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ABSTRACT
BACKGROUND: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare
variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays
and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such
variants are expected to have deleterious functional consequences and to contribute to disease risk.
METHODS: We analyzed w250,000 rare variants from 16 independent studies genotyped with exome arrays and
augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes:
cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We
conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/
loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative
causal variants within associated loci.
RESULTS: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding
variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide
polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all
phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci,
and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible
intervals.
CONCLUSIONS: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-
mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of
substance use behavior.

Keywords: Alcohol, Behavioral genetics, GWAS, Heritability, Nicotine, Tobacco

https://doi.org/10.1016/j.biopsych.2018.11.024
SEE COMMENTARY ON PAGE 889

ª 2018 Society of Biological Psychiatry.
ical Psychiatry June 1, 2019; 85:946–955 www.sobp.org/journal ISSN: 0006-3223

https://doi.org/10.1016/j.biopsych.2018.11.024
http://www.sobp.org/journal


Exome Meta-analysis of Smoking and Alcohol

Biological
Psychiatry:
Celebrating
50 Years
Tobacco and alcohol use together account for more morbidity
and mortality in Western society than any other single risk
factor or health condition (1). These preventable and modifiable
behaviors are heritable (2), but previous human and model
organism research, including genome-wide association
studies (GWASs) of common variants, have resulted in few
associated genetic variants, which most prominently feature
genes involved in alcohol/nicotine metabolism and nicotinic
receptors (3–7).

Advances in sequencing, genotyping, and genotype impu-
tation now allow cost-effective investigation of rare and low
frequency variants. Compared with common variants (minor
allele frequency [MAF] .1%) most commonly used in GWASs,
rare variants have greater potential to elucidate biological
mechanisms of complex traits, including substance use and
addiction (8,9). In particular, nonsynonymous and loss-of-
function coding variants, which result in the loss of normal
function of a protein, may have greater phenotypic impact and
more direct mechanistic interpretation than other variants that
do not have obvious biological consequences (10,11).

No large-scale genome- or exome-wide study of rare vari-
ation has been conducted to date. The vast majority of existing
addiction-related rare variant studies have used targeted
sequencing of putative addiction-associated loci to discover
and test for association in relatively small samples. Existing
research has led to intriguing leads, including rare variant as-
sociations in loci that span nicotinic receptor gene clusters
(12–21) and alcohol metabolism genes (22–24) for nicotine and
alcohol dependence, respectively. This strategy has also pro-
duced rare variant associations in novel loci. In one case,
gene-level association tests were used to find an association
with rare variants in SERINC2 (24). In another case, a burden
test across PTP4A1, PHF3, and EYS showed association with
alcohol dependence (25). Unfortunately, these genes are not
obviously involved in etiological processes related to addic-
tion, and replications have not been reported to date.

Previous studies have also attempted to leverage informa-
tion about predicted functional consequences of rare muta-
tions to improve association analyses. One study of nicotine
dependence found significant rare single-variant associations
in CHRNB4, but only when variants were weighted by their
predicted effect on the cellular response to nicotine and
acetylcholine (26). Such positive findings could benefit from
replication, which has not always been straightforward. For
example, all rare variant associations in addiction are, to our
knowledge, candidate gene analyses with type I error thresh-
olds based only on the number of tests within that region.
Historically, such analyses have produced overly optimistic
estimates of the number of associated loci (27). Genome-wide
analyses with more conservative type I error thresholds have
reported null rare variant findings across an array of pheno-
types relevant to addiction (28–30). Precisely because
genome-wide analyses are conducted on many variants
across the genome, they are in principle able to discover novel
rare variant associations within new or known loci. One way to
improve power in genome-wide analyses is through genetic
association meta-analysis, which entails the aggregation of
results across many studies to achieve large sample sizes.

