowledge of an individual’s diagnosis status can be
known in the absence of self-reported data on either
the use or exposure to a substance. Assigning non-users
to zero inflates the denominator in prevalence
estimates, thereby altering not only the item threshold
but all subsequent variance–covariance estimates.
Although only 1.7% of the sample (n = 34) reported no
life-time alcohol use, the same procedure was followed
for AUD.

Among the 2773 twins eligible to participate in the
19UP Project, 2007 (72%) provided complete responses
to the non-medical use of analgesics item for life-time use.
This included 214 complete and 56 incomplete same-sex
MZ female twin pairs, 132 complete and 86 incomplete

same-sex monozygotic (MZ) male twin pairs, 157 complete
and 37 incomplete same-sex DZ female twin pairs, 97
complete and 66 incomplete same-sex DZ male twin pairs
and 216 complete and 130 incomplete opposite-sex MZ
female twin pairs.

Statistical analyses

Prevalence and measures of association

The prevalence of the non-medical use of analgesics, along
with pairwise polychoric correlations between all the above
binary and ordinal measures of substance use and misuse,
were calculated using the full information maximum likeli-
hood (FIML) raw data method using the OpenMx software
package (version 2.9.9.1) [30] in R (version 3.4.1) [31].
We did not use weighted least squares (WLS), as consider-
ably larger samples are required to arrive at reliable weight
matrix estimates [32]. Given the numbers of incomplete
twin pairs (see Supporting information, Table S2), WLS
would result in significant listwise deletion, thereby alter-
ing the accuracy of the threshold estimates. The raw
ordinal data FIML option [30] has the advantage of not
only being more robust to violations of non-normality.
Critically, FIML enables the analysis of missing or incom-
plete data as well as the direct estimation of covariate ef-
fects, e.g. age and sex, on the item thresholds. More
accurate thresholds improve the estimation of the
polychoric correlations. Polychoric correlations were first
proposed by Pearson [33,34]. They are based on the cen-
tral limit theorem of theoretical statistics, which assumes
that underlying an observed binary or ordinal variable
there exists a continuous, normally distributed latent
liability and that the joint distribution of each scale with
the liability scales underlying other items is bivariate nor-
mal [35,36]. Polychoric (or tetrachoric for binary or
dichotomous variables) represent correlations between
the underlying liability distributions rather than observed
dichotomous or ordinal distributions.

Burnham & Anderson have argued that choice be-
tween Akaike’s information criterion (AIC) and alterna-
tives such as the Bayesian Information Criterion (BIC)
should be determined by the philosophical context of what
is assumed about reality [37]. We have argued elsewhere
that the advantage of AIC is its deep theoretical connec-
tions to cross-validation [38]. Specifically, in large samples,
the AIC is expected to select thatmodel in the candidate set
which minimizes the error of prediction in new samples of
the same size from the population (where the error is based
on a log-likelihood function) [38]. In particular, the AIC is
expected to minimize the Kullback–Leibler (KL) divergence
from full reality at the given sample size. A sensible objec-
tive of model selection is to choose the model that has the
smallest KL divergence from full reality. The full reality, of
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course, is not known, and may not even be knowable.
Indeed, a complete description of full reality would be
infinitely long. If we accept the possibility that no statistical
model can completely describe reality, then the premise of
there being a ‘true model’ that generated the data becomes
somewhat dubious. In summary, because full reality may
be unknowable, we did not presume that the true model
is knowable from our data and, consequently, chose our
fit index based on this philosophy. Rather than proposing
to identify the true model, the AIC selects the best-
approximatingmodel based on an optimal balance of parsi-
mony and model fit.

