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A catalog of genetic loci associated with kidney 
function from analyses of a million individuals
Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-
ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent 
replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney func-
tion on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and 
enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic 
risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization 
analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human  
tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in  
kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results 
provide a comprehensive priority list of molecular targets for translational research.

CKD is a major public health issue, with increasing incidence 
and prevalence worldwide1. Its associated burden of dis-
ease encompasses metabolic disturbances, end-stage kidney 

disease and multi-systemic complications such as cardiovascular 
disease1–4. CKD is a leading cause of death5 and has shown one of 
the highest increases in disease-attributable mortality over the last 
decade2. Nevertheless, public and clinical awareness remain low3. 
Moreover, clinical trials in nephrology are still under-represented6, 
which has resulted in a scarcity of therapeutic options to alter dis-
ease progression and high costs for health systems7. A major barrier 
to developing new therapeutics is the limited understanding of the 
mechanisms underlying kidney function in health and disease, with 
the consequent lack of therapeutic targets.

Genome-wide association studies (GWAS) and exome-chip 
studies of the glomerular filtration rate estimated from serum creat-
inine (eGFR), the main biomarker to quantify kidney function and 
define CKD, have identified nearly 100 eGFR-associated genetic 
loci8 in samples of European9–15, Asian16–19 and multiple20 ancestry. 
However, similarly to other complex traits and diseases, identify-
ing causal genes and molecular mechanisms implicated by genetic 
associations is challenging and has only been successful for a few 
kidney-function-associated loci21,22. Advanced statistical fine-map-
ping approaches and newly emerging multi-tissue gene expression 
data provide new opportunities for prioritizing putative causal vari-
ants, effector genes and target tissues from the results of large-scale 
GWAS meta-analyses.

We therefore conducted a trans-ancestry GWAS meta-anal-
ysis in the CKD Genetics (CKDGen) Consortium (n = 765,348) 
and replicated findings in the Million Veteran Program (MVP; 
n = 280,722)23, for a combined sample size of greater than 1 million 
participants. The first aim of this study was to identify new glob-
ally important loci for kidney function through maximizing sta-
tistical power (Supplementary Fig. 1). Results from GWAS of the 
complementary kidney function marker blood urea nitrogen (BUN; 
n = 416,178) were used to prioritize the eGFR-associated loci on 
the basis of those most likely to be relevant for kidney function. A 
genetic risk score (GRS) for low eGFR was used to test relevance for 
clinically diagnosed CKD among 452,264 independent individu-
als. The second aim was to characterize replicated eGFR-associated 

loci through complementary computational approaches, includ-
ing various enrichment and network analyses, fine-mapping, and 
colocalization with gene expression in 46 tissues and protein levels 
(Supplementary Fig. 1). We focused this aim on European-ancestry 
individuals, as fine-mapping based on summary statistics requires 
linkage disequilibrium (LD) reference panels whose sample size 
scales with that of the GWAS24. The resulting list of prioritized vari-
ants and genes provides a rich resource of potential therapeutic tar-
gets to improve CKD treatment and prevention.

Results
Discovery trans-ancestry meta-analysis. We performed 121 GWAS 
encompassing 765,348 individuals of European (n = 567,460), 
East Asian (n = 165,726), African-American (n = 13,842), South 
Asian (n = 13,359) and Hispanic (n = 4,961) ancestry (median age, 
54 years; 50% female; Supplementary Table 1). The median of the  
study-specific mean eGFR values was 89 ml min–1 per 1.73 m² 
(interquartile range, IQR: 81, 94). GWAS were based on genotypes 
imputed from Haplotype Reference Consortium25 or 1000 Genomes 
Project26 reference panels (Methods and Supplementary Table 2). 
Following study-specific variant filtering and quality-control pro-
cedures, we performed a fixed-effects inverse-variance-weighted 
meta-analysis, finding no evidence of unmodeled population struc-
ture (LD score regression intercept = 1.04; genomic control factor 
λGC = 1.05). After variant filtering, 8,221,591 SNPs were used for 
downstream analysis (Methods).

We discovered 308 loci containing at least one eGFR-associated 
SNP at genome-wide significance (Methods), of which 200 were 
new and 108 contained an index SNP reported by previous GWAS 
of eGFR (Fig. 1 and Supplementary Table 3). Regional association 
plots are shown in Supplementary Fig. 2. The minor alleles across 
index SNPs showed both decreasing and increasing effects on 
eGFR, with larger effects observed for lower-frequency SNPs (Fig. 1,  
inset). The 308 index SNPs explained 7.1% of the eGFR variance, 
nearly doubling recent GWAS-based estimates9, and 19.6% of 
eGFR genetic heritability (h2 = 39%, 95% credible interval = 32%, 
47%), estimated in a participating general-population-based pedi-
gree study (Methods and Supplementary Fig. 3). The effects of 
index SNPs were largely homogeneous across studies (Fig. 2a and 
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Supplementary Table 3) and ancestry groups (Supplementary  
Table 4 and Supplementary Note 1).

Replication and meta-analysis of more than 1 million individ-
uals. We assessed replication in an independent trans-ancestry 
GWAS meta-analysis of eGFR performed among 280,722 MVP 
participants23. Effect estimates, available for 305 of the 308 SNPs, 
showed almost perfect directional consistency (302/305 SNPs, 99%) 
and very strong correlation with the discovery results (Fig. 2b). For 
these 305 SNPs, we performed a meta-analysis of the 1,046,070 dis-
covery and replication samples. Replication was met by 262 SNPs 
(Fig. 1, Methods and Supplementary Table 3). Of the three SNPs not 
available in MVP, the index SNPs at SHROOM3 (P = 3.5 × 10−120) 
and SH3YL1 (P = 1.2 × 10−11) were also considered to be replicated 
on the basis of previous evidence15,27, resulting in a total of 264 repli-
cated SNPs (166 new). Of these, 74 SNPs were genome-wide signifi-
cant in MVP alone (Supplementary Table 3).

Association of eGFR loci with BUN and CKD. To evaluate 
whether associations with creatinine-based eGFR were probably 
related to kidney function or potentially to creatinine metabolism, 
we assessed the association of the 264 eGFR-associated index SNPs 
with BUN, an alternative marker of kidney function that is inversely 
correlated with eGFR. Trans-ancestry meta-analysis of 65 GWAS 
for BUN (n = 416,178; Supplementary Table 1) showed no evidence 
of unmodeled population structure (λGC = 1.03; LD score regression 
intercept = 0.98) and yielded 111 genome-wide-significant loci (15 
known, 96 new; Supplementary Fig. 4 and Supplementary Table 5).

Of the 264 replicated eGFR index SNPs, 34 and 146 showed 
genome-wide-significant and nominally significant (P < 0.05) asso-
ciation with BUN, respectively (Supplementary Table 6). SNP effects 
were inversely correlated (r = −0.65; Fig. 2c). Relevance to kidney 
function was classified as ‘likely’ for 147 eGFR index SNPs with 
inverse, significant associations with BUN (one-sided P < 0.05); 
‘inconclusive’ for 102 eGFR index SNPs not associated with BUN 
(P ≥ 0.05); and ‘unlikely’ for 15 eGFR index SNPs showing con-
cordant, significant association with BUN (one-sided P < 0.05; 
Supplementary Table 6). This comparative analysis of complemen-
tary biomarkers supports the idea that signals at the majority of 
eGFR-associated loci probably reflect kidney function.