Here, we attempted to expand on these previous discov-
eries by conducting the largest meta-analytic investigation of
Biological
exonic rare variants to date. We conducted an exome-wide
association meta-analysis of nicotine and alcohol use across
16 studies genotyped on the exome array, which genotypes
low-frequency nonsynonymous and putative loss-of-function
exonic variants. We combined these data with the UK Bio-
bank, which includes approximately 400,000 individuals of
European ancestry with genotype imputation to the Haplotype
Reference Consortium (31) imputation reference panel and
relevant smoking/drinking phenotypes. Sample sizes for well-
imputed variants were thus enlarged, and the availability of
noncoding variants from UK Biobank enabled comprehensive
analysis of genetic architecture (32) and fine mapping (33).

We conducted single-variant and gene-based tests of as-
sociation with five smoking and drinking phenotypes. We
applied a novel fine-mapping analysis to prioritize causal var-
iants using statistical and functional information. We also
evaluated the contribution of rare exonic variants to the heri-
tability of these phenotypes. Family studies, as well as studies
of the aggregate effects of common variants, have found both
alcohol use and tobacco use to be heritable behaviors
(30,34–38). Research on the aggregate contribution of rare
variants, however, has been scarce, with previous work on
related phenotypes in smaller samples failing to detect
aggregate effects for smoking and alcohol consumption (28).
We used meta-analytic summary statistics to quantify the
contribution to heritability of variants in various functional
categories and frequency bins.

METHODS AND MATERIALS

Seventeen studies contributed summary statistics for meta-
analysis. These studies, their sample sizes, and available
phenotypes are listed in Tables S1 and S2 in Supplement 1.
We augmented our 16 exome chip cohorts with the UK Bio-
bank, in which imputation to the Haplotype Reference Con-
sortium panel was used in lieu of an exome chip array. All
individuals were of European ancestry, as determined by
genetic principal components.

Phenotypes

Phenotypes were selected to represent multiple stages of
smoking. These included initiation, heaviness of use among
smokers, and a measure of total lifetime exposure to tobacco.
For alcohol use only, a measure of amount of alcohol use was
systematically available across studies. The selected pheno-
types are relevant to prior GWASs of smoking and alcohol use;
are commonly available in psychological, medical, and epide-
miological datasets; and are known to be correlated with
measures of substance dependence (4,39–41).

1. Cigarettes per day: the average number of cigarettes
smoked in a day among current and former smokers.
Studies with binned responses used their existing bins.
Studies that recorded an integer value binned responses
into one of four categories: 1 = 1 to 10, 2 = 11 to 20, 3 =
21 to 30, 4 = 31 or more. Anyone reporting zero ciga-
rettes per day was coded as missing. This phenotype is a
component of commonly used measures of nicotine
dependence such as the Fagerström Test for Nicotine
Dependence.
Psychiatry June 1, 2019; 85:946–955 www.sobp.org/journal 947
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2. Pack-years: defined in the same way as cigarettes per day
but not necessarily binned, divided by 20 (cigarettes in a
pack), and multiplied by number of years smoking. This
yielded a measure of total overall exposure to tobacco and
is relevant to disease outcomes for which smoking is a risk
factor, such as cancer and chronic obstructive pulmonary
disease risk.

3. Age of initiation of smoking: a measure of early cigarette
use. Defined as the age at which a participant first started
smoking regularly.

4. Smoking initiation: a binary variable of whether the indi-
vidual had ever been a regular smoker (1) or not (0), and
often defined as having smoked at least 100 cigarettes
during his or her lifetime.

5. Drinks per week: a measure of drinking frequency/quantity.
The average number of drinks per week in current or former
drinkers.
Genotypes

Fourteen of the 17 studies were genotyped with the Illumina
HumanExome BeadChip (Illumina, San Diego, CA), which
contains w250,000 low-frequency nonsynonymous variants,
variants from the GWAS catalog, and a small number of vari-
ants selected for other purposes. Two studies were genotyped
on the Illumina Human Core Exome, which includes an addi-
tional w250,000 tag single nucleotide polymorphisms (SNPs).
The remaining study, the UK Biobank, was imputed using
Haplotype Reference Consortium panel (31,42), as well as the
reference panel by UK 10K and 1000 Genomes Project. An
integrated callset was released by the UK Biobank team (42).
Our UK Biobank genetic association analyses were conducted
based on the integrated callset with additional quality control.

