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Quantification of free-living activity 
patterns using accelerometry in 
adults with mental illness
Justin J. Chapman1, James A. Roberts1,2, Vinh T. Nguyen1 & Michael Breakspear1,3

Physical activity is disrupted in many psychiatric disorders. Advances in everyday technologies – such 
as accelerometers in smart phones – opens exciting possibilities for non-intrusive acquisition of activity 
data. Successful exploitation of this opportunity requires the validation of analytical methods that 
can capture the full movement spectrum. The study aim was to demonstrate an analytical approach to 
characterise accelerometer-derived activity patterns. Here, we use statistical methods to characterize 
accelerometer-derived activity patterns from a heterogeneous sample of 99 community-based 
adults with mental illnesses. Diagnoses were screened using the Mini International Neuropsychiatric 
Interview, and participants wore accelerometers for one week. We studied the relative ability of simple 
(exponential), complex (heavy-tailed), and composite models to explain patterns of activity and 
inactivity. Activity during wakefulness was a composite of brief random (exponential) movements and 
complex (heavy-tailed) processes, whereas movement during sleep lacked the heavy-tailed component. 
In contrast, inactivity followed a heavy-tailed process, lacking the random component. Activity patterns 
differed in nature between those with a diagnosis of bipolar disorder and a primary psychotic disorder. 
These results show the potential of complex models to quantify the rich nature of human movement 
captured by accelerometry during wake and sleep, and the interaction with diagnosis and health.

Mobile smart phones are ubiquitous in modern society, and their numerous sensors, such as GPS (Global 
Positioning System), gyroscopes and accelerometers, offer a unique opportunity to gather rich empirical data 
on free-living activity patterns1–5. Smart phones have been used to facilitate monitoring of early warning signs 
of relapse in patients with bipolar disorder (e.g. self-reporting sleep patterns)6, and smart phone accelerometers 
can be used to discern mood changes by monitoring the frequency and duration of bursts of activity7. Mobile 
technologies are crucial in the development of ‘telehealth’ systems, enabling remote interaction between patients 
and clinicians, and automated monitoring of symptoms8–11. Accelerometry also has potential in monitoring phys-
ical health, by measuring total activity and the distribution of sedentary bouts, which have been shown to be 
major risk factors for adverse physical health outcomes12. The opportunity to obtain rich behavioral data, using 
non-invasive methods, has elevated smart phone employment to a priority position in several large-scale inter-
national research efforts13–17. There is a pressing need to explore more sophisticated analytical techniques for 
quantifying mental illness symptoms using accelerometry18.

Previous use of accelerometry in psychiatric research has established proof-of-principle utility, but has pre-
dominantly only analyzed basic properties of the available data. For example, accelerometry has been used to 
distinguish subtypes of schizophrenia using simple summary statistics, namely the mean of activity counts7,19–22. 
Patients with schizophrenia appear to exhibit more structured activity than healthy controls or people with 
depression, as quantified by inter-daily stability and intra-daily variance23, but increased disorder at shorter 
timescales24. Increased dynamical entropy at short timescales has also been found in people with schizophrenia 
and bipolar disorder25. Over longer times, bipolar disorder is associated with higher intra-daily variability and 
lower inter-daily stability26. Bipolar patients hospitalized during either manic or depressive episodes have differ-
ent activity patterns quantified using measures of variability27, and circadian rhythms are related to mood varia-
tion in outpatients with euthymic bipolar disorder28. A systematic review reported that patients with depression 
have a lower daytime activity and higher night-time activity than individuals without depression, and concluded 

1Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia. 
2Centre for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, 
Australia. 3The Royal Brisbane and Women’s Hospital, Brisbane, Queensland 4029, Australia. Correspondence and 
requests for materials should be addressed to J.J.C. (email: justin.chapman@qimrberghofer.edu.au)

received: 11 April 2016

Accepted: 23 January 2017

Published: 07 March 2017

OPEN

mailto:justin.chapman@qimrberghofer.edu.au


www.nature.com/scientificreports/

2Scientific RepoRts | 7:43174 | DOI: 10.1038/srep43174

that analytical methods need to be improved to extract all relevant features from actigraph data18. Whilst inform-
ative, use of summary statistics fails to capture the rich complexity of human behavioral data stretching across 
many orders of magnitude, from a brief motion (e.g. a foot tap), to lengthy outcome-oriented endeavors (e.g. 
purposeful walking). Capturing the breadth of active and inactive behaviors requires techniques that quantify the 
entire spectrum of movement29.