Next, we investigated the effects of the eGFR index SNPs on 
CKD in CKDGen studies (n = 625,219, including 64,164 CKD cases; 
Methods). GWAS meta-analysis of CKD identified 23 genome-
wide-significant loci, including 17 likely relevant for kidney func-
tion (SDCCAG8, LARP4B, DCDC1, WDR72, UMOD–PDILT, 
MYO19, AQP4, NFATC1, PSD4, HOXD8, NRIP1, SHROOM3, 
FGF5, SLC34A1, DAB2, UNCX and PRKAG2; Supplementary  
Table 6). The majority of replicated eGFR index SNPs (224 of 264) 
were associated with CKD (one-sided P < 0.05; Fig. 1, inset), includ-
ing 130 likely relevant for kidney function (Supplementary Table 6).

Finally, we tested whether a GRS based on the combined effect 
of the 147 eGFR index SNPs likely relevant for kidney function was 
associated with clinically diagnosed CKD and CKD-related out-
comes in the UK Biobank (n = 452,264; Methods). A lower GRS, 
reflecting genetically lower eGFR, was associated with higher odds 
ratios (ORs) of chronic renal failure, glomerular diseases, acute renal  
failure and hypertensive diseases (Fig. 2d and Supplementary  
Fig. 5). The OR of chronic renal failure per 10% lower GRS-predicted 
eGFR was 2.13 (95% CI = 1.90, 2.39; P = 8.1 × 10−38). A significant 
protective association with urolithiasis may reflect a reduced ability 
to concentrate urine at lower eGFR.

Genetic correlations of eGFR and BUN with other phenotypes. 
We assessed genome-wide genetic correlations (rg) of eGFR asso-
ciations with each of 748 complex traits and diseases (Methods)28. 
We observed 37 significant correlations (P < 6.7 × 10−5 = 0.05/748; 

Supplementary Fig. 6 and Supplementary Table 7). After serum 
creatinine, the largest negative correlations were observed between 
eGFR and serum citrate (rg = −0.27) and urate (rg = −0.23), followed  
by anthropometric traits including lean mass and physical  
fitness (for example, rg = −0.20 for left hand grip strength). While 
the inverse correlation with muscle-mass-related traits probably 
reflects higher creatinine generation leading to lower creatinine-
based eGFR, the correlations with citrate and urate levels probably 
reflect reduced filtration function, as does the positive correlation 
with GFR estimated from cystatin C (rg = 0.53).

A very similar pattern of genetic correlations was observed for 
BUN (Supplementary Table 7), but the genetic correlations with 
muscle-mass-related traits were generally lower than for eGFR. 
The largest genetic correlation for BUN was observed with CKD 
(rg = 0.47), as compared to creatinine-based (rg = −0.29) and cys-
tatin C-based (rg = −0.26) eGFR.

In summary, significant genetic correlations with eGFR reflect 
the two biological components that govern serum creatinine con-
centrations: its excretion via the kidney and its generation in 
muscle. The fact that genetic correlations between BUN and mus-
cle-mass-related traits are generally lower than was observed for 
eGFR underscores the value of using genetic associations with BUN 
to help prioritize eGFR-associated loci most likely to be relevant for 
kidney function.

Functional enrichment and pathway analyses. To identify molecu-
lar mechanisms and tissues of importance for kidney function, we 
assessed the enrichment of the eGFR and BUN genetic associations 
by using tissue-specific gene expression, regulatory annotations, 
and gene sets and pathways (Methods). First, we used eGFR-asso-
ciated SNPs (P < 5 × 10−8) to explore enriched pathways, tissues 
and cell types on the basis of gene expression data with DEPICT29. 
We identified 16 significantly enriched physiological systems, cell 
types and tissues highlighting several aspects of kidney function, 
physiology and disease. The strongest enrichment was observed 
for urogenital and renal physiological systems and tissues (kidney, 
kidney cortex and urinary tract; false-discovery rate (FDR) < 0.05; 
Supplementary Fig. 7a,b). Pathway and gene set enrichment analysis 
identified three highly correlated and strongly associated meta gene 
sets (P < 1 × 10−6, FDR < 0.05), including some relevant to the kid-
ney such as polyuria, dilated renal tubules and expanded mesangial 
matrix, as well as signaling and transcription, and energy metabo-
lism (Supplementary Fig. 7c). Tissue and cell-type enrichment anal-
ysis of BUN-associated SNPs associated at P < 5 × 10−8 highlighted a 
very similar pattern (Supplementary Fig. 8) but without enrichment 
for muscle tissues, further supporting the use of BUN to prioritize 
the loci most likely to be related to kidney function.

Second, we used stratified LD score regression30 on the genome-
wide eGFR and BUN summary statistics to identify cell-type  
groups with enriched heritability on the basis of data from diverse 
cell-type-specific functional genomic elements. The strongest 
enrichment for eGFR was observed for the kidney (13.2-fold), 
followed by the liver (7.3-fold) and adrenal/pancreas (5.7-fold 
enrichment; Supplementary Table 8). The kidney was also the 
most enriched cell-type group for BUN (11.5-fold enrichment; 
Supplementary Table 8).

Finally, by using a complementary approach, we assessed enrich-
ment of eGFR-associated variants in genes in which disruption 
results in kidney phenotypes in genetically manipulated mice31. 
From the Mouse Genome Informatics (MGI) database, we selected 
all genes for which disruption causes abnormal GFR (n = 24), 
abnormal kidney physiology (n = 453) or abnormal kidney mor-
phology (n = 764) and interrogated their human orthologs in the 
eGFR summary statistics (Methods). We identified significant 
associations in ten genes linked to abnormal GFR in mice (enrich-
ment P = 8.9 × 10−4), 55 linked to abnormal kidney physiology  
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(enrichment P = 1.1 × 10−4) and 96 linked to abnormal kidney 
morphology (enrichment P = 1.8 × 10−5; Fig. 3 and Methods). Of 
these, 25 genes represent new eGFR candidate genes in humans; 
that is, they have not previously been reported to contain genome-
wide-significant eGFR-associated SNPs or map near known loci 

(Supplementary Table 9). The existing mouse models may pave the 
way for experimental confirmation of these findings.

Fine-mapping and secondary signal analysis in European-
ancestry individuals. Conditional and fine-mapping analyses were 
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Fig. 1 | Trans-ancestry GWAS meta-analysis identifies 308 loci associated with eGFR. Circos plot. The red band corresponds to –log10 (P) for association 
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restricted to European-ancestry participants, for whom data to 
construct a large enough LD reference panel were publicly avail-
able (Methods). Meta-analysis of 85 European-ancestry CKDGen 
GWAS identified 256 genome-wide-significant loci (Supplementary 
Table 10). Replication among 216,518 European-ancestry MVP 

participants confirmed 228 SNPs, including 227 index SNPs that 
met replication criteria and the SHROOM3 index SNP (Methods 
and Supplementary Table 10). Of these 228 SNPs, 221 mapped 
to one of the 264 replicated loci from the trans-ancestry analysis 
(≤500 kb up- or downstream of the trans-ancestry index SNP), and 
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Fig. 2 | Generalizability with respect to other populations and other kidney function markers. a, Measures of heterogeneity for the 308 eGFR-associated 
index SNPs. Each variant’s heterogeneity quantified as I² from the trans-ancestry meta-analysis (y axis) is compared to the ancestry-related heterogeneity 
from meta-regression (–log10(Panc-het); x axis). Histograms summarize the distribution of the heterogeneity measures on both axes. SNPs with ancestry-
related heterogeneity (Panc-het < 1.6 × 10−4 = 0.05/308) are marked in blue and labeled; SNPs with I² > 50% are labeled. b, Comparison of genetic effect 
estimates between CKDGen Consortium discovery (x axis) and MVP replication (y axis). Blue font indicates one-sided P < 0.05 in the MVP. Error bars 
correspond to 95% CIs. The dashed line corresponds to the line of best fit. Pearson’s correlation coefficient r = 0.92 (95% CI = 0.90, 0.94). c, The 
magnitude of genetic effects on eGFR (x axis) as compared to BUN (y axis) for the 264 replicated eGFR-associated index SNPs. Color coding reflects 
evidence of kidney function relevance (Methods), which is coded as ‘likely’ (blue), ‘inconclusive’ (gray) or ‘unlikely’ (green). Error bars correspond to 
95% CIs. The dashed line corresponds to the line of best fit. Pearson’s correlation coefficient r = −0.65 (95% CI = −0.72, −0.58). d, Association of lower 
genetically predicted eGFR based on a GRS of 147 SNPs likely to be most relevant for kidney function with ICD-10-based clinical diagnoses for 452,264 
individuals from the UK Biobank. Asthma was included as a negative control. Results are displayed as the OR and 95% CI per 10% lower GRS-predicted 
eGFR (Methods).
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the remaining 7 showed P ≤ 3.3 × 10−6 in the trans-ancestry discov-
ery analysis. BUN GWAS meta-analysis of CKDGen European-
ancestry studies (n = 243,029) allowed us to classify 122 SNPs as 
likely relevant for kidney function, 90 as inconclusive and 16 as 
unlikely (Supplementary Table 10).