Univariate twin modeling

To test the hypothesis that familial aggregation in the non-
medical (life-time) use of analgesics is entirely explained by
additive genetic risk factors, we fitted univariate biometri-
cal genetic models [32] that exploit the expected genetic
and environmental correlations between MZ and dizygotic
(DZ) twins. Specifically, we fitted twin models using the
FIML raw ordinal data methods in the OpenMx software
package (version 2.9.9.1) [30] in R (version 3.4.1) [31].
This approach assumes that the categories in a binary or
ordinal variable are imprecise indicators of a latent normal
liability distribution. These categorical thresholds are con-
ceived of as cut-points along a standard normal distribution
that relate category frequencies to cumulative probabilities
indicating increasing levels of risk. In OpenMx2.0 [39],
thresholds can be adjusted for covariates such as age and
sex. Based on the Classical Twin Design [32,40], our
method of univariate modeling also assumes that individ-
uals differences in substance use or variance in an ob-
served behavior can be decomposed into additive (A)
genetic, shared environmental (C) and non-shared or
unique (E) environmental variance components [32,40].
As MZ twin pairs are genetically identical and DZ twin
pairs share, on average, half their genes, the expected
twin-pair correlations for additive genetic effects are 1.0
and 0.5, respectively. An important assumption is that
the common environments (C) are equal in MZ and DZ
twin pairs, and because non-shared environments (E) are
uncorrelated, E necessarily includes measurement error.
All models include the covariates of age and sex.

The univariate A, C and E parameters were estimated
using a ‘variance components’ or direct symmetric ap-
proach, which directly estimates a set of symmetrical vari-
ance components matrices [41]. This approach may
return nonsensical values in some situations (e.g. heritabil-
ity estimates larger than 1, or non-positive definite covari-
ance matrices). However, the absence of boundaries on the
estimates (as in the pathway coefficients approach) yields
asymptotically unbiased parameter estimates and corrects
for Type I and Type II errors [41].

Multivariate twin modeling

To test the hypotheses that genetic risk factors in the
NMUA are shared with common forms of licit and illicit
substance use and misuse we fitted common and indepen-
dent pathway models (see Fig. 1) (Neale & Cardon [32]),
again using the OpenMx software package (version
2.9.9.1) [30] in R (version 3.4.1) [31]. In Fig. 1, the refer-
ence model is the Cholesky decomposition (i) is a method of
triangular decomposition where the first observed pheno-
typical measure is assumed to be caused by a latent factor
(A1) that can explain the variance in the remaining vari-
ables. The second variable is assumed to be caused by a sec-
ond latent factor (A2) that explains variation in the second
as well as the remaining observed variables. This pattern
continues until the final observed variable is explained by
a latent variable which is constrained from explaining the
variance in any of the previously observed variables. A
‘Cholesky decomposition’ is specified for each latent source
of additive genetic (A), shared environmental (C) and
individual-specific environmental variance (E).

The common pathway model (ii) predicts that a single,
common latent liability to substance use or misuse, which
can be decomposed into A, C and E components of vari-
ance. The common pathway is ‘indicated’ by the strength
of the factor loadings to each of the observed phenotypical
measures. Residual variance or risks unique to each mea-
sure of substance use or misuse can be further decomposed
into variable specific ‘as’, ‘cs’ and ‘es’ components. In
contrast, the independent pathway model (iii) predicts that
latent genetic and environmental risk factors each inde-
pendently account for any observed comorbidity between
the substance use and misuse phenotypes. For each aim,
the best-fitting model was determined based on an optimal
balance of complexity and explanatory power using the
AIC [27]. For each best-fitting model, the A and C param-
eters are successively fixed to zero and their significance
determined using a likelihood ratio test.