Human activity can be conceptualized as a combination of internally-driven and external cue-triggered 
actions. Internally-driven actions are voluntary, purposeful actions, whereas externally-triggered actions are exe-
cuted in response to dynamic environmental stimuli30. Although these components – volitional versus reactive –  
appear to arise from distinct neural processes occurring in different regions of the brain31, most free-living activ-
ities are motivated by a combination of internal and external influences. Given the broad spectrum of influences 
that could potentially determine the timing of any action, one might assume that free-living activity can be char-
acterized by random, uncorrelated statistical processes (i.e., Poisson statistics). Recent work in quantifying the 
waiting times of inter-human communications, however, points toward non-Poisson processes governing email 
communication32, web browsing33 and printing requests34. Such activities are characterized by bursts of rapidly 
occurring events interspersed with longer waiting times, resulting in a so-called heavy-tailed distribution of the 
waiting time between tasks35. This suggests that other types of human activity, such as physical movement, might 
be of a non-Poisson nature.

Recent work building on this approach has revealed novel differences in movement patterns of adults with 
mental illness. In a small but intriguing study, Nakamura et al. demonstrated that the distributions of active or 
inactive periods in healthy adults followed distinct classes of non-Poisson models36. They showed that active 

Sample characteristics

Age; mean (SD)
40.5 (11.3) years 

range = 18–71 years

Female; n (%) 47 (48%)

Psychological distressa

 mean (SD) 14.8 (5.5)

 High distress; n (%) 43 (43%)

Number of current diagnoses n (%)

 1 41 (41%)

 2 33 (33%)

 3–5 9 (9%)

 None 16 (16%)

Single current diagnosisb n (%)

 Psychoses 15 (15%)

 Bipolar disorder 14 (14%)

 Anxiety 5 (5%)

 Substance use 4 (4%)

 Depression 3 (3%)

Nonec 16 (16%)

Multiple current diagnosesd n (%)

 Anxiety 33 (33%)

 Psychoses 31 (31%)

 Bipolar disorder 23 (23%)

 Substance dependence 23 (23%)

 Depression 20 (20%)

BMI (kg/m2)e n (%)

 <18.5 2 (2%)

 18.5–24.9 19 (19%)

 25–29.9 31 (31%)

 >30 47 (48%)

Table 1.  Participant health and demographic characteristics (n = 99). aPsychological distress in the previous 
four weeks measured using the Kessler-6 scale; scores range from 6 to 30, scores over 15 indicate high distress. 
bCurrent psychiatric diagnosis screened using the Mini International Neuropsychiatric Interview (MINI-
Plus). Only participants with a single diagnosis are presented, hence, the proportions do not add to 100%. A 
more detailed list is provided in Supplementary Table S1. cAll positively screened diagnoses are presented for 
participants with multiple psychiatric comorbidities, hence the proportions add to more than 100%. dSelf-
reported diagnoses of participants who did not screen positive for a current psychiatric diagnosis on the MINI-
Plus were: psychoses (n = 6), depression (n = 4), depression and anxiety (n = 2), depression and bipolar disorder 
(n = 1), anxiety (n = 1), bipolar disorder (n = 1), and psychosis secondary to an acquired brain injury (n = 1). 
eHeight and weight were measured using a stadiometer and electronic scales. BMI was calculated as [weight 
(kg)]/[height (m)]2.
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distributions followed a stretched exponential (Weibull) form, implying that we become “trapped” in active states: 
that is, the longer we are active, the less likely we are to cease movement at any particular moment. In contrast, 
inactive distributions followed a power-law form, implying that inactive periods do not have a characteristic time 
scale. Moreover, the inactive distributions in patients with depression followed the same power-law form as healthy 
adults, but with an altered scaling parameter, indicating more frequent episodes of longer resting periods29,36.  
Further, people with schizophrenia exhibited an enhanced persistency for both inactivity and activity when com-
pared with controls37. This method has also been used to identify motor retardation in depressed patients, with a 
higher scaling parameter describing patients with motor retardation38.

Accelerometry thus has substantial potential to detect clinically relevant changes in movement patterns. 
However, accelerometer-based studies to date have been limited by two important factors: Small sample size and 
the absence of robust statistical methods to compare movement patterns between mental illnesses. Moreover, 
analyses have employed only simple models and hence neglected the possibility that everyday activity reflects a 
composite of different modes of activity. Thus, the systematic validation of non-Poisson statistics in patterns of 
activity measured using accelerometry has not been achieved, and requires application to a large cohort with a 
spectrum of mental illnesses. This is a crucial prelude to broader translation of movement data acquired using 
mobile phones and other smart devices. Here, we demonstrate the utility of a rigorous quantitative analysis incor-
porating novel stochastic models for characterizing activity patterns in adults with mental illness.