Generation of Summary Association Statistics

Seventeen independent studies (see Table S1 in Supplement 1)
with smoking and drinking phenotypes were included in the
discovery phase. Individual studies conducted association
analysis accounting for age, sex, any study-specific covariates,
and ancestry principal components (see Table S2 in
Supplement 1 for genomic control values), and they submitted
summary statistics for meta-analysis. For studies with related
individuals (see Table S1 in Supplement 1), relatedness was
accounted for in linear mixed models using empirically esti-
mated kinships from common SNPs (43). Residuals were
inverse-normalized to help ensure well-behaved test statistics
for rare variant tests.

Quality control of per-study summary statistics included
evaluation and correction of strand flips and allele flips through
systematic comparison of alleles and allele frequencies against
the reference datasets ExAC v2.0, 1000 Genomes Phase 3,
and dbSNP. Variants with call rates ,0.9 or Hardy-Weinberg
p , 1 3 10–7 were also removed. The latter filter was meant
to avoid findings that could not be more broadly replicated
across the 17 studies.

Meta-analysis

Association testing was done in stages. First, we conducted
genome-wide association meta-analysis. Variants with p
948 Biological Psychiatry June 1, 2019; 85:946–955 www.sobp.org/jo
values less than the genome-wide significance threshold of
5 3 10–8 were deemed statistically significant. Loci were
defined as 1 million base-pair windows surrounding a
“sentinel” (most significant) variant in the locus. Overlapping or
adjacent loci were combined into a single locus. Conditional
analysis and fine mapping was then performed within each
locus. We attempted to replicate one very rare variant
(rs36015615 in STARD3 associated with cigarettes per day)
(see Results and Table 1) that was available in two other exome
chip consortia: the CHD Exome1 Consortium (N = 17,789) and
the Consortium for Genetics of Smoking Behaviour (N =
28,583). Both consortia defined their phenotypes, including
cigarettes per day, similarly, as the usual number of cigarettes
smoked in a day corrected for sex, age, and principal com-
ponents (and/or genetic relatedness, as appropriate), and both
consortia inverse-normalized the data before association
analysis.

We also conducted gene-level association tests grouping
nonsynonymous, stop-gain, stop-loss, and splice variants
within each gene, using rareMETALS version 6.0 (44). Variant
annotation was conducted using SEQMINER with RefSeq 1.9
(45). Two complementary gene-level association tests were
performed: the sequence kernel association test (46,47) with
an MAF cutoff of 1%, and a simple burden test (48) that
summed the number of rare alleles within a given gene, again
with a maximum MAF of 1%. We chose variants with MAF
#1% because we were interested in the contribution of vari-
ants with a frequency lower than that which has been reliably
imputed and tested in past GWAS meta-analyses. We
considered a gene association to be significant if the p value
surpassed a Bonferroni correction for the number of genes
tested for a given phenotype and test, assuming approximately
20,000 genes in the genome (.05/20,000 = 2.5 3 10–6).

We performed iterative conditional analysis using a partial
correlation–based score (PCBS) statistic (49), which can
perform proper conditional analysis for meta-analysis that
combines datasets measured using different arrays. PCBS
takes GWAS meta-analysis summary statistics and linkage
disequilibrium (LD) estimated from the Haplotype Reference
Consortium panel as input.

As a key step to evaluate the contribution of variants within
a genome-wide significant locus (33), we used our PCBS
framework to apply two complementary fine-mapping tech-
niques to identify putatively causal genetic variants. The first
technique was a Bayesian approach described previously (50)
that estimates the posterior probability of association based on
the statistical strength of the association for variants in each
locus. We also applied a version of fgwas (51) modified to work
within the PCBS, which assumes that variants in different
functional categories have potentially different prior probability
of association. For loci with a single association signal, effect
sizes and variance from single-SNP analyses were used. If a
locus contained multiple signals, we used effect sizes and
variance from conditional analysis adjusting for all other index
variants in this region.