To conduct statistical fine-mapping of the 228 eGFR loci, we first 
performed summary-statistics-based conditional analysis and identi-
fied 253 independent genome-wide-significant SNPs (Supplementary 
Table 11) mapping to 189 regions (Methods). For each independent  

variant, we computed a 99% credible set32, with a median set size 
of 26 SNPs (IQR: 6, 60). We observed 58 small credible sets (≤5 
SNPs), including 20 single-SNP sets: EDEM3, CACNA1S, HOXD11, 
CPS1, DAB2, SLC34A1, LINC01512, LARP4B, DCDC1, SLC25A45, 
SLC6A13, GATM, CGNL1, CYP1A1, NRG4, RPL3L, UMOD–
PDILT, SLC47A1 and two independent sets at BCL2L14 (Fig. 4 and 
Supplementary Table 11). Of the 58 small credible sets, 33 were likely 
relevant for kidney function and contain genes and SNPs that can 
now be prioritized for further study (Supplementary Table 11).
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Fig. 3 | Human orthologs of genes with renal phenotypes in genetically manipulated mice are enriched for association signals with eGFR. a–c, Signals in 
candidate genes identified on the basis of the mouse phenotypes of abnormal GFR (a), abnormal kidney physiology (b) and abnormal kidney morphology 
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significantly associated SNPs. Genes are labeled if they reached experiment- but not genome-wide significance; black font indicates genes not mapping to 
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Table 1 | Genes implicated as causal via identification of missense SNPs with high probability of driving the eGFR association signal

Gene SNPa Credible 
set size

SNP 
PP

Functional  
consequence

CADD 
score

DHSs, tissue Brief summary of the gene’s function and relevant 
literature 

CACNA1S rs3850625 1 1.00 p.(Arg1539Cys)  
(NP_000060.2)

34.0 – Encodes a subunit of the slowly inactivating L-type 
voltage-dependent calcium channel in skeletal 
muscle. Reports of altered expression in kidney 
cancer48 and after indoxyl sulfate treatment49. 
Rare variants can cause autosomal dominant 
hypokalemic periodic paralysis, type 1 (MIM 
170400) or malignant hyperthermia susceptibility 
(MIM 601887). Common variation at this locus 
has been reported as associated with eGFR in 
previous GWAS10,50.

CPS1 rs1047891 1 1.00 p.(Thr1406Asn) 
(NP_001866.2)

22.1 – Encodes a key mitochondrial enzyme of the urea 
cycle that catalyzes the synthesis of carbamoyl 
phosphate from ammonia and bicarbonate 
to remove excess urea. Rare mutations cause 
autosomal recessive carbamoyl phosphate 
synthetase I deficiency (MIM 237300). GWAS 
locus for eGFR13, serum metabolites51 and urinary 
glycine52, as well as for many other quantitative 
biomarkers. This variant has been reported  
to associate with hyperammonemia after 
valproate therapy53.

EDEM3 rs78444298 1 1.00 p.(Pro746Ser) 
(NP_079467.3)

24.6 – The gene product accelerates proteasome-
mediated ER-associated degradation of 
glycoproteins by catalyzing mannose trimming 
from Man8GlcNAc2 to yield Man7GlcNAc2 on 
N-glycans. This variant has been identified  
by a previous exome chip association study  
with eGFR27.

KLHDC7A rs11261022 7 0.71 p.(Arg160Ser) 
(NP_689588.2)

1.1 Roadmap +  
ENCODE, kidney

This gene encodes the Kelch-domain-containing 
7A protein and is a paralog of KBTBD11. No specific 
entry in relation to kidney disease in PubMed.

RPL3L rs113956264 1 1.00 p.(Val262Met) 
(NP_005052.1)

27.2 – The gene product has sequence similarity with 
ribosomal protein L3. It has a tissue-specific 
expression pattern, with the highest levels in 
skeletal muscle and heart.

SLC25A45 rs34400381 1 1.00 p.(Arg285Cys) 
(NP_001070709.2)

26.0 ENCODE, kidney The encoded protein belongs to the SLC25 family 
of mitochondrial carrier proteins and is an orphan 
transporter. This variant has already been identified 
in a GWAS of symmetric dimethylarginine levels54 
and in a whole-genome-sequencing analysis of 
serum creatinine55. SLC25A45 may have a role in 
biosynthesis of arginine, which is involved in the 
synthesis of creatine.

SLC47A1 rs111653425 1 1.00 p.(Ala465Val) 
(NP_060712.2)

24.6 – Encodes a multidrug and toxin extrusion protein 
(MATE1), a transport protein responsible for 
the secretion of cationic drugs and creatinine 
across brush border membranes. This variant 
has already been identified in a whole-genome-
sequencing analysis of serum creatinine from 
Iceland55. Rare and common variants in the locus 
have been identified in exome chip studies27 and 
GWAS13 of eGFR, respectively. Slc47a1-knockout 
mice show higher levels of serum creatinine and 
BUN34, arguing against a sole effect on creatinine 
transport and supporting an effect on  
kidney function.

PPM1J rs34611728 5 0.02 p.(Leu213Phe) 
(NP_005158.5)

13.1 ENCODE, kidney This gene encodes a serine/threonine protein 
phosphatase. The variant has been reported 
in association with eGFR in an exome chip 
association study27.

Continued
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Credible set SNPs were annotated with respect to their func-
tional consequence and regulatory potential. Missense SNPs with 
>50% posterior probability (PP) of driving the association and/or 
mapping to a small credible set are of particular interest because 
they directly implicate the affected gene. Such missense SNPs were 
identified in 11 genes (SLC47A1, RPL3L, SLC25A45, CACNA1S, 
EDEM3, CPS1, KLHDC7A, PPM1J, CERS2, C9 and SLC22A2; 
Supplementary Table 12), of which CACNA1S, RPL3L, CERS2 and 
C9 were likely relevant for kidney function (Fig. 4a). The majority 
of the 11 variants had a combined annotation-dependent depletion 
(CADD) score greater than 15, indicating potential deleterious-
ness33. Several identified genes are plausible biological candidates for 
driving the association signal (Table 1). For example, the missense 
p.(Ala465Val) SNP in SLC47A1 (PP > 99%) alters the encoded mul-
tidrug and toxin extrusion protein (MATE1), a transport protein 
responsible for the secretion of cationic drugs, toxins and internal 
metabolites including creatinine across brush border membranes, 
including kidney-proximal tubules. The fact that Slc47a1-knockout 
mice have higher blood levels of both creatinine and BUN34 argues 
against a sole effect on creatinine transport.