Methods and Materials
Participants. One hundred and fourteen participants were recruited from psychiatric outpatient clinics and 
community-based mental health organizations in Brisbane, Australia. Participants were ambulatory, English 
speaking, and over 18 years of age, who self-identified as having a mental illness. Informed written consent was 
obtained from all participants. Ethical approval for the study was obtained from The University of Queensland 
Behavioral and Social Sciences Human Ethical Review Committee (2012000908), and the Royal Brisbane & 
Women’s Hospital Human Ethical Review Committee (HREC/12/QRBW/286). These methods were carried out 
in accordance with the approved guidelines.

Of the 114 consenting participants, 13 did not complete the study. Reasons for withdrawal included lack of 
time (n = 2), anxiety/paranoia about the accelerometer (n = 3), forgetfulness (n = 2), self-perceived inability to 
adhere to the study (n = 2), and hospitalization (n = 2); two participants were withdrawn by clinical staff, because 
they considered their client’s mental health not suitable for participation. Data from two participants who com-
pleted the protocol were unable to be used because of an accelerometer fault (n = 1), or failure to follow the pro-
tocol (n = 1); data from 99 participants were therefore included in the analyses. The mean age was 40 (SD =11;  
range 18–74), and 48% were female. Formal assessment revealed considerable diagnostic heterogeneity: 83 par-
ticipants screened positive for at least one of the 13 major diagnoses on the MINI-Plus, and 42 met criteria for two 
or more diagnoses. Positively screened diagnoses included anxiety (n = 33), psychoses (n = 31), bipolar disorder 

Figure 1. Accelerometer data averaged over 1-second epochs (counts per second: cps) from a single subject. 
(A) Four consecutive days. (B) Close-up of Day 3 beginning and ending at midnight; time in 24-hour format. 
The horizontal line represents the threshold (defined as the mean of non-zero activity counts) used to derive the 
active and inactive time series.
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(n = 23), substance dependence (n = 23), and depression (n = 20). The cohort thus represents a typically heter-
ogeneous population of community-dwelling adults with mental illness. Diagnostic information is provided in 
Table 1 and Supplementary Table S1.

Data acquisition. Height and weight of all participants were measured during the first visit, and a Mini 
International Neuropsychiatric Interview (MINI-Plus) was conducted to screen for 13 diagnoses. The MINI-Plus 
interview covers major depressive disorder (MDD), panic disorder (PD), agoraphobia, obsessive-compulsive dis-
order (OCD), post-traumatic stress disorder (PTSD), substance dependence (drug/alcohol), psychotic disorders 
(schizophrenia, schizoaffective disorder, schizophreniform disorder, psychotic disorder NOS), bipolar disorder 
1 and 2 (BP1 and BP2), anorexia nervosa, bulimia nervosa, generalized anxiety disorder (GAD), and adult atten-
tion deficit hyperactivity disorder (ADHD). The MINI-Plus interview has been shown to have a sensitivity of 
0.45–0.96, and specificity of 0.45–0.98 for these disorders, compared with the Structured Clinical Interview for 
DSM-IIIR39.

Participants were asked to wear an ActiGraph GT3X+ accelerometer (ActiGraph, Pensacola, FL) on the 
right hip 24 hours/day for seven consecutive days. Acceleration data were sampled from the three axes at 30 Hz. 
Participants were asked to remove the device only to go in water (e.g. shower, swim), and to record the time to 
bed, time out of bed, and accelerometer non-wear times, in a diary.

Data Pre-processing. Raw acceleration data were filtered at a bandwidth of 0.25 to 2.5 Hz corresponding to 
the timescales of human movement40. Data were converted to counts per second (cps), and the vector magnitude 
was used to estimate the relative intensity of activity for each 1-second epoch. Data were also converted to counts 
per minute (cpm) for comparison with previous research, and daily averages of the proportion of time spent in 
sedentary behaviour (SB) and moderate-to-vigorous activity (MVPA) were calculated using validated thresh-
olds: ≤100 counts per minute (cpm) and >2019 cpm, respectively41. Accelerometer non-wear time was identified 
from participant diaries, and from consecutive zero counts for 180 minutes or longer, and removed. Participants’ 
self-reported bed times were used to define their waking and sleeping data. Analyses were performed on pooled 
waking and sleeping data, and compared with analyses for waking and sleeping data alone. Analyses were con-
ducted in Matlab 2016a (The MathWorks, Inc., Natick, Massachusetts, United States).

Participants wore the monitor for a median of 23.4 hours/day (IQR = 16.6 to 23.9). The median proportion of 
self-reported time spent awake, to time spent asleep, was 1.6 (IQR = 1.3 to 1.9). When considering the propor-
tion of time that the monitor was worn in either waking hours or sleeping hours, the median ratio of these two 
proportions was 1.00 (IQR = 0.98 to 1.19), indicating an approximate balance between waking and sleeping data. 