Finally, we attempted to replicate previous rare variant as-
sociations referenced in the introduction and listed in Table S4
in Supplement 2. We attempted replication in our phenotypes
for any single variant when that variant was directly genotyped
or imputed. We applied a liberal threshold that corrected only
urnal
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Table 1. All Nonsynonymous/Loss-of-Function Variants With Posterior Probability of Association ..80 From One of the Two Fine-Mapping Methods

SNP REF/ALT na ALT AF
GWAS
p Value B SE Direction Annotation

Posterior Probability of
Association

Number SNPs (Low-Frequency
Coding SNPs) in 95% Credible

Interval

Without
Functional Prior

With Functional
Prior (fgwas)

Without
Functional Prior

With Functional
Prior (fgwas)

Cigarettes per Day

rs36015615b G/A 69,951 .0002 3.2 3 10–8 1.2 0.210 ==1=11=1=X=X1X111 Nonsynonymous
[STARD3]

.82 .62 8997 (6211) 11,302 (6232)

rs16969968 G/A 153,918 .34 2.5 3 10–139 0.096 0.0038 12112111112111111 Nonsynonymous
[CHRNA5]

.84 .92 2(0) 2 (0)

Drinks per Week

rs1260326 T/C 357,854 .61 4.6 3 10–40 0.032 0.0024 11111111122111111 Nonsynonymous
[GCKR]

1.0 1.0 1 (0) 1 (0)

rs1229984 T/C 334,588 .98 2.3 3 10–173 0.25 0.0088 =12XXXX1XXXX=1111 Nonsynonymous
[ADH1B]

1.0 1.0 1 (1) 1 (1)

rs28929474 C/T 357,854 .02 2.2 3 10–11 –0.057 0.0085 22112222211122221 Nonsynonymous
[SERPINA1]

.95 1.0 1 (1) 1 (1)

rs1800566 G/A 357,854 .18 2.00 3 10–8 0.017 0.0031 11111111111221112 Nonsynonymous
[NQO1]

.32 .97 103 (0) 1 (0)

Smoking Initiation

rs2232423 A/G 433,216 .11 1.40 3 10–8 –0.019 0.0034 21212221222222 Nonsynonymous
[ZSCAN12]

.84 .64 502 (0) 2 (0)

rs35891966 G/A 433,216 .07 1.30 3 10–8 –0.024 0.0042 22212122211222 Nonsynonymous
[NAV2]

.98 1.0 1 (0) 1 (0)

rs147052174 G/T 433,216 .02 1.2 3 10–7 0.043 0.0080 11111111121111 Nonsynonymous
[FAM163A]

.81 1.0 2432 (66) 1 (0)

rs6265 C/T 433,216 .19 1.9 3 10–10 –0.017 0.0030 11211211221222 Nonsynonymous
[BDNF]

.32 .83 25 (0) 2 (0)

rs61754158 C/T 433,216 .01 1.4 3 10–6 –0.055 0.0114 22121222=1=212 Nonsynonymous
[HEATR5A]

.39 .87 9742 (195) 9742 (195)

rs34967813 A/G 433,216 .31 8.1 3 10–7 –0.011 0.0023 22221221221222 Nonsynonymous
[RYR2]

.14 .98 7413 (56) 1 (0)

A variant is considered “rare” if minor allele frequency (MAF) , 0.01, and low frequency if 0.01 #MAF , 0.05. In the Direction column, each symbol represents the contribution of one of the
studies. A plus sign (1) indicates that the ALT allele had a positive effect in that study, a minus (2) indicates a negative effect, an equals sign (=) indicates that the variant was monomorphic,
and an X indicates that it was absent in that study. The order of studies for cigarettes per day and drinks per week was ARIC, UKB, COGA, FINNTWIN, FUSION, GECCO, HRS, ID1000, MEC,
METSIM, MHI, MCTFR, NAGOZALC, NESCOG, SardiNIA, TwinsUK, and WHI. For smoking initiation, the order is the same, except COGA and MCTFR were not available. See Table S1 in
Supplement 1 for study acronym explanations.

ALT, alternate allele; ALT AF, allele frequency of the alternate allele estimated in the meta-analysis; GWAS, genome-wide association study; REF, reference allele on GRCh37; SNP, single
nucleotide polymorphism.

aAcross all studies that genotyped the variant.
brs36015615 did not replicate in two additional datasets. See Results section.
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for the number of tests conducted for this replication exercise
(.05/46 = .001).