To evaluate the regulatory potential of SNPs from small cred-
ible sets in the kidney, we annotated them to open chromatin 
regions identified from primary human tubular and glomerular cell  
cultures35, as well as from publicly available kidney cell types 
(Methods). We identified 72 SNPs mapping to one of these annota
tions, which may thus represent causal regulatory variants (Supple
mentary Table 12). A particularly interesting finding was the 

intronic rs77924615 SNP in PDILT, which showed PP > 99% of 
driving the association at the UMOD locus and mapped to open 
chromatin in all evaluated resources (native kidney cells, ENCODE 
and Roadmap kidney cell types; Fig. 4b).

Gene prioritization: colocalization with gene expression. We 
performed colocalization analyses for each eGFR-associated locus 
with gene expression in cis across 46 tissues, including kidney glo-
merular and tubulo-interstitial compartments (Methods). PP > 80% 
of colocalization in at least one kidney tissue was observed for 17 
transcripts mapping to 16 of the 228 replicated loci (Fig. 5), point-
ing toward a shared underlying SNP associated with both eGFR and 
gene expression and implicating the gene encoding the colocalized 
transcript as the effector gene for the locus.

New insights emerged on several levels: first, UMOD is a well-
established causal gene for CKD and can therefore be used to 
evaluate our workflow. In the tubulo-interstitial compartment, we 
observed a shared underlying variant associated with higher UMOD 
gene expression and lower eGFR (Fig. 5), in agreement with previ-
ous GWAS of urinary uromodulin concentration, in which alleles 
associated with lower eGFR at UMOD15 were associated with higher 
urinary uromodulin concentrations36. The lead SNP at this locus 
was rs77924615, highlighted above as the candidate causal regula-
tory variant mapping to an intron of PDILT (upstream of UMOD). 
The association with differential UMOD but not PDILT gene 
expression supports UMOD as the causal gene and rs77924615 as 
a regulatory SNP.

Gene SNPa Credible 
set size

SNP 
PP

Functional  
consequence

CADD 
score

DHSs, tissue Brief summary of the gene’s function and relevant 
literature 

CERS2 rs267738 5 0.46 p.(Glu115Ala) 
(NP_071358.1)

32.0/28.2 – Encodes ceramide synthase 2, which may be 
involved in sphingolipid synthesis. Changes in 
ceramide levels were reported as essential in 
renal Madin–Darby canine kidney (MDCK) cell 
differentiation56. Cers2-knockout mice show 
strongly reduced ceramide levels in the kidney and 
develop renal parenchyma abnormalities57. This 
variant has been reported as associated with the 
rate of albuminuria increase in individuals with 
diabetes58.

C9 rs700233 5 0.32 p.(Arg5Trp) 
(NP_001728.1)

6.6 – Encodes a constituent of the membrane attack 
complex that has a key role in the innate and 
adaptive immune responses. Rare mutations 
can cause C9 deficiency (MIM 613825). C9 is 
mentioned in several kidney disease case reports, 
including for patients with congenital factor 9 
deficiency showing IgA nephropathy59.

SLC22A2 rs316019 4 0.04 p.(Ser270Ala) 
(NP_003049.2)

12.7 – Encodes the polyspecific organic cation 
transporter (OCT2) that is primarily expressed 
in the kidney, where it mediates tubular uptake 
of organic compounds including creatinine 
from the circulation. Many publications relate 
SLC22A2 to kidney function. rs316019 is a known 
pharmacogenomics variant associated with 
response to metformin and other drugs such 
as cisplatin. Carriers of the risk allele have a 
higher risk of cisplatin-induced nephrotoxicity43, 
indicating that this transporter is essential in 
excreting toxins. The locus has been reported in 
previous GWAS of eGFR13.

Genes are included if they contain a missense SNP with a PP of association of >50% or map to a small credible set (≤5 SNPs). PP, posterior probability; CADD score, combined annotation-dependent depletion 
(CADD) Phred-like score (Methods); DHSs, DNase I-hypersensitive sites. aBoldface indicates the SNPs most likely to be relevant for kidney function on the basis of combined effects on eGFR and BUN.

Table 1 | Genes implicated as causal via identification of missense SNPs with high probability of driving the eGFR association  
signal (Continued)
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Second, new biologically plausible candidates emerged. For 
example, our results suggest KNG1 and FGF5 as effector genes in 
the respective eGFR-associated loci (Fig. 5 and Supplementary 
Table 13). KNG1 encodes the high-molecular-weight kininogen, 
which is cleaved to bradykinin. Bradykinin influences blood pres-
sure, natriuresis and diuresis and can be linked to kidney function 
via the renin–angiotensin–aldosterone system37. FGF5 encodes 
fibroblast growth factor 5, and the index SNPs for eGFR or highly 
correlated SNPs (r2 > 0.9) have been identified in multiple GWAS 
of blood pressure, atrial fibrillation, coronary artery disease, hema-
tocrit and multiple kidney-function-related traits (Supplementary 
Table 13). The eGFR index SNP rs1458038 (PP > 50%, CADD 
score = 14.8; Supplementary Table 13) colocalized with the eGFR 
signal only in the tubulo-interstitial kidney portion (Fig. 5), sup-
porting its regulatory potential in controlling the expression levels 
of FGF5 in this compartment. Both KNG1 and FGF5 index SNPs 
were associated with BUN and CKD and are thus probably related 
to kidney function.

Third, for loci that showed colocalization of eGFR signals with 
gene expression in kidney and multiple other tissues, in some cases 
the allelic effect direction on gene expression was concordant across 
all tissues (for example, METTL10), whereas in other cases it dif-
fered by tissue (for example, SH3YL1; Fig. 5). These observations 
were also reflected broadly across all transcripts with evidence of 
colocalization in any tissue (Supplementary Fig. 9) and highlight 
tissue-shared and tissue-specific signals38,39.

Finally, trans expression quantitative trait locus (trans-eQTL) 
annotation of the index SNPs in whole and peripheral blood 
identified a reproducible link of rs10774625 (12q24.11) with sev-
eral transcripts (Methods, Supplementary Tables 14 and 15, and 
Supplementary Note 2).

Colocalization with uromodulin protein levels in urine. The 
UMOD locus is of particular clinical interest for CKD research21: 
rare UMOD mutations cause autosomal dominant tubulo-intersti-
tial kidney disease40, and common variants at UMOD give rise to the 
strongest eGFR and CKD GWAS signals15. We therefore performed 
conditional analyses based on European-ancestry-specific sum-
mary statistics and found two independent variants: rs77924615, 
mapping upstream of PDILT, and rs34882080, mapping to an intron 
of UMOD (Fig. 6a). SNP association with the urinary uromodulin-
to-creatinine ratio (UUCR) in one participating cohort (Fig. 6b) 
matched the eGFR association pattern. Colocalization of the con-
ditional eGFR and UUCR associations was evaluated separately for 
rs34882080 (Fig. 6c) and rs77924615 (Fig. 6d). Both regions showed 
high probability of a shared underlying variant driving the respec-
tive associations with eGFR and UUCR levels (PP = 97% and 96%, 
respectively), further supporting rs77924615 as a causal regulatory 
variant and UMOD as its effector gene.

A summary of the various gene characterization results for 
replicated loci from the European-ancestry analysis is shown in 
Supplementary Table 16, to facilitate selection of the most promis-
ing candidates for further experimental studies.