Figure 2. Series of events extracted from accelerometer data using a threshold of the mean of non-zero 
activity counts. Series of (A) active events (successive durations above the threshold), and (B) inactive waiting-
times (successive durations below the threshold). Data above the threshold are active events of duration 

= −T t tA D Ui i i
, and data below the threshold are inactive waiting-times of duration = −

+
T t tW U Di i i1

, where 
tU i

 is the beginning (upward threshold crossing), and tDi
 is the end (downward threshold crossing), of the ith 

event.
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Participants with insufficient sleep data were only included in the analysis of waking data (defined as a ratio of 
awake to sleep data greater than 3; ten (10%) cases had insufficient sleep data).

Data analysis. We reduced free-living activity data to a sequence of active events, and inactive waiting-times 
(T Ai

 and TWi
, respectively). These series represent accelerometer data above, and below, a threshold defined by the 

mean of non-zero activity counts (Figs 1 and 2)29. The respective time series are defined by = −T t tA D Ui i i
, and 

= −
+

T t tW U Di i i1
, where tU i

 is the beginning (upward threshold crossing), and tDi
 is the end (downward thresh-

old crossing) of the ith event.
Cumulative probability distributions (CDFs) were derived from these active and inactive time series. CDFs 

characterize the entire activity spectrum of a system, and their functional form reflects the nature of the under-
lying generative process35. We first fitted the CDFs with a power-law model using a robust fitting procedure, in 
which the Kolmogorov-Smirnov statistic is minimized, and the log-likelihood is maximized, over all possible 
xmin values, and a range of likely model parameters (α = 1.1 to 5.0, in steps of 0.01)42. Previous communications 
have cautioned against using limited sets of competing models for observed data43 – to compare the relative 
successes within a more comprehensive set, the optimal xmin value for the power-law fit was used to fit four other 
standard competing models: (i) truncated power-law; (ii) simple exponential; (iii) stretched exponential; and 
(iv) log-normal. In addition to these simple and long-tailed models, we also fitted two composite models: (v) 
bi-exponential, and (vi) sum of exponential and truncated power-law models, representing a composite of under-
lying processes. All models were fitted to the data using the maximum likelihood estimation technique, which 
maximizes the agreement of the model with the observed data44. Table 2 gives an overview of these models, and a 
description of the processes they represent.

More complex models have more parameters, and thus may ‘over fit’ the data. The Bayesian information cri-
terion (BIC) is a measure of goodness-of-fit which penalizes each model’s relative complexity, thus favoring more 
parsimonious models. We used the BIC to determine the best fitting model for each subject, because it applies 
a stronger penalty to model complexity than other model selection statistics, such as the Akaike Information 
Criterion (AIC). We then used a Bayesian model selection routine to determine the most likely model to describe 
the entire cohort. Each competing model’s exceedance probability (ϕ) was calculated, representing the proba-
bility that the model generated data from a randomly chosen subject within the group45. This method of model 
selection has been shown to be more robust than fixed-effects analysis, or conventional frequentist tests of model 
evidences, particularly in the presence of outliers45. The group-averaged parameters of the successful models were 
then calculated as the average of each subject’s model parameters, weighted by the renormalized model evidences 
of the plausible models46.

Individual participant characteristics may influence which model is most successful for each participant, and 
the model parameters of the successful group-wise model. We investigated the influence of (i) health and demo-
graphic characteristics: age, sex, BMI, psychological distress, smoking status (ex-smoker >6 months, occasional, 

Model name PDF function Description

Power-law Cx−α

Power-law distributions arise in empirical data when an 
observable results from an underlying scale-invariant process, 
quantified by the scaling exponent (α). Example: earthquake 
magnitudes follow a power-law distribution65.

Exponential Ce−λx

Exponential distributions occur widely in nature in the waiting 
time between events from a random statistical process. Such 
events are Markovian (‘memoryless’), occurring independent of 
the time since the last event, and have a characteristic time scale 
characterized by λ. Example: call center arrivals66.

Log-normal 











µ

σ

− −C expx
x1 (ln )2

2 2

A probability distribution with a normally distributed logarithm 
defined by its mean (μ) and standard deviation (σ), which arises 
from the multiplication of many positive, independent random 
variables (cf. the normal distribution which arises from the sum 
of independent random variables via the central limit theorem). 
Log-normal distributions describe situations of growth, where 
the growth rate is independent of size. Examples: axon diameters 
and firing rates of cortical neurons67.

Weibull β− −λ β
Cx e x1

Defined by the shape (β) and the scale (λ), Weibull distributions 
(also known as stretched exponential) are commonly used in 
survival and reliability analyses. The probability of an observable 
over time decreases for β < 1, is constant for β = 1, and increases 
for β > 1. Example: wind-speed distributions68. 