Genetic Architecture

We performed heritability and genetic correlation analyses
using LD score regression (52). The method calculates LD
scores from the Haplotype Reference Consortium, and the
estimation of heritability with these LD scores then follows
established methods (53,54). Heritability was estimated for
each trait and partitioned by annotation category and fre-
quency bins. First, we annotated variants on the exome chip
based on gene definitions in RefSeq 1.9, using SEQMINER
version 6.0 (55). A variant is classified as coding if it belongs to
either one of the following categories: nonsynonymous, stop
gain, stop loss, and splice. Seven functional categories were
considered in the model, including intergenic, intron, common
coding (MAF .0.01), rare coding (MAF ,0.01), synonymous,
and 30/50 untranslated regions. We fitted the baseline model
with seven categories and estimated phenotypic variance
explained by each category.

RESULTS

GWAS analyses behaved well, with genomic control values for
the GWAS across exome chip and UK Biobank imputed vari-
ants between 1.05 and 1.3. The intercept for LD score
regression ranged between 0.99 and 1.1, indicating absent or
minimal effects of population stratification (per-study genomic
control values can be found in Table S2 in Supplement 1). A
total of 171 loci were identified under the genome-wide sig-
nificance threshold (p , 5 3 10–8), including 3, 11, 17, 93, and
47 loci for age of initiation of smoking, cigarettes per day,
pack-years, smoking initiation, and drinks per week, respec-
tively. A list of all sentinel variants within each locus is shown in
Table S5 in Supplement 2. QQ plots and Manhattan plots are
available in Figures S1 and S2 in Supplement 1 (additional
exploratory GWAS meta-analyses of individuals with signifi-
cant African ancestry are provided in Supplement 1 [including
up to 8974 individuals from three studies]) (see also Table S3
and Figures S3 and S4 in Supplement 1). The genome-wide
significant association results included known loci associated
with smoking and alcohol use phenotypes. These included
associations between smoking phenotypes and variants within
the CHRNA5-CHRNA3-CHRNB4 nicotinic receptor cluster,
nicotine metabolism gene CYP2A6, and a locus near dopa-
mine receptor DRD2. We also replicated previous associations
between nonsynonymous variant rs1229984 in ADH1B and
drinks per week. Only one very rare variant was associated
with any of our five phenotypes. This was rs36015615 (MAF =
0.0002), a nonsynonymous variant in STARD3, associated with
cigarettes per day (p = 3.2 3 10–8). This novel variant did not
replicate in either of two replication consortium datasets, the
CHD Exome1 Consortium (N = 17,789; B = 20.01, p = .94) or
the Consortium for Genetics of Smoking Behaviour (N =
28,583; B = 0.056, p = .84). Based on the estimated genetic
effects in the discovery sample (b ¼ 1:2), the power for repli-
cation is .99%. However, if we assume that the observed
effect sizes in the replication datasets are correct, there is 5%
power for replication based on this estimated effect. The
pattern of results may be due to winner’s curse, or the
950 Biological Psychiatry June 1, 2019; 85:946–955 www.sobp.org/jo
discovered variant may be a false positive finding. Additional
studies are required to narrow the possible interpretations.

The fine-mapping analysis of all 171 GWAS loci pinpointed
putatively causal variants with high resolution in some cases.
The 95% credible interval for 34% of the loci had ,10 SNPs
and 24 loci had double base-pair resolution, including several
instances in which the sole putative causal variant was non-
synonymous and of lower frequency, although in only one case
with MAF ,1%. The resolution increased somewhat when
functional information was used to inform the prior probability,
with double base-pair resolution at 32 loci, and 44% of loci
having ,10 SNPs in the 95% credible interval. Table 1 in-
cludes all nonsynonymous or loss-of-function variants within
the genome-wide significant loci that had a posterior proba-
bility of association ..80 from at least one of the fine-mapping
methods. Additional results from the fine-mapping analysis are
available in Tables S6 and S7 in Supplement 2. Several known
functional variants were identified through this method,
including rs16969968 (56), a nonsynonymous variant in nico-
tinic receptor gene CHRNA5 associated with cigarettes per
day (posterior probability of association [PPA] = .92 and .84
from the fine-mapping analysis with and without functional
priors, respectively); rs1229984 (57), a nonsynonymous variant
in alcohol metabolism gene ADH1B associated with drinks per
week (PPA = 1.0 and 1.0); and, although with somewhat
weaker evidence, rs6265 (58), a nonsynonymous variant in
brain-derived neurotrophic factor BDNF associated with
smoking initiation (MAF = 0.19; PPA = .83 and .32).