Discussion
This trans-ancestry study is fivefold larger than previous GWAS 
meta-analyses for eGFR and identified 264 replicated loci, 166 of 
which are reported here for the first time. By also analyzing BUN, 
an established complementary marker of kidney function, we 
highlight eGFR-associated loci that are likely to be important for  
kidney function as opposed to creatinine metabolism and provide  
a comprehensive annotation resource. Clinical relevance is sup-
ported by associations of a GRS for low eGFR with higher odds of 
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clinically diagnosed CKD, CKD-related phenotypes and hyperten-
sion. Enrichment analyses confirm the kidney as the main target 
organ. Colocalization of associations with eGFR and gene expres-
sion in the kidney implicates specific target genes for follow-up. 
Conditional analyses, fine-mapping and functional annotation at 
228 replicated eGFR-associated loci among European-ancestry par-
ticipants implicate single potentially causal variants at 20 loci.

Most previous GWAS meta-analyses for eGFR have been lim-
ited to a single ancestry group8 and did not prioritize causal vari-
ants or effector genes in associated loci. Although underpowered 
to uncover new loci, one previous trans-ancestry study used fine-
mapping, resolving one signal to a single variant20, rs77924615 at 
UMOD–PDILT, which is also identified in our study. At this locus, 
we further characterized the relationship between the causal vari-
ant, UMOD expression in the target tissue and uromodulin protein 
levels. This increase in resolution—from a locus to a single poten-
tially causal variant with its effector gene, protein and target tissue—
represents a critical advance over 10 years of eGFR GWAS15 and is a 
prerequisite for translational research.

The complementary multi-tissue approaches, including enrich-
ment analyses based on gene expression, regulatory annotations, and 
gene sets and pathways, highlight the kidney as the most important 
target organ. However, relatively few kidney-specific experimental 
datasets are publicly available. For example, the kidney is not well 
represented in the Genotype-Tissue Expression (GTEx) Project and 
is not included in its tissue-specific eQTL datasets38, emphasizing 
the value of open-access resources and in-depth characterization 
of uncommon tissues and cell types. We were able to specifically 
investigate the kidney by using a recently published eQTL dataset 
from glomerular and tubulo-interstitial portions of microdissected 
human kidney biopsies41, kidney-specific regulatory information 
from the ENCODE and Roadmap Epigenomics resources, and by 
obtaining regulatory information from primary cultures of human 
glomerular and tubulo-interstitial cells35.

Functional follow-up studies of potentially causal variants should 
benefit from prioritized loci that show clear evidence supporting 
one or a few SNPs driving the association signal. The fine-map-
ping workflow allowed us to prioritize several SNPs at single-SNP 
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Fig. 6 | Colocalization of independent eGFR association signals at the UMOD–PDILT locus with urinary uromodulin concentrations (UUCR) supports 
UMOD as the effector gene. Association plots show association –log10(P value) (y axis) plotted against chromosomal position (x axis). a, Approximate 
conditional analyses among European-ancestry individuals support the presence of two independent eGFR-associated signals. b, The association signal for 
uromodulin (UUCR) levels is similar; r2 = 0.93 between rs34882080 and rs34262842. c,d, Colocalization of association with eGFR (top) and uromodulin 
(UUCR) levels (bottom) for the independent regions centered on UMOD (c) and PDILT (d) supports a shared underlying variant in both regions with high PP.
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resolution or at a resolution of ≤5 SNPs, some of which may have 
broader clinical relevance. For example, the OCT2 protein encoded 
by SLC22A2 transports several cationic drugs such as metoprolol, 
cisplatin, metformin and cimetidine across the basolateral mem-
brane of renal tubular cells42. The prioritized missense SNP encodes 
p.(Ser270Ala), a known pharmacogenomic variant that alters the 
transport of these drugs and their side effects, such as cisplatin-
induced nephrotoxicity43. Along the same lines, the prioritized SNP 
encoding the p.(Ala465Val) substitution in the transporter MATE1 
encoded by SLC47A1 may affect the ability to secrete drugs and 
other toxins from proximal tubular cells into the urine44 and hence 
alter CKD risk.

Strengths of this project include the large sample size with dense 
genotype imputation, standardized and automated phenotype gen-
eration and quality control, and independent replication, as well 
as the advanced and comprehensive downstream bioinformatics 
analyses. Further strengths are the use of BUN to prioritize eGFR-
associated loci likely relevant for kidney function and to provide 
genome-wide BUN summary statistics as an annotation resource for 
other studies of eGFR. Moreover, we evaluated a GRS for eGFR for 
association with clinically diagnosed CKD in a large independent 
study. Among the limitations, non-European populations are still 
under-represented in our study, as in many other genomic efforts45. 
Statistical fine-mapping using trans-ancestry data with different 
LD structures can potentially narrow association signals. However, 
a sufficiently large reference dataset to compute ancestry-matched 
LD structure for summary-statistics-based fine-mapping was only 
available for European ancestry, highlighting the potential of future 
large-scale efforts with trans-ancestry fine-mapping and the need 
to generate data from non-European-ancestry populations, thereby 
enabling such endeavors. Finally, several SNPs had small effective 
sample sizes in some subpopulations, which might have affected 
the ability to assess between-ancestry heterogeneity and potentially 
underestimated true heterogeneity.

We estimated GFR from serum creatinine, as done in clinical 
practice and observational studies, because direct measurement 
of kidney function is invasive, time-consuming and burdensome. 
Under the assumption that genetic associations supported by mul-
tiple markers are less likely to reflect marker metabolism, we used 
BUN to prioritize eGFR-associated loci likely to be relevant to 
kidney function. Blood creatinine, urea and cystatin C concentra-
tions are influenced not only by glomerular filtration but also by 
the synthesis, active secretion and reabsorption of these molecules, 
as illustrated by loci detected in our study: for example, the GATM 
locus was associated with eGFR but not with BUN, in agreement 
with the function of the encoded protein as a rate-limiting enzyme 
in creatine synthesis46. Conversely, the SLC14A2 locus was associ-
ated with BUN but not with eGFR, in line with the function of the 
encoded protein as a urea transporter47. Even so, lack of association 
for a SNP with one kidney function marker based on a combination 
of P value and effect direction may not necessarily mean that the 
locus is not relevant to kidney function. Our categorization of the 
eGFR loci into three classes on the basis of direction of effect and 
significance of BUN association should be interpreted with caution, 
with ‘likely’ and ‘unlikely’ reflecting uncertainty of the assignment. 
Factors complicating the comparison of eGFR and BUN associa-
tions at the locus level are differential statistical power, differential 
ancestry distribution and potential allelic heterogeneity. Further 
large-scale studies with multiple kidney function markers measured 
in the same individuals are therefore warranted.

To identify broadly representative and generalizable asso-
ciation signals, we focused on SNPs that were present in the  
majority of the participating studies. This choice might have  
limited our ability to uncover new variants or to fine-map low-fre-
quency or population-specific variants, which represents a comple-
mentary avenue of research. Moreover, even with well-powered 

fine-mapping approaches, potentially causal SNPs need to be con-
firmed as functional variants in experimental studies. Although 
colocalization with gene expression can help prioritize effector 
genes, these associations are based on measures from a single time 
point and hence cannot answer whether changes in gene expression 
precede or follow changes in kidney function.

In summary, we have identified and characterized a large num-
ber of loci associated with eGFR and prioritized potential effector 
genes, driver variants and target tissues. These findings will help 
direct functional studies and advance the understanding of kidney 
function biology, a prerequisite to develop novel therapies to reduce 
the burden of CKD.
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Methods
Overview. We set up a collaborative meta-analysis based on a distributive data 
model and quality-control procedures. To maximize phenotype standardization 
across studies, an analysis plan and a command line script (https://github.
com/genepi-freiburg/ckdgen-pheno) were created centrally and provided to all 
participating studies (mostly population-based studies; Supplementary Table 1).  
Data processing, analysis and troubleshooting instructions were distributed to 
all studies via a wiki system (https://ckdgen.eurac.edu/mediawiki/index.php/
CKDGen_Round_4_EPACTS_analysis_plan). Automatically generated summary 
files were checked centrally. Upon phenotype approval, studies ran their GWAS 
and uploaded results and imputation quality (IQ) information to a common 
calculation server. GWAS quality control was performed with GWAtoolbox60 and 
custom scripts to assess ancestry-matched allele frequencies and variant positions. 
All studies had their own research protocols approved by the respective local ethics 
committees. All participants in all studies provided written informed consent.