RESULTS

Prevalence of life-time NMUA

Table 1 shows prevalence and age initiation for life-time
NMUA, cannabis, nicotine and opioid use, along with the
age of onset for AUD, ND and CUD. Psychiatric criteria for
AUD, ND and CUD were based on the period of heaviest
use. The prevalence of life-time NMUA was marginally
higher among females (20.2 versus 18.4%). The preva-
lence of life-time NMUA was lower compared to life-time
use of cannabis or nicotine, but higher than the life-time
prevalence of opioids. Formales and females alike, the aver-
age age of NMUA initiation occurred after nicotine but be-
fore cannabis and opioid use. Finally, the prevalence of
NMUAwas marginally lower among males.
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Measures of association

Amongmales and females, NMUAwas correlated with life-

time opioid use (r = 0.60–0.67) (see Table 2a). In contrast,

the phenotypical correlations between NMUA and life-time

cannabis or nicotine use were smaller in males (r = 0.26–

0.29) and much smaller in females (r = 0.10–0.15). As ex-

pected, the phenotypical correlations between cannabis

and nicotine use were high. The correlations between opi-
oid and cannabis (r = 0.42–0.60) or between opioid and
nicotine (r= 0.39–0.43) use were higher than the correla-
tions between NMUA and cannabis (r = 0.10–0.26) or be-
tween NMUA and nicotine (r = 0.15–0.29) use.

In terms of the associations between NMUA and sub-
stancemisuse, NMUA did not correlate phenotypically very
highly with AUD, ND or CUD (see Table 2b), with point es-
timates ranging from 0.15 to 0.32 among males and from
0.11 to 0.24 among females. In contrast, correlations be-
tween the three measures of substance misuse were mod-
erate to high (r = 0.43–0.72).

Sex differences

Before modeling the genetic etiology of NMUA, we first
tested the significance of age and sex effects on the preva-
lence of each variable (see Supporting information,
Table S1). Specifically, we tested age and sex effects on
the mean latent liability. For NMUA, a model without any
age and sex differences did not deteriorate significantly
(Δχ2 = 1.97, Δ degree of freedom (d.f.) = 2, P = 0.37). Sim-
ilarly, there were no sex differences in the prevalence of life-
time opioid use. In contrast, males were significantly more
likely to report life-time cannabis and nicotine use and be
diagnosed with DSM-V alcohol use disorder, cannabis use
disorder and nicotine dependence. Older subjects were also
more likely to endorse life-time cannabis, nicotine and opioid
use, as well as receive a diagnosis of nicotine dependence.

Twin pair correlations

MZ and DZ twin-pair polychoric correlations, including
95% confidence intervals based on combined male and fe-
male data with sex and age included as covariates, are
shown in the Supporting information, Table S2. For
NMUA, the DZ twin-pair correlation is approximately half
of the MZ counterpart, which is consistent with the hy-
pothesis that familial aggregation is entirely explained by
additive genetic risk factors. For nicotine and opioid use
and alcohol use disorder the DZ twin-pair correlations did
not exceed half of the MZ correlations, suggesting familial

Figure 1 The Cholesky decomposition (i) common (ii) and indepen-
dent (iii) pathway models to explain sources comorbid substance use
(or misuse) in terms of genetic (a), shared environmental (c) and non-
shared (e) environmental risks. For brevity, the shared environmental risk
factors are omitted from the Cholesky. The common and independent
pathway models include variable specific genetic (as1–4) and environ-
mental (cs1–4, es1–4) risks unique to each substance. All latent variables
(circles) are standardized. All pathways with single-headed arrows are
estimated. CUD = DSM-V cannabis use disorder; FTND = Fagerström
Test for Nicotine Dependence; AUD = DSM-V alcohol use disorder
(AUD);NMUA= life-time non-medical use of over-the-counter or pre-
scription analgesics [Colour figure can be viewed at wileyonlinelibrary.
com]
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aggregation attributable to additive genetic risks. In con-
trast, the DZ correlations for FTND and cannabis use disor-
der suggest familial aggregation attributable to a
combination of shared environmental and additive genetic
risks. Note, however, that the 95% confidence intervals for
most of the twin-pair correlations are wide.