Novel variants in novel genes were also prioritized at high
resolution. To take the most statistically compelling examples
in Table 1, we found that rs28929474, a low-frequency non-
synonymous variant in SERPINA1, was associated with drinks
per week (MAF = 0.02; PPA = 1.0 and .95). When homozygous,
the alternate T (allele frequency = 0.02; frequency of TT ge-
notype under Hardy-Weinberg = 4 in 10,000) allele is a leading
cause of a1-antitrypsin deficiency. Here, we find that the same
risk allele, the T allele, is associated with approximately a 0.05-
SD decrease in drinks per week. We also discovered that
rs35891966, a variant in NAV2, was associated with smoking
initiation (MAF = 0.07; PPA = 1.0 and .98) at single base-pair
resolution. NAV2 is involved in neuronal development and
was previously shown to be differentially expressed between
smokers and nonsmokers, but not previously implicated in
GWASs (59).

Results of gene-based tests are provided in Table 2. A novel
gene, rho guanine nucleotide exchange factor 37 (ARHGEF37),
was associated with age of initiation of smoking (p = 1.9 3 10–6).
ARHGEF37 has not been widely studied and its function in not
well known. Another novel gene without an immediate biological
interpretation, was HEAT repeat-containing protein 5A (HEA-
TR5A), associated with smoking initiation (p = 1.4 3 10–8). We
also discovered a significant gene-based association between
known alcohol metabolism gene ADH1C and drinks per week (p =
1.4 3 10–27 and p = 1.9 3 10–40 from the burden and sequence
kernel association test tests, respectively). Finally, even with
relaxed p value thresholds, we failed to replicate genes identified
in previous rare variant association studies referenced in the
introduction (Table S4 in Supplement 2), with the exception of
ADH1C and CHRNA5, two loci long known to be associated with
alcohol use and smoking, respectively.
urnal
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Table 2. Significant Gene-Based Test Resultsa

Phenotype Gene n Variants B SE p Value Method

Age of Initiation of Smoking ARHGEF37 147,010 17 0.08 0.017 1.9 3 10–6 Burden

Smoking Initiation HEATR5A 427,262 41 –0.02 0.009 1.4 3 10–8 SKAT

Drinks per Week ADH1C 353,265 4 –0.15 0.014 1.8 3 10–27 Burden

Drinks per Week ADH1C 353,265 4 –0.15 0.014 1.9 3 10–40 SKAT

No significant genes were identified for the other two phenotypes.
SKAT, sequence kernel association test.
aAssumes a Bonferroni threshold of .05/20,000 = 2.5 3 10–6.
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The estimated total SNP heritability for age of initiation
of smoking, cigarettes per day, pack-years, smoking initi-
ation, and drinks per week was 6%, 9%, 10%, 14%, and
16%, respectively. Significant phenotypic variance was
explained by rare nonsynonymous variants for all traits,
ranging from 1.0% to 2.2% (Table 3). As a fraction of the
SNP heritability, rare nonsynonymous variants accounted
for 11% to 18%. Results for all seven functional categories
are listed in Table S8 in Supplement 1; appreciable heri-
tability was accounted for by common and rare coding
variants, and intergenic variants. Variants in the untrans-
lated regions and intronic regions contributed less. Almost
all pairs of phenotypes were genetically correlated
(Table 4), and the directions of the genetic correlations
were in the expected direction. For instance, cigarettes per
day was positively correlated with drinks per week (0.2 6
0.09), consistent with the observation that increased
alcohol consumption is correlated with increased tobacco
consumption. Age of initiation of smoking has a negative
correlation with all other traits, which is consistent with the
observation that an earlier age of smoking initiation is
correlated with increased tobacco and alcohol consumption
in adulthood. The patterns and magnitudes of correlation
are highly similar when considering only rare non-
synonymous variants (Table 4).
Table 3. Estimation of Heritability Explained by Variants on
Exome Array