Truncated power-law Cx−αe−λx

Power-laws truncated at longer time scales by an exponential 
distribution are indicative of scale-free phenomena limited by 
the finite physical extent of the system (i.e., events have an upper 
limit). Example: bursts in neonatal EEG69.

Biexponential C1δe−λx + C2(1 − δ)e−γx
The result of two independent underlying exponential processes, 
with their own characteristic time scales defined by λ and γ. 
Example: bimodal alpha power70.

Sum of exponential and truncated power-law C1δe−γx + C2(1 − δ)(x−αe−λx) A composite distribution formed by the sum of an exponentially-
truncated power-law and an exponential distribution.

Table 2.  Overview of model distributions. PDF: Probability Density Function. Normalization constants (C, 
C1, C2) are given in Clauset et al.42, or calculated numerically where a closed form solution does not exist.
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daily); and (ii) summary statistics of each participant’s accelerometer data: MVPA and SB. To investigate the influ-
ence of these characteristics on model selection, we performed a non-parametric Kruskal-Wallis test between 
participants with different successful explanatory models for active and inactive periods (determined by their 
BICs). To investigate predictors of the model parameters, hierarchical multiple regressions were performed using 
participant characteristics to predict the model parameters of the successful group-wise models for active and 
inactive periods.

Figure 3. Cumulative distribution functions (CDFs) and model fits for (A) active durations, and (B) inactive 
durations. The most successful group models (denoted by thick lines) were the sum of exponential and 
truncated power-law for active CDFs (parameters: α = 1.73, λ = 0.03, γ = 0.42, δ = 0.48), and truncated power-
law for inactive CDFs (parameters: α = 1.64, λ = 0.0002).

Distributions

Active distributions Inactive distributions

Exceedance 
probability (ϕ)

Group-averaged 
parameters

Exceedance 
probability (ϕ)

Group-averaged 
parameters

Power-law 0.027 α = 2.90 0.177 α = 2.04

Exponential 0 ΝΑ 0 ΝΑ

Log-normal 0
μ = −2.12

0 NA
σ = 1.88

Weibull 0
β = 0.14

0 NA
λ = 9.48 × 10−7

Truncated power-law 0
α = 2.02

0.823
α = 1.64

λ = 0.004 λ = 2.0 × 10−4

Biexponential 0

λ = 0.37

3.3 × 10−5

λ = 0.007

γ = 0.03 γ = 0.029

δ = 0.86 δ = 0.598

Sum of exponential and truncated power-law 0.973

α = 1.73

7 × 10−4

α = 1.56

λ = 0.03 λ = 0.002

γ = 0.42 γ = 0.001

δ = 0.48 δ = 0.099

Table 3.  Bayesian model selection and group-averaged parameters for pooled waking and sleep data 
(n = 89)a. Note: Models with group-averaged parameters of “NA” were not potentially plausible models for any 
cases; plausible models were determined from the log-evidence ratios of at least 0.05. aTen participants had 
insufficient sleep data, so were not included in analysis of pooled waking and sleeping data.
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Results
Acceleration data show a striking diurnal cycle of increased day-time activity and decreased (but not absent) 
night activity (Fig. 1). The corresponding active and inactive time series show characteristic burst-like activity 
(Fig. 2), with the sporadic appearance of high amplitude (lengthy) events, suggesting that standard exponential 
models are unlikely to compete well against candidate heavy-tailed models for these data.

Pooled waking and sleeping data. The BICs for active period CDFs indicate that a composite of expo-
nential and truncated power-law models (Fig. 3A) was the most successful model at the individual level (n = 54), 
followed by power-law (n = 29), truncated power-law (n = 9) and bi-exponential (n = 7). Those described by 
power-law had lower MVPA than those described by the composite model (mean = 2% vs. 6%; p < 0.001). 
Visually, the inactive distributions appear to follow the same composite model as the active distributions (Fig. 3B); 
however, after penalizing for model complexity, the simpler truncated power-law form dominates. Most inactive 
CDFs were described by truncated power-law (n = 75); 24 were described by power-law. The truncated power-law 
model indicates a curtailing of inactive periods at long timescales, and transition into activity. Participant charac-
teristics (age, BMI, sex, psychological distress, smoking status) were similar between these two groups (p > 0.052).

Exceedance probabilities quantitatively confirmed that the composite model for the active periods, and the 
truncated power-law for the inactive periods, were the most successful group-wise models (Table 3). Successful 
group-wise models identified from exceedance probabilities represent the most likely model to describe each 
individual’s CDF within the cohort, given the set of competing models. That is, a composite group-wise model 
reflects a winning composite model at the individual level, not a composite of different individual-level simple 
models. Multiple hierarchical regressions indicated that MVPA was a significant predictor for α, λ and μ of the 
composite model describing active periods; SB was also a significant predictor of α. For the truncated power-law 
model describing inactive periods, SB was a significant predictor for α and λ, with MVPA and smoking status also 
predicting α, and age also predicting λ. These results are shown in Supplementary Table S2.