Univariate results

When fitting univariate models to estimate the proportions
of genetic and environmental risks in each variable, we first
determined if the genetic (A) and environmental (C and E)
risk factors could be constrained equal across sex
(see Supporting information, Table S3). For NMUA,
constraining these variance components did not result in
a significant deterioration in model fit (Δχ2 = 6.13, Δd.
f. = 3, P = 0.11), which suggests that the relative contribu-
tion of these risk factors is unchanged with respect to
sex. Similarly, for all remaining variables, there were no
significant sex differences in the variance components.
Henceforth, all male and female data were combined and
modeled with age and sex effects on the variable means.

Table 3 includes the standardized variance components
based on each of the best-fitting univariate models (see

Supporting information, Table S4). With the exception of
life-time opioid use, all shared environmental risk factors
could be removed from each univariate model without
any significant deterioration in model fit. For life-time
NMUA, additive genetic risk factors explained 46% of the
total variation. Relative to cannabis use, nicotine use,
nicotine dependence and cannabis use disorder, the genetic
risk factors for NMUA explained amuch smaller proportion
of the total variance. Instead, the remaining proportion of
variance was entirely explained by non-shared or random
environmental risk factors including measurement error.

For life-time opioid use, neither the AE nor CE models
deteriorated significantly when compared to the full ACE
model and all three AICswere in close proximity. Therefore,
the ACEwas retained in Table 3 despite the non-significant
estimate for A and the nonsensical negative variance
estimate for C. In samples where there is greater sampling
distribution variability, the observed MZ twin-pair correla-
tions can be underestimated and the DZ correlations
overestimated by chance alone. When this occurs, vari-
ance component estimates will often be negative but not
significant, implying that the parameter is not statistically
distinguishable from zero [41]. Negative shared environ-
mental variance components may be due to stochastic

Table 1 Prevalence of life-time cannabis, nicotine, illicit opioid, alcohol use disorder, nicotine dependence, cannabis use disorder and life-
time non-medical use of over-the-counter or prescription analgesics (NMUA).

Sample size Prevalence Age of initiation (SD)

Total Male Female Total Male Female Male Female

1. Cannabis use 2100 910 1190 56.0% 63.7% 50.0% 17.5 (2.73) 17.6 (2.81)
2. Nicotine use 2012 873 1139 45.2% 37.7% 51.0% 16.0 (3.07) 15.3 (2.28)
3. Opioid use 2005 870 1135 6.1% 6.4% 5.8% 20.4 (0.03) 19.8 (0.04)
4. Alcohol use disorder 1989 846 1126 45.5% 56.0% 37.5% 15.8 (1.80) 16.1 (1.77)
5. FTND 1162 557 605 36.9% 40.0% 34.2% NA NA
6. Cannabis use disorder 1024 512 512 24.2% 29.5% 18.9% NA NA
7. NMUA 2007 871 1136 19.4% 18.4% 20.2% 16.2 (0.05) 15.9 (0.06)

FTND = Fagerström Test for Nicotine Dependence; SD = standard deviation; NA = not applicable. Substance use disorders based on the period when subjects
reported using the most. All non-users coded as missing.

Table 2 Pairwise polychoric phenotypical correlations (and standard errors) between life-time non-medical use of over-the-counter or
prescription analgesics (NMUA) and measures of (a) substance use and (b) substance use disorders. Males are below the diagonal.

(a) Correlations with life-time substance use (b) Correlations with substance use disorders

1 2 3 4 1 2 3 4

1. Cannabis use 1 0.74 (0.04) 0.42 (0.07) 0.10 (0.05) 1. CUD 1 0.44 (0.04) 0.50 (0.05) 0.11 (0.00)
2. Nicotine use 0.78 (0.03) 1 0.43 (0.07) 0.15 (0.05) 2. FTND 0.43 (0.05) 1 0.72 (0.04) 0.22 (0.00)
3. Opioid use 0.60 (0.08) 0.39 (0.08) 1 0.60 (0.06) 3. AUD 0.46 (0.05) 0.70 (0.04) 1 0.24 (0.00)
4. NMUA 0.26 (0.06) 0.29 (0.06) 0.67 (0.06) 1 4. NMUA 0.15 (0.00) 0.24 (0.00) 0.32 (0.00) 1