Annotation Phenotype

Heritability Estimates

bh
2

seðbh2Þ p Value

All Variants Age of initiation
of smoking

.06 .0049 7.7 3 10–35

Cigarettes per day .09 .0019 ,2.2 3 10–303

Pack-years .10 .0022 ,2.2 3 10–303

Smoking initiation .14 .0007 ,2.2 3 10–303

Drinks per week .16 .0089 7.3 3 10–73

Rare Coding
Variants
(MAF , 0.01)

Age of initiation
of smoking

.011 .0015 2.8 3 10–2

Cigarettes per day .010 .0006 1.7 3 10–2

Pack-years .018 .0007 8.5 3 10–6

Smoking initiation .022 .0002 3.9 3 10–16

Drinks per week .020 .0013 1.8 3 10–7

We estimate the heritability based on a baseline model with seven

different functional categories. The reported heritability bh
2
is based

on the cumulative value from the functional categories with

significant heritabilities. We also report the SD ðseðbh2ÞÞ and p values,
estimated using jackknife resampling.

MAF, minor allele frequency.

Biological
DISCUSSION

With a maximum sample size ranging from 152,348 to
433,216, the present study is the largest study to date of low-
frequency nonsynonymous and loss-of-function variants in
smoking and alcohol use. Our meta-analytic study design
combined studies genotyped on the exome array with imputed
genotypes in the UK Biobank and allowed us to comprehen-
sively evaluate the contribution of rare and low-frequency
variants to the etiology of tobacco and alcohol use. All told,
we identified 171 genome-wide significant loci for the five
phenotypes.

We showed that the rare variants (MAF #1%) together
explain 1.0% to 2.2% of the phenotypic variance for the five
traits, amounting to 11% to 18% of the total SNP heritability. A
number of putatively causal low-frequency nonsynonymous
variants in novel genes were identified through two comple-
mentary fine-mapping techniques. These include a variant
known to affect a1-antitrypsin deficiency in SERPINA1. The
effect of the risk allele resulted in a decrease in drinks per
week. One interpretation is that this variant leads to impaired
liver function through a1-antitrypsin deficiency, which, in turn,
reduces alcohol consumption. Interestingly, neither this
particular variant nor the locus surrounding it was associated
with smoking phenotypes, even though a1-antitrypsin defi-
ciency also affects lung function over time. Other mechanisms
by which SERPINA1 exerts its effect on alcohol consumption
are certainly possible. Another novel nonsynonymous variant
was in neuron navigator 2 (NAV2), associated with smoking
initiation. NAV2 has not previously been associated with sub-
stance use or addiction. Given its suspected involvement in
neuronal growth and migration, a putatively causal non-
synonymous variant is a strong candidate for functional follow
up experiments. Other genes implicated in the fine-mapping
analysis have less direct interpretations (e.g., HEATR5A), and
such results will benefit from replication and/or follow-up ex-
periments. In general, fine-mapping studies narrowed the
credible set of likely causal variants to single or double base-
pair resolution for 24 loci (Table S6 in Supplement 2). Some
loci were not amenable to fine mapping, with credible intervals
containing thousands of SNPs in some cases. Given the high
cost in money and time of conducting functional experiments
at the cellular or organismal level, fine-mapping likely causal
variants can be extremely useful in predicting functional con-
sequences and prioritizing variants for further work.