CDFs generated from 60-sec epoch data (Supplementary Figure S1) were described by the simpler trun-
cated power-law model (ϕ = 1.0), and lacked the two distinct regimes evident in 1-sec data (compare Fig. 3 and 
Supplementary Figure S1).

Waking vs. sleeping data. Similar characteristic behavior was found for participants’ waking patterns 
(Fig. 4): A sum of exponential and truncated power-laws described active distributions (ϕ = 0.961; Fig. 4A), 
and the truncated power-law described inactive distributions (ϕ = 0.988; Fig. 4B). Sleep exhibited an absence 
of heavy-tailed behavior for active distributions, following the simple exponential form (ϕ = 1.0; Fig. 4A). 
Inactive distributions during sleep were more complex, being described by the sum of exponential and truncated 
power-laws (ϕ = 1.0; Fig. 4B). Model statistics are shown in Supplementary Table S3.

During waking hours, the mean proportion of daily time spent in MVPA and SB was 4.5% (SD = 4.5%) and 
65% (SD =11%), respectively. Other summary statistics of waking behaviour have been presented elsewhere47.

Figure 4. Cumulative distribution functions (CDFs) for (A) active durations, and (B) inactive durations, for 
self-reported time awake (red circles), and time in bed at night (black circles). Only the successful group models 
are shown.
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Subgroup comparisons. Prior research and clinical observations suggest that different clinical disorders 
may be characterized by distinct differences in activity patterns48. We compared activity patterns between partic-
ipants with psychotic and bipolar disorders. Participants in these groups had similar age (mean = 45.1 vs. 45.9; 
p = 0.75), BMI (mean = 31.8 vs. 31.1; p = 0.72), distress (mean = 11.5 vs. 13.4; p = 0.23), SB (mean = 65% vs. 
62%; p = 0.47), and sex (female = 31% vs. 50%; p = 0.26), but participants with psychotic disorders had higher 
MVPA than those with bipolar disorder (mean = 2.8% vs. 8.4%; p = 0.003). A composite of exponential and 
power-law models described psychoses, whereas a simpler power-law model described bipolar disorder (Fig. 5). 
We further confirmed that these two groups were generated from different distributions using the log Bayes factor 
(LogBF = 13.2, F-statistic = 7.5, corresponding to strong evidence).

Physical activity and metabolic health have been increasingly recognized as crucial in people with psycho-
ses49. We thus compared the group-averaged model parameters between obese (BMI > 32; n = 16) and non-obese 
(BMS < 32; n = 12) participants with psychotic disorders, using a Mann Whitney-U test. These participants had 
similar age (mean = 44 vs. 38; p = 0.07), distress (mean = 13 vs. 16; p = 0.63), SB (mean = 65% vs. 65%; p = 0.91), 
MVPA (mean = 3% vs. 5%; p = 0.21) and sex (female = 55% vs. 40%; p = 0.22). The truncation parameter was 
significantly higher for obese (λ = 0.02) than non-obese participants (λ = 0.003; p = 0.03).

Threshold variation. To verify that our results are insensitive to the exact choice of the threshold, we varied 
the threshold over a large range, from 0.5 to 1.5 times the mean of non-zero counts (Fig. 6). The inactive period 
CDFs, and corresponding parameter estimates, are robust over a wide range of threshold values. On average, the 
scaling parameter α changed by less than 10% over the range of threshold values. More variation was observed 
for the active period CDF and model parameters: on average, the scaling parameter α changed by less than 50% 
over the range of threshold values.

Figure 5. Exceedance probabilities (ϕ) of the seven competing models fit to cumulative distribution 
functions (CDFs): 1 = truncated power-law; 2 = power-law; 3 = log-normal; 4 = Weibull; 5 = exponential; 
6 = biexponential; 7 = sum of exponential and truncated power-law. Upper panels (A,B) represent 
exceedance probabilities for active distributions; lower panels (C,D) represent exceedance probabilities for 
inactive distributions. Left panels (A,C) show results of participants with bipolar disorders (n = 14), right panels 
(B,D) show results of participants with psychotic disorders (n = 13). Active distributions were best described by 
a power-law distribution for participants with bipolar disorders (exceedance probability ϕ = 0.77; parameter: 
α = 3.19), and a sum of exponential and truncated power-law for participants with psychotic disorders 
(exceedance probability ϕ = 0.79; parameters: α = 1.85, λ = 0.01, γ = 0.55, δ = 0.47). Inactive distributions were 
similar for both groups, being described by truncated power-laws, with parameters: α = 1.62, λ = 0.0002, and 
α = 1.69, λ = 0.0002, for participants with bipolar and psychotic disorder, respectively.
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Discussion
Monitoring free-living physical activity patterns has important applications in psychiatry, for which mobile 
phones offer a powerful “real world” medium for data acquisition. However, validation of robust analytical tech-
niques for the characterization of movement patterns is needed prior to broader implementation. Using a novel 
analytical method to analyze accelerometer data from adults with mental illness, we demonstrated that the sto-
chastic models that best describe behavior are more complex than previously thought. This approach can be 
applied to accelerometer data acquired from mobile phones, and may have broader applications in monitoring 
severity and progression of other psychiatric and neurological disorders, such as dementia, Alzheimer’s50 and 
Parkinson’s disease51.