Phenotype definition. Each study measured serum creatinine and BUN 
concentrations as described in Supplementary Table 1. Creatinine values obtained 
with a Jaffé assay before 2009 were calibrated by multiplying by 0.95 (ref. 61). Studies 
on adults (>18 years of age) estimated GFR with the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation62, by using the R package nephro63. 
Studies on individuals who were 18 years old or younger used the Schwartz formula64. 
eGFR was winsorized at 15 and 200 ml min–1 per 1.73 m2. CKD was defined as an 
eGFR below 60 ml min–1 per 1.73 m2. In studies reporting blood urea measurements, 
BUN was derived as blood urea × 2.8, with units expressed as mg dl–1.

Genotyping and genotype imputation. Genotypes were imputed on the basis of 
the Haplotype Reference Consortium v1.1 or 1000 Genomes Project phase 3 v5 
(1000Gp3v5) ALL or phase 1 v3 (1000Gp1v3) ALL panel. Imputed variants were 
coded as allelic dosages accompanied by the corresponding IQ scores (IMPUTE2 
info score, MACH/minimac RSQ or as applicable) and annotated on the NCBI b37 
(hg19) reference build (see Supplementary Table 2 for study-specific genotyping 
arrays, haplotype phasing and genotype imputation methods).

Genome-wide association studies. Each study fitted sex- and age-adjusted linear 
regression models to log(eGFR) and BUN. Regression residuals were regressed 
on SNP dosage, assuming an additive genetic model. Study site, genetic principal 
components, relatedness and other study-specific features were accounted for 
in the study-specific models as appropriate (Supplementary Table 2). Logistic 
regression models were fitted for CKD.

Trans-ancestry GWAS meta-analysis. Studies contributed 121 GWAS summary 
statistics files for eGFR (total post-quality-control n = 765,348), 60 GWAS files for 
CKD (total post-quality-control n = 625,219, including 64,164 CKD cases) and 65 
GWAS files for BUN (total post-quality-control n = 416,178). Ancestry-specific 
details for eGFR, CKD and BUN are given in Supplementary Table 1.

Before meta-analysis, study-specific GWAS files were filtered to retain only 
variants with IQ score > 0.6 and minor allele count (MAC) > 10, and genomic 
control (GC) correction was applied in the case where GC factor λGC > 1. Fixed-
effects inverse-variance-weighted meta-analysis was performed with METAL65, 
which was adapted to increase the precision of effect estimates and their standard 
errors (seven decimal places instead of four).

After meta-analysis of 43,994,957 SNPs, only SNPs present in ≥50% of the 
GWAS files and with total MAC ≥ 400 were retained. Across ancestry groups, this 
yielded 8,221,591 variants for eGFR (8,834,748 in European ancestry), 8,176,554 
variants for BUN (8,358,347 in European ancestry) and 9,585,923 variants for 
CKD. Post-meta-analysis GC correction was not applied (LD score regression 
intercept ≈ 1 in all analyses of eGFR, BUN and CKD)66. The genome-wide 
significance level was set at 5 × 10−8. Between-study heterogeneity was assessed 
with the I2 statistic67. For CKD, variants with I2 ≥ 95% were removed to moderate 
the influence of single large studies. Variants were assigned to loci by selecting 
the SNP with the lowest P value across the genome as the index SNP, defining 
the corresponding locus as the 1-Mb segment centered on the index SNP, and 
repeating the procedure until no further genome-wide-significant SNPs remained. 
The extended major histocompatibility complex (MHC) region was considered 
as a single locus. A locus was considered to be new if not containing any variant 
identified by previous GWAS of eGFR.

Meta-regression analysis of trans-ancestry GWAS. For eGFR, we evaluated 
ancestry-related heterogeneity by using the software Meta-Regression of Multi-
Ethnic Genetic Association (MR-MEGA, v0.1.2)68 with study-specific GWAS 
results. Meta-regression models included three axes of genetic variation. Genomic 
control correction was applied to the meta-regression results. The 308 genome-
wide-significant index SNPs from the trans-ancestry GWAS meta-analysis were 
tested for ancestry-related heterogeneity of the allelic effects at a significance level 
of 0.05/308 = 1.6 × 10−4 (referring to the corresponding P value as Panc-het).

Variance explained and genetic heritability. The proportion of phenotypic 
variance explained by the index SNPs was estimated as β −( )p p2 2 (1 )

var
, with β being 

the SNP effect, p the effect allele frequency and var the variance of the sex- and 
age-adjusted log(eGFR) residuals (assumed to be 0.016 on the basis of data from 
11,827 European-ancestry participants of the population-based ARIC study)9. 
Genetic heritability for age- and sex-adjusted log(eGFR) was estimated with the 
R package MCMCglmm69 on the Cooperative Health Research in South Tyrol 
(CHRIS) study70, a participating pedigree-based study with 186 pedigrees of up to 
five generations (n = 4,373)71. We fitted two models with and without inclusion  
of the identified index SNPs (304/308), running 1 million MCMC iterations  
(burn-in = 500,000)71.

Comparison with and replication of results in the MVP. The eGFR-associated 
SNPs identified in the discovery GWAS meta-analyses were tested for replication 
in a GWAS from the MVP23, an independent trans-ancestry study with participants 
recruited across 63 US Veterans Administration (VA) medical facilities. Written 
informed consent was obtained and all documents and protocols were approved 
by the VA Central Institutional Review Board. After genotyping and quality 
control, genotypes were phased and imputed on the 1000Gp3v5 reference panel. 
Serum creatinine was assessed up to 1 year before MVP enrollment by isotope 
dilution mass spectrometry. GFR was estimated by using the CKD-EPI equation62 
after excluding subjects on dialysis, transplant patients, amputees, individuals 
on HIV medications and those with creatinine values of <0.4 mg dl–1. GWAS of 
eGFR on SNP dosage were performed by fitting linear regression models adjusted 
for age at creatinine measurement, age2, sex, body-mass index and the first ten 
genetic principal components, by using SNPTEST v2.5.4-beta72. All GWAS were 
stratified by self-reported ancestry (79.6% white non-Hispanic, 20.4% black non-
Hispanic), diabetes and hypertension status. Results were combined across strata 
by fixed-effects inverse-variance-weighted meta-analysis in METAL65. This analysis 
encompassed a total of 280,722 individuals across all strata, of whom 216,518 were 
non-Hispanic whites (European ancestry). The MVP is described more extensively 
in the Supplementary Note 3.

Of the 308 eGFR index SNPs identified in the CKDGen trans-ancestry analysis, 
305 variants or their good proxies were available in the MVP GWAS (proxies were 
required to have r2 ≥ 0.8 with the index SNP and were selected by maximum r2 
followed by minimum distance in the case of ties). Replication testing of the 256 
European-ancestry-specific index SNPs was restricted to the MVP European-
ancestry GWAS. CKDGen and MVP meta-analysis results were pooled via sample-
size-weighted meta-analysis of z scores with METAL65. In both the trans-ancestry 
and European-ancestry-specific analyses, replication was defined by one-sided 
P < 0.05 in the MVP and genome-wide significance of the CKDGen and MVP 
meta-analysis result.