CUD = DSM-V cannabis use disorder; FTND = Fagerström Test for Nicotine Dependence; AUD = DSM-Valcohol use disorder (AUD). Substance use disorders
based on the period when subjects reported using the most. All non-users coded as missing.
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variation in the estimate or to a genuinely different source
of variation such as genetic dominance [41]. Post-hoc
power calculations using the R-based acePowOrd function
[42] revealed insufficient power (19%) to detect an additive
genetic variance of 25% based on the AE model in
Supporting information, Table S4. Given the lack of statis-
tical power to resolve the sources of familial aggregation,
life-time opioid use was excluded from all subsequent
analyses.

Multivariate results

Life-time cannabis, nicotine and opioid use and NMUA

To test the hypothesis that comorbid cannabis and nicotine
use and NMUA can be explained by common genetic risks,
we first fitted anACE Cholesky as a reference for comparing
the common independent pathwaymodels (see Supporting
information, Table S5). When compared to the full
Cholesky, neither of the hypothesis-driven models provided
a better fit when judged by the AIC.

We then determined if the additive genetic or the
shared environmental risks could be removed from the
Cholesky. As shown in Supporting information, Table S5,
all shared environmental risks could be removed from the
model. Table 4 shows the standardized proportions of

variance attributed to the additive genetic and non-shared
environmental variance for each variable based on the
multivariate AE Cholesky. We then estimated the latent ge-
netic and environmental factor correlations, which re-
vealed that the additive genetic risks in NMUA were
modestly correlated with those for cannabis and nicotine
use. In contrast, aspects of the unique environment that
comprise individual differences in NMUA were unrelated
to those for life-time cannabis and nicotine use.

Life-time alcohol use disorder (AUD), nicotine dependence
(ND), cannabis use disorder (CUD) and NMUA

To test the hypothesis that cannabis use disorder, nicotine
dependence, alcohol use disorder and NMUA can be ex-
plained by common risks, we again fitted a Cholesky as a
reference, followed by the common and independent path-
way models (see Supporting information, Table S6). Nei-
ther the common nor independent pathway models
provided a good fit to the data. Subsequent hypothesis test-
ing revealed that shared environmental risk factors could
be entirely removed from the Cholesky without any signif-
icant deterioration in fit. Standardized multivariate compo-
nents of variance are shown in Table 5, along with the
additive genetic and non-shared environmental correla-
tions. The correlations between the additive genetic risks

Table 3 Standardized components of variance (and 95% confidence intervals) attributable to additive genetic (A), shared environmental
(C), and non-share or random environmental (E) risks based on the best fitting univariate models for substance use and misuse.

A C E

1. Cannabis use 0.77 (0.68–0.85) – 0.23 (0.15–0.32)
2. Nicotine use 0.70 (0.60–0.79) – 0.30 (0.21–0.40)
3. Opioid use 0.49 (�0.52–0.99) �0.20 (�0.79–0.57) 0.71 (0.40–0.99)
4. AUD 0.49 (0.38–0.60) – 0.51 (0.40–0.62)
5. FTND 0.72 (0.60–0.81) – 0.28 (0.19–0.40)
6. CUD 0.65 (0.47–0.80) – 0.34 (0.20–0.53)
7. NMUA 0.46 (0.29–0.57) – 0.54 (0.43–0.71)

A = additive genetic; C = common environmental risks; E = non-shared environment risk factors; AUD = DSM-VAlcohol Use Disorder; FTND = Fagerström
Test for Nicotine Dependence; CUD = DSM-V cannabis use disorder; NMUA = life-time non-medical use of over-the-counter or prescription analgesics.
Substance use disorders based on the period when subjects reported using the most. All non-users coded as missing.