Our main finding was that free-living activity in our heterogeneous clinical sample was described by a previ-
ously unrecognized composite of two distinct regimes of behavior. Short duration (~10 s) exponential behavior 
may be caused by externally-triggered reactions to environmental stimuli, whereas longer duration (~1000 s) 
heavy-tailed activity may be caused by internally-driven cognitive processes responsible for task priority queu-
ing32. Our data suggests that both movement and the cessation of movement have characteristic time scales: 
Inactive distributions spanned four orders of magnitude (1 second to ~2.5 hours), and active distributions 
spanned three orders of magnitude (1 second to ~17 minutes). Here, truncation of active distributions may be 
caused by the energetic extent of the system (e.g. fatigue), or the completion of tasks, resulting in cessation of 
meaningful activity. During periods of rest, the need to respond to internal and external influences (e.g. hunger, 
adjustments while seated, the development of a task priority) prevail at long timescales, and transition into activ-
ity. These findings help constrain the type of generative dynamics occurring in the cortical areas associated with 
motor preparation of self-initiated movement, such as the anterior mid-cingulate cortex and the supplementary 
motor area52. Whereas uncorrelated, random events yield exponential CDFs, the presence of long-tailed statistics 
in time series data speaks to more complex underlying processes, such as temporal memory, metabolic con-
straints and strong feedback35. These findings thus help constrain the type of underlying dynamics occurring in 
the cortical areas associated with motor preparation of self-initiated movement such as the anterior mid-cingulate 
cortex and the supplementary motor area52. In particular, while the neural substrates for these areas are well 
known, the dynamics that arise from their interactions – and that support movement onset and maintenance 
– are not well known. The presence of long-tailed statistics and composite statistical models suggests that the 
underlying dynamics occur in the presence of nonlinear instabilities and, possibly, multi-attractor systems35,53,54. 
This is an intriguing area that warrants further study.

Figure 6. Robustness of cumulative distribution functions (CDFs) to variation in the activity threshold. 
The chosen threshold was defined as the mean of non-zero activity counts, and varied by +/−50%. Data 
stability is shown for (A) active CDFs, and (B) inactive CDFs. Stability of the successful model parameters 
shown for (C,D,E,F) active distributions (parameters α, λ, γ, and δ of sum of exponential and truncated power-
law), and (C,D) inactive distributions (parameters α and λ of truncated power-law); y-axes represent the 
parameter’s proportional change from the chosen threshold.
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Previous research has found that power-law and stretched exponential (Weibull) models best describe the 
cumulative distributions of inactive and active periods, respectively36. Differences between previous research and 
our findings may arise from the limited number of previous models studied, the absence of a formal inversion 
scheme, and the different time scales used (data averaged over 30-second55, or 60-second epochs29,36–38) which 
appears to be insensitive to this composite behavior. The position of accelerometer wear also influences the result-
ant activity pattern56: we used hip-worn monitors which measure “whole body” movement (and may more closely 
mimic the position of a mobile phone), whereas previous studies have used wrist-worn devices.

We also found that heavy-tailed behavior was not evident during sleep. The observed dominance of exponen-
tial behavior during sleep may support the preceding hypothesis, because higher order task queuing is removed 
during sleep, superseded by environmental responses (e.g. uncomfortable sleep position), or lower order cognitive 
processes (e.g. dreams). The distinction between ‘sleep’ and ‘awake’ data, however, was made from self-reported 
time to bed and time out of bed, which does not consider waking periods in bed (e.g. sleep latency, awakenings), 
or napping during the day. The Bayesian model selection routine is robust to outliers, so participants with particu-
larly restless sleeps, or extensive daytime napping, are not likely to have altered the group-wise model selection.