Assessment of relevance to kidney function with BUN. We used genetic 
associations with BUN to assess replicated eGFR-associated SNPs with respect 
to their potential relevance to kidney function. Support for kidney function 
relevance was categorized as ‘likely’ for all eGFR index SNPs with an inverse, 
significant (one-sided P < 0.05) association with BUN for a given reference allele, 
‘inconclusive’ for eGFR index SNPs whose effect on BUN was not different from 
0 (P ≥ 0.05) and ‘unlikely’ for all eGFR index SNPs with a concordant, significant 
(one-sided P < 0.05) association with BUN for a given reference allele.

Genetic risk score analysis in the UK Biobank dataset. To test the combined 
effect of eGFR-associated SNPs on outcomes related to clinically diagnosed CKD, 
a GRS-based association analysis was conducted on the basis of summary GWAS 
results, as described previously73,74. Genetic association results with diseases were 
obtained for 452,264 UK Biobank participants available in the GeneAtlas75 database 
for glomerular diseases (ICD-10 codes N00–N08; 2,289 cases); acute renal failure 
(N17; 4,913 cases); chronic renal failure (N18; 4,905 cases); urolithiasis (N20–N23; 
7,053 cases); hypertensive diseases (I10–I15; 84,910 cases); and ischemic heart 
diseases (I20–I25; 33,387 cases). Asthma (J45; 28,628 cases) was included as a 
negative control. The log(estimated OR) value provided by the GeneAtlas PheWAS 
interface was used as the effect size, and its standard error was calculated from 
the corresponding effect size and P value. When OR = 1, the standard error was 
imputed by the median value of the remaining associations of the trait. Of the 
147 eGFR index SNPs from the trans-ancestry GWAS meta-analysis that were 
replicated and showed likely relevance to kidney function, 144 were available in 
the UK Biobank dataset, and 259 of all 264 replicated trans-ancestry GWAS meta-
analysis SNPs were available. The effect of the GRS association (β) corresponds 
to the OR for the disease depending on the relative change in eGFR, for example, 
OR = 1.10β for a 10% change in eGFR. Alternatively, exp(β) can be interpreted as 
the OR for the disease per unit change in log(eGFR).

Genetic correlations with other complex traits and diseases. Genome-wide 
genetic correlation analysis was performed to investigate evidence of co-regulation 
or shared genetic basis between eGFR and BUN concentrations and other complex 
traits and diseases, both known and not known to correlate with eGFR and BUN. 
We estimated pairwise genetic correlation coefficients (rg) between the results of 
our trans-ancestry meta-analyses of eGFR and BUN and each of 748 precomputed 
and publicly available GWAS summary statistics for complex traits and diseases 
available through LD Hub v1.9.0 by using LD score regression28. An overview of 
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the sources of these summary statistics and their corresponding sample sizes is 
available at http://ldsc.broadinstitute.org/. Statistical significance was assessed at 
the Bonferroni-corrected level of 0.05/748 = 6.7 × 10−5.

Pathway and tissue enrichment analysis. We used DEPICT v1 release 194 
to perform DEPICT analysis29, including pathway/gene set enrichment and 
tissue/cell-type analyses as described previously9,10. All 14,461 gene sets were 
reconstituted by identifying genes that were transcriptionally co-regulated with 
other genes in a panel of 77,840 gene expression microarrays76, from mouse 
knockout studies, and molecular pathways from protein–protein interaction 
screening. In the tissue and cell-type enrichment analysis, we tested whether genes 
in associated regions were highly expressed in 209 MeSH annotation categories for 
37,427 microarrays (Affymetrix U133 Plus 2.0 array platform). For both eGFR and 
BUN, we included all variants associated with the trait at P < 5 × 10−8 in the trans-
ancestry meta-analysis. Independent variant clumping was performed by using 
PLINK 1.9 (ref. 77) with 500-kb flanking regions and r² > 0.01 in the 1000Gp1v3 
dataset. After excluding the MHC region, DEPICT was run with 500 repetitions 
to estimate the FDR and 5,000 permutations to compute P values adjusted for 
gene length by using 500 null GWAS. All significant gene sets were merged into 
meta gene sets by running an affinity propagation algorithm78 implemented in the 
Python scikit-learn package (http://scikit-learn.org/). The resulting network was 
visualized with Cytoscape (http://cytoscape.org/).

Enrichment of heritability by cell-type group. We used stratified LD score 
regression to investigate important tissues and cell types on the basis of the trans-
ancestry eGFR and BUN meta-analysis results. Heritability enrichment in ten 
cell-type groups was assessed by using the default options of stratified LD score 
regression described previously30. The ten cell-type groups were collapsed from 
220 cell-type-specific regulatory annotations for the four histone marks H3K4me1, 
H3K4me3, H3K9ac and H3K27ac. Enrichment in a cell-type category was defined 
as the proportion of SNP heritability in that group divided by the proportion of 
SNPs in the same cell-type group.

Analysis of genes causing kidney phenotypes in mice. A nested candidate gene 
analysis was performed with GenToS79 to identify additional genetic associations 
that were not genome-wide significant. Candidate genes that when manipulated 
cause kidney phenotypes in mice were selected with the comprehensive MGI 
phenotype ontology in September 2017 (abnormal renal glomerular filtration 
rate (MP:0002847); abnormal kidney morphology (MP:0002135); abnormal 
kidney physiology (MP:0002136)). The human orthologs of these genes were 
obtained, when available, with the Human–Mouse: Disease Connection webtool 
(http://www.informatics.jax.org/humanDisease.html). Statistical significance was 
defined as Bonferroni correction of a type I error level of 0.05 for the number of 
independent common SNPs across all genes in each of the three candidate gene 
lists plus their flanking regions, derived from an ancestry-matched reference 
population. The GWAS meta-analysis summary statistics for eGFR were queried 
for significantly associated SNPs mapping to the selected candidate genes. 
Enrichment of significant genetic associations in genes within each candidate 
list was computed from the complementary cumulative binomial distribution79. 
GenToS was used with default parameters on each of the three candidate gene lists, 
with the 1000 Genomes phase 3 release 2 ALL dataset as reference.

Independent variant identification in the European-ancestry meta-analysis. To 
identify additional independent eGFR-associated variants within the European-
ancestry-specific and replicated loci, approximate conditional analyses were 
performed on the basis of genome-wide discovery summary statistics that 
incorporated LD information from an ancestry-matched reference population. 
These analyses were restricted to participants of European ancestry because an LD 
reference sample scaled to the size of our meta-analysis could only be constructed 
from publicly available data for European-ancestry individuals24, for which we 
randomly selected 15,000 UK Biobank participants (dataset ID 8974). Individuals 
who withdrew consent and those not meeting data cleaning requirements were 
excluded, keeping only those who passed a sex-consistency check, had a ≥95% 
call rate and did not represent outliers with respect to SNP heterozygosity. For 
each pair of individuals, the proportion of variants shared identical by descent 
(IBD) was computed with PLINK80. Only one member of each pair with an 
IBD coefficient ≥0.1875 was retained. Individuals were restricted to those of 
European ancestry by excluding outliers along the first two principal components 
from a principal-component analysis seeded with the HapMap phase 3 release 
2 populations as reference. The final dataset to estimate LD included 13,558 
European-ancestry individuals and 16,969,363 SNPs.

The basis for statistical fine-mapping was the 228 1-Mb genome-wide-
significant loci identified in the European-ancestry meta-analysis, clipping at 
chromosome borders. Overlapping loci as well as pairs of loci whose respective 
index SNPs were correlated (r² > 0.1 in the UK Biobank LD dataset described 
above) were merged. A single SNP was chosen to represent the MHC region, 
resulting in a final list of 189 regions before fine-mapping. Within each region, 
the GCTA COJO Slct algorithm81 was applied to identify independent variants by 
using a stepwise forward selection approach. We used the default collinearity cutoff 

of 0.9 (sensitivity analyses showed no major influence of alternative cutoff values; 
data not shown). We deemed an additional SNP as independently genome-wide 
significant if the SNP’s P value conditional on all previously identified SNPs in the 
same region was <5 × 10−8.