Gene-based tests identified a small number of associated
genes, including an expected association with ADH1C and
drinks per week. The other two associated genes, ARHGEF37
and HEATR5A, do not lend themselves to ready biological
interpretations.
Psychiatry June 1, 2019; 85:946–955 www.sobp.org/journal 951
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Table 4. Estimation of Genetic Correlation Between Smoking and Drinking Traits

Trait 1 Trait 2

Genetic Correlation

br g seðbr gÞ p Value
Aggregated Genetic Correlation Induced by All Variants on the Exome Array

Drinks per Week Smoking initiation 0.43 0.06 1.7 3 10–11

Drinks per Week Age of initiation of smoking 0.01 0.13 9.3 3 10–1

Drinks per Week Pack-years 0.22 0.10 2.6 3 10–2

Drinks per Week Cigarettes per day 0.20 0.09 3.1 3 10–2

Smoking Initiation Age of initiation of smoking –0.64 0.11 1.1 3 10–8

Smoking Initiation Pack-years 0.45 0.08 4.9 3 10–8

Smoking Initiation Cigarettes per day 0.10 0.07 1.5 3 10–1

Age of Initiation of Smoking Pack-years –0.63 0.17 2.1 3 10–4

Age of Initiation of Smoking Cigarettes per day –0.26 0.16 9.9 3 10–2

Pack-years Cigarettes per day 0.77 0.13 2.2 3 10–9

Genetic Correlation Induced by Rare (MAF ,1%) Nonsynonymous Variants

Drinks per Week Smoking initiation 0.49 0.08 1.2 3 10–10

Drinks per Week Age of initiation of smoking –0.04 0.30 8.9 3 10–1

Drinks per Week Pack-years 0.08 0.02 2.7 3 10–4

Drinks per Week Cigarettes per day 0.09 0.02 5.2 3 10–5

Smoking Initiation Age of initiation of smoking –1.10 0.21 1.3 3 10–7

Smoking Initiation Pack-years 0.63 0.08 1.5 3 10–14

Smoking Initiation Cigarettes per day 0.23 0.08 3.3 3 10–3

Age of Initiation of Smoking Pack-years –1.10 0.33 1.5 3 10–3

Age of Initiation of Smoking Cigarettes per day –0.69 0.32 3.2 3 10–2

Pack-years Cigarettes per day 0.87 0.14 1.4 3 10–9

We estimate genetic correlations between five smoking and drinking traits. For genetic correlation estimates (br g), their SD (seðbr gÞ) and p values
are reported.

MAF, minor allele frequency.
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We showed that rare coding variants available on the exome
chip or imputable by the Haplotype Reference Consortium,
with frequency ,1%, explain significant proportions of
phenotypic variance and a substantial proportion of the total
SNP heritability. The exome chip was designed to genotype
coding variants uncovered in w12,000 sequenced exomes. By
design, the exome chip comprehensively ascertained high-
confidence rare nonsynonymous, splice, and stop variants
within those sequences, and it only sparsely genotypes in
other classes of variation, including common variants. The
Haplotype Reference Consortium panel imputed data also
have limited accuracy when the underlying genetic variants are
rare. Therefore, our current investigation did not fully explore
the genetic architecture of very rare variants (i.e., with MAF
,0.1%). With the development of larger imputation reference
panels, and the availability of large-scale deep whole-genome
sequences (e.g., the TOPMed [Trans-Omics for Precision
Medicine Study] study), we expect to be able to conduct an
even more comprehensive analysis of the genetic architecture
for variants with ever lower frequencies. Ultimately, the dis-
covery of low frequency variants with small effects will require
even larger sample sizes. For example, for rare variants with
MAF of 0.1% and effects of 0.2, 0.15, and 0.1 SDs on the
phenotype, to identify associations at a ¼ 531028 with 80%
of power, sample sizes of 500,000, 890,000, and 1,990,000 are
required. While such numbers seemed astronomical just a few
years ago, they will indeed be attainable in the next few
years with the availability of large biobank datasets and
952 Biological Psychiatry June 1, 2019; 85:946–955 www.sobp.org/jo
ever-improving imputation. Another limitation of the present
study is the limited samples sizes from non-European ances-
tries, in which only exploratory analyses were possible. Sub-
stantial improvements can be made to the resolution of fine-
mapping analysis by leveraging disparate LD information
across samples with diverse ancestry (33). Future researchers
will do well to include individuals of diverse ancestry.
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