The utility of these findings is exemplified by our application of a comprehensive set of competing models 
to the data, and the quantification of group-based likelihood of the models using a Bayesian approach. Previous 
studies have applied a smaller number of model hypotheses to activity data, which can lead to misinformed con-
clusions57, and have not formally appraised group-wise model success. We used a threshold defined by the mean 
of activity counts to define the time-series of activity or inactivity, consistent with previous literature29,36,37. This 
approach may be advantageous because the threshold is driven by the data, and may therefore be more sensitive to 
differences in activity patterns. However, other widely accepted accelerometer statistics use externally-validated 
thresholds that correspond with categories of energy expenditure. Whilst useful for determining the time spent 
at different intensities of activity, these thresholds are dependent upon the method of validation (e.g. lab-based 
vs. free-living) and individual characteristics (e.g. age, sex, BMI)58, which can produce large discrepancies in 
outcomes59. Identification of potentially abnormal activity patterns using our presented analyses would require 
comparison with a control group matched on the time spent in physical activity. Future research could investigate 
threshold-free analyses.

We additionally performed a proof-of-principle contrast between participants with different psychiatric diag-
noses. Interestingly, the short-duration exponential behavior evident in the active distributions of participants 
with a psychotic disorder was absent in those with bipolar disorder. Instead, a simple power-law model best 
governed the active distributions in bipolar patients, potentially representing a reduction in reactional behavior 
(Fig. 5). This finding is broadly consistent with the hypothesis of neuronal dysregulation of dopamine in bipolar 
disorder, causing over-excitation of the processes responsible for volition60. Previous research has found that 
bipolar patients in a manic episode exhibited a greater degree of exploratory behavior when faced with a novel 
environment7,61, which may be reflected in the present findings, and may have clinical implications for the moni-
toring of psychopathological symptoms. Interestingly, participants with psychotic disorders had a higher level of 
moderate-to-vigorous activity than bipolar patients. This may seem contradictory with the preceding hypothesis, 
however, the composite model describing activity patterns of participants with psychoses curtails active periods 
at long durations indicating a ‘ceiling’ effect, whereas the power-law describing those with bipolar disorder does 
not have a characteristic time-scale. Future research should compare participants with different psychiatric diag-
noses matched by physical activity level to verify if the difference in activity patterns between diagnostic groups 
are independent of activity level.

Adults with mental illness have poor physical health compared with the general population62. Changes in 
activity patterns may reflect a higher risk of developing physical complications. We examined a limited number 
of parameters pertaining to physical health, and found that the model statistics for obese people with psychotic 
disorders were different from those who were not obese. A larger truncation parameter was found for the active 
distributions of those who were obese, indicating a reduced likelihood of remaining active for longer periods of 
time. This could be due to a higher propensity to fatigue in obese participants with a psychotic disorder, possibly 
driven by ‘negative’ symptomatology. The application of this analytical method is formative, however, and a larger 
sample would be required to investigate the possible influences of health and demographic characteristics on 
model parameters.

Our data were recorded during free-living conditions, sampled from a diverse sample of adults across a range 
of mental illnesses. While this approach has strong ecological validity, it also presents a number of limitations. In 
particular, there were only 14 participants that had a single psychiatric diagnosis without comorbidities, which 
limits investigation into the specific influence of diagnosis, medications, and demographic characteristics. Sixteen 
participants did not meet the MINI-Plus criteria for a current mental illness (as indicated in Table 1, note c); 
however, these participants may have had symptoms of poor mental health that did not reach clinical levels. The 
sample heterogeneity may also have advantages, in that the application of this analytical method to a broad sam-
ple is more reflective of real world conditions.

Future work could focus on applying these analytical techniques to larger samples of participants with a spe-
cific psychiatric diagnosis, and correlating model parameters with dimensional symptomatic measures (e.g. posi-
tive and negative symptoms of people with schizophrenia) rather than contrasts between diagnostic categories. A 
previous study reported that avolition, but not qualitative motor disturbance, was associated with reduced activity 
levels in adults with schizophrenia21; analyses presented here quantify the complete activity distribution, and may 
have utility for detecting motor disturbances38. Our analyses could also be used to quantify sleep disturbances. 
Indictors of disturbed motor activity or sleep could be used as early warning signs of relapse and to promote early 
intervention, or to assess treatment progression or efficacy. We analysed pooled waking and sleeping data, and 
waking and sleeping data separately; this technique could also be applied to shorter time periods (e.g. ~1-hr) sim-
ilar to other research63. Further, the parameters of the active and inactive distributions for each participant may 
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correlate with over- or under-activity of different brain regions, similar to previous research64. Future work should 
compare activity patterns with a healthy comparison group to detect potentially abnormal movement patterns 
associated with particular illnesses.

In summary, we presented a novel approach that may have applications in the monitoring of pathophysiolog-
ical symptoms related to movement abnormalities in adults with mental illness. This methodology holds promise 
for broader application, particularly with the roll-out of mobile phone-based psychiatry research.
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