Table 4 Standardized proportions of variance along with additive genetic and non-shared environmental risk factor correlations (95%
confidence intervals) based on the best-fitting multivariate AE Cholesky decomposition of cannabis use, nicotine use and life-time non-
medical use of over-the-counter or prescription analgesics (NMUA).

Variance components Additive genetic (below diagonal) and non-shared environmental correlations

A E 1 2 3

1. Cannabis use 0.80 (0.71–0.87) 0.20 (0.13–0.29) 1 0.71 (0.50–0.88) �0.28 (�0.54 to 0.00)
2. Nicotine use 0.72 (0.62–0.80) 0.28 (0.20–0.38) 0.78 (0.71–0.85) 1 �0.18 (�0.42 to 0.00)
3. NMUA 0.47 (0.41–0.61) 0.53 (0.39–0.59) 0.41 (0.24–0.56) 0.45 (0.27–0.60) 1

A = additive genetic; E = non-shared environment risk factors.
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for NMUA and the three substance use disorders ranged
from small to moderate (0.07–0.34). The highest genetic
correlation was with FTND. The additive genetic correla-
tion between NMUA and AUD was non-significant. Finally,
the unique environments risks in NMUAwere unrelated to
those in substance use disorders.

DISCUSSION

Almost one-fifth of this Australian sample of young adults
reported life-time non-medical use of OTC or prescribed an-
algesics (NMUA). There were no sex and age differences in
the prevalence of this class of substance use. Regarding the
etiology, life-time NMUA could be explained by a combina-
tion of genes and random aspects of the environment.
Commensurate with other family studies on substance
use and misuse [18,21,43], the shared familial environ-
ment played no significant role in the risk of NMUA. Con-
trary to our hypothesis, genes that increase the risk of
NMUA were only moderately related to the genes for life-
time cannabis and nicotine use. In terms of substance mis-
use, this class of substance use was genetically unrelated to
alcohol use disorder and, while the genetic correlations
with cannabis and nicotine use disorders were significant,
they were small to very modest. Overall, the genetic risks
in this newer class of substance use were mostly distinct
from the more prevalent classes of licit and illicit sub-
stances and misuse.

Our finding of no significant sex differences in life-time
NMUA is commensurate with the 2013 National Drug
Strategy Household Survey (NDSHS) in Australia based
on a nationally representative sample of 23855 respon-
dents, which found that the prevalence of past 12-month
use was similar among males (3.3%) and females (3.2%)
[44].

In the 2016 NDSHS [45], pain-killers and opioids were
combined into one section while the use of non-opioid
OTC substances such as paracetamol and aspirin were
removed. This was because they were not known to be
misused for cosmetic purposes, induce or enhance a drug
experience or to enhance performance [45]. Despite the
removal of all non-opioid OTCs from the 2016 survey, the
past 12- month prevalence of NMUA increased slightly to
3.6% [45], suggesting that non-opioid OTCswere not being
misused, nor were they being endorsed by respondents in
the 2013 survey.

The finding of no significant shared environmental
risks in the life-time NMUA contrasts with reports that
have investigated cannabis [46–49] and nicotine [50,51]
initiation, as well as individual differences in the frequency
of nicotine, alcohol, cannabis and other classes of sub-
stance use [52–55], nearly all of which have revealed evi-
dence of significant shared environmental risks. The
decline in shared environmental risk factors over time isTa
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characteristic of the progression to more frequent sub-
stance use and the variation in psychiatric criteria indica-
tive of misuse [56]. Beyond the associations with other
forms of substance use examined here, it is plausible that
the liability to NMUA represents a more severe, emerging
class of substance use. For instance, NMUA has been linked
to psychiatric symptoms by us [57–60] and others [61]. In
non-genetic information studies, we have documented nu-
merous adverse associations between NMUA and stimu-
lants with behaviors such as high-risk sexual behavior
[62,63], driving under the influence [60] and sexual as-
sault [64,65]. However, attempts to determine empirically
the degree of impairment associated with this class of sub-
stance use vis-à-vis other substances are currently ham-
pered by a lack of available abuse and dependence criteria
and the appropriate application of item response theory
analysis [66] beyond the scope of the present analyses.