Fine-mapping and credible sets in the European-ancestry meta-analysis. For 
each region containing multiple independent SNPs and for each independent SNP 
in such regions, approximate conditional analyses were conducted with the GCTA 
COJO-Cond algorithm to generate approximate conditional association statistics 
conditioned on the other independent SNPs in the region. By using Wakefield’s 
formula implemented in the R package gtx82, we derived approximate Bayes factors 
(ABFs) from conditional estimates in regions with multiple independent SNPs 
and from the original estimates for regions with a single independent SNP. Given 
that 95% of the SNP effects on log(eGFR) fell within the range −0.01 to 0.01, the 
standard deviation prior was chosen as 0.0051 on the basis of formula (8) in the 
original publication32. Sensitivity analyses showed that results were robust when 
higher values were used for the standard deviation prior (data not shown). For 
each variant within an evaluated region, the ABF obtained from the association 
β values and their standard errors for the marginal (single-signal regions) or 
conditional (multi-signal regions) estimates was used to calculate the PP for a SNP 
of driving the association signal (‘causal variant’). We derived 99% credible sets, 
representing the SNP sets containing the variant(s) driving the association signal 
with 99% probability, by ranking variants by their PPs and adding them to the set 
until cumulative PP > 99% was reached in each region.

Variant annotation. Functional annotation of SNPs mapping to credible sets was 
performed with SNiPA v3.2 (March 2017)83, on the basis of the 1000Gp3v5 and 
Ensembl v87 datasets. SNiPA was also used to derive the CADD Phred-like score84, 
on the basis of CADD v1.3. The Ensembl VEP tool85 was used for prediction of the 
primary effects of SNPs.

Colocalization of eGFR signal and gene expression in cis. As the great majority 
of gene expression datasets are generated on the basis of European-ancestry 
samples, colocalization analysis was based on genetic associations with eGFR in 
the European-ancestry sample and with gene expression (eQTLs) quantified from 
microdissected human glomerular and tubulo-interstitial kidney portions from 187 
individuals from the NEPTUNE study41, as well as the 44 tissues included in the 
GTEx Project v6p release38. The eQTL and GWAS effect alleles were harmonized. 
For each locus, we identified tissue gene pairs with reported eQTL data within 
±100 kb of each GWAS index SNP. The region for each colocalization test was 
the eQTL cis window defined in the underlying GTEx and NephQTL studies. 
We used the coloc.fast function, with the default setting, from the R package gtx 
(https://github.com/tobyjohnson/gtx), which is an adaptation of Giambartolomei’s 
colocalization method86. The gtx package was also used to estimate the direction of 
effect over the credible sets as the ratio of the average PP-weighted GWAS effects 
over the PP-weighted eQTL effects.

Trans-eQTL analysis. We performed trans-eQTL annotation through LD mapping 
on the basis of the 1000Gp3v5 European reference panel (r2 cutoff of >0.8). We 
limited annotation to replicated index SNPs with fine-mapping PP ≥ 1%. Owing 
to expected small effect sizes, only genome-wide trans-eQTL studies of either 
peripheral blood mononuclear cells or whole blood with n ≥ 1,000 individuals 
were considered, resulting in five non-overlapping studies87–91 (Supplementary 
Table 14). For one study91, we had access to an update with larger sample size 
(n = 6,645) obtained by combining two non-overlapping studies (LIFE-Heart92 and 
LIFE-Adult93). To improve the stringency of results, we focused the analysis on 
interchromosomal trans-eQTLs with P < 5 × 10−8 in ≥2 studies.

Colocalization with urinary uromodulin concentrations. Association of 
genetic variants with UUCR at the UMOD–PDILT locus was evaluated in the 
German Chronic Kidney Disease (GCKD) study94. Uromodulin concentrations 
were measured from frozen stored urine by an established ELISA with excellent 
performance36. Concentrations were indexed to creatinine to account for urine 
dilution. Genetic associations were assessed with the same software and settings 
as for eGFR association (Supplementary Table 2). Colocalization analyses 
were performed with identical software and settings as described above for the 
association with gene expression.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genome-wide summary statistics for this study have been made publicly available 
at http://ckdgen.imbi.uni-freiburg.de.
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Data collection To maximize phenotype standardization across studies, an analysis plan and a command line script (https://github.com/genepi-freiburg/
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performed using GWAtoolbox and custom (R, Bash) scripts to assess ancestry-matched allele frequencies and variant positions. 
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of effect estimates and their standard errors (SE; seven decimal places instead of four). We evaluated ancestry-related heterogeneity 
using the software Meta-Regression of Multi-Ethnic Genetic Association (MR-MEGA v0.1.2). Genetic heritability was estimated using the 
R package ‘MCMCglmm’. We estimated pairwise genetic correlation coefficients through LD Hub v1.9.0 using LD Score regression. We 
used DEPICT v1 release 194 to perform Data-Driven Expression Prioritized Integration for Complex Traits analysis. A nested candidate 
gene analysis was performed using GenToS (https://github.com/genepi-freiburg/GenToS). Approximate conditional analyses were 
conducted using the GCTA v1.91.6beta COJO-Cond and -Slct algorithms. Using the Wakefield’s formula implemented in the R package 
’gtx’, we derived approximate Bayes factors (ABF). Functional annotation of SNPs mapping into credible sets was performed with SNiPA 
v3.2 (March 2017), based on the 1000Gp3v5 and Ensembl v87 datasets. SNiPA was also used to derive the Combined Annotation 
Dependent Depletion (CADD) PHRED-like score, based on CADD v1.3. The Ensembl VEP tool was used for SNP’s primary effect prediction. 
For co-localization analyses, we used the ‘coloc.fast’ function from the R package ‘gtx’ (https://github.com/tobyjohnson/gtx), which is an 
adaption of Giambartolomei’s co-localization method.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Genome-wide summary statistics for this study are made publicly available through dbGaP accession number phs000930.v7.p1 and at http://ckdgen.imbi.uni-
freiburg.de.  
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Studies contributed 121 GWAS summary statistics files for eGFR (total post-QC n=765,348), 60 GWAS files for CKD (total post-QC n=625,219, 
including 64,164 CKD cases), and 65 GWAS files for BUN (total post-QC n=416,178). 

Data exclusions Before meta-analysis, study-specific GWAS files were filtered to retain only variants with IQ score>0.6 and minor allele count (MAC)>10. After 
meta-analysis of 43,994,957 SNPs, only SNPs present in ≥50% of the GWAS files and with total MAC≥400 were retained. Across ancestries, this 
yielded 8,221,591 variants for eGFR (8,834,748 in EA), 8,176,554 for BUN (8,358,347 in EA), and 9,585,923 for CKD.

Replication The eGFR-associated SNPs identified in the discovery GWAS meta-analyses were tested for replication in a GWAS from the MVP, an 
independent trans-ethnic study with participants recruited across 63 U.S. Veteran’s Administration (VA) medical facilities.

Randomization This does not apply to our study. All samples were analyzed together.

Blinding This does not apply to our study. No group allocation was necessary.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics See Supplementary Table 1 for population characteristics and phenotype distributions of all participating studies, including 
covariates such as age and sex.

Recruitment See Supplementary Table 1 for a description of all participating studies and their study design.

Ethics oversight All studies had their own research protocols approved by the respective local ethics committees. Participants provided written 
informed consent. 
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