Limitations

Our findings must be interpreted in the context of
four potential limitations. First, our sample comprises a
population-based sample of young adult Australians,
predominately of Anglo Saxon ancestry. Although our
findings may not generalize to other populations, given
the higher rates of prescribed opioid use [67] and opioid-
related mortality [68] in Anglo Saxon ancestral popula-
tions, this is an ideal sample for preliminary investigation
and one of the few with genetically informative NMUA
data. With respect to genetic relatedness, we have detected
no significant genetic differences between our sample, large
population-based samples from the United States, western
and eastern Europe [69,70].

Secondly, opioids refer to the entire family of natural,
synthetic and semi-synthetic forms. Our self-report assess-
ment of life-time opioid use included heroin (semi-syn-
thetic), morphine (opium alkaloid), methadone (fully
synthetic) and codeine (opium alkaloid). At the time of as-
sessment, many OTC analgesics in Australia contained co-
deine [71]. Codeine was also included among the list of
NMUA examples. This may have inflated the phenotypical
association with life-time self-reported illicit opioid use.
However, if subjects were responding to life-time codeine
use in both items, then the prevalence and components
of genetic and environmental variance ought to have been
identical. Future research would benefit from more fine-
grained assessment of illicit opioids, non-medical use of opi-
oid prescription medications and non-medical use of OTC
medications. We also note that Australia has seen an in-
crease in both codeine dependence and death-related to
overdose from codeine-containing OTC products [9]. Con-
sequently, as of February 2018 codeine-based drugs were
rescheduled to be available only by prescription [71].
Changes in the rescheduling of codeine-based medications

are likely to impact the prevalence and individual differ-
ences in use, and potentially the relative contribution of
genes and environment to its use and misuse.

Thirdly, the NMUA assessment included non-steroidal
or non-opioid analgesics. Their inclusion and any ensuing
heterogeneity may have attenuated the association be-
tween life-time non-medical use of opioid-based analgesics
and other classes of SU and SUD. We note that the preva-
lence of NMUA in the NDSHS surveys between 2013 and
2016 did not change, despite the removal of non-opioid
OTC from the list of survey items [45]. This is consistent
with non-opioid analgesics not being known to be misused
for cosmetic purposes or to induce or to enhance a drug ex-
perience or to enhance performance [7].

Fourthly, non-medical use was defined as not taken in
quantities or manner prescribed by a medical practitioner.
This definition may have benefited with an expanded de-
scription that included ‘exceeding the recommendations
on the label’ for the non-medical use of OTC medications.

Fifthly, the NMUA assessment was life-time. Psychiatric
criteria for abuse and dependence were not assessed. The
extent to which the genetic and environmental risks in this
measure predict the risk of transitioning to chronic NMUA
is unknown. Our work has previously shown that the ge-
netic and environmental risks in licit and illicit substance
use are partly, but not entirely, related to corresponding di-
agnoses of substance misuse [46,48,72]. Although very
high genetic correlations between major classes of illicit
and licit substance use disorders have been observed [55],
it is unclear if the genetic risks in chronic non-medically
prescribed or OTC analgesics use will be highly correlated
with those for CUD, AUD and ND.

Conclusion

Life-time non-medical or OTC use of analgesics is moder-
ately heritable, and there is no evidence that aspects of
the familial or shared environmental risks are etiologically
significant. Twin modeling suggests that the genetic risks
in this emergent class of substance use are mostly etiologi-
cally distinct. There was no genetic overlap with alcohol
use disorder and very little overlap with cannabis use disor-
der. There was, however, a moderate degree of genetic
overlap between NMUA and life-time cannabis use, nico-
tine use and nicotine dependence